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Abstract: In chronic kidney disease (CKD) patients, several risk factors contribute to the development
of endothelial dysfunction (ED), which can be described as an alteration in the cell structure or in the
function of the endothelium. Among the well-known CKD-related risk factors capable of altering
the production of endothelium-derived relaxing factors, we include asymmetric dimethylarginine
increase, reduced dimethylarginine dimethylamine hydrolase enzyme activity, low-grade chronic
systemic inflammation, hyperhomocysteinemia, oxidative stress, insulin resistance, alteration of
calcium phosphorus metabolism, and early aging. In this review, we also examined the most
important techniques useful for studying ED in humans, which are divided into indirect and direct
methods. The direct study of coronary endothelial function is considered the gold standard technique
to evaluate if ED is present. In addition to the discussion of the main pharmacological treatments
useful to counteract ED in CKD patients (namely sodium–glucose cotransporter 2 inhibitors and
mineralocorticoid receptor antagonist), we elucidate innovative non-pharmacological treatments that
are successful in accompanying the pharmacological ones. Among them, the most important are
the consumption of extra virgin olive oil with high intake of minor polar compounds, adherence
to a plant-dominant, low-protein diet (LPD), an adaptive physical activity program and, finally,
ketoanalogue administration in combination with the LPD or the very low-protein diet.

Keywords: endothelium; endothelial dysfunction; chronic kidney disease; nitric oxide; inflammation;
oxidative stress; insulin resistance; bioactive natural compounds; ketoanalogues; innovative treatments

1. Introduction

In physiological conditions, an intact endothelium constitutes a barrier between blood
circulation and the vascular wall. It acts as a modulator of blood circulation itself, and
it is responsible for the regulation of vascular tone [1]. The endothelium regulates the
production of a series of endothelium-derived relaxing factors, which are responsible for
the maintenance of vascular homeostasis [2].

An intact endothelium exerts various functions. (i) An anti-inflammatory action,
inhibiting the monocytes’ adhesion. In fact, the healthy endothelium prevents the adhesion
of circulating monocytes at the level of the intimal through the production of different
adhesion molecules, i.e., vascular cellular adhesion molecule-1 (VCAM-1). The latter
plays a crucial role in the formation of atheromatous plaque [3]. (ii) An antithrombotic
action through the release of nitric oxide (NO), a powerful vasodilator and antithrombotic
agent that prevents platelets’ migration and aggregation [4]. (iii) An anticoagulant and
profibrinolytic action. (iv) An anti-proliferative action, with the inhibition of the smooth
muscle cells’ proliferation and their migration [5].
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Endothelial dysfunction (ED) can be described as an alteration in the cell structure or
in the function of the endothelial tissue that internally lines blood vessels [6]. ED plays a key
role in the etiopathogenesis of numerous pathologies, so its identification and its treatment,
using both traditional and innovative therapies, becomes of particular importance for
the clinical management of patients affected by chronic degenerative non-communicable
diseases, such as cardiovascular (CV) diseases, arterial hypertension, diabetes mellitus, and
chronic kidney disease (CKD) [7,8].

CKD causes ED through several mechanisms that include the reduction of NO, the
stimulation of the inflammatory response, and the increase of oxidative stress (OS), vascular
permeability, and leukocyte adhesion, resulting in an angiogenesis impairment [5]. This
review’s aims are to clarify the main ED risk factors in CKD patients, to describe its
most innovative diagnostic methods, and, finally, to discuss its main pharmacological and
non-pharmacological treatments, both traditional and innovative.

2. Search Methods

A literature search was conducted up to March 2024 according to the basic literature
online search process. Articles from online databases belonging to PubMed, Scopus, and
Cochrane Library were manually retrieved. For the paper search, we used the keyword
“endothelial dysfunction” either alone or in combination with “asymmetric dimethylargi-
nine” AND “eNOS” AND “inflammatory status” AND “hyperhomocysteinemia” AND
“oxidative stress” AND “insulin resistance” AND “calcium-phosphorus metabolism” AND
“early aging” AND “diagnosis of endothelial dysfunction” AND “therapeutic approaches”
AND “drug therapies” AND “nutritional therapies”. The search included only papers in
the English language with abstracts and reviews, original articles, and meta-analyses.

3. The Risk Factors of Endothelial Dysfunction in CKD Patients

ED is a common comorbidity of CKD, and it increases the risk for CV diseases. In
this section, we examine the role of asymmetric dimethylarginine (ADMA), low-grade
chronic systemic inflammation, hyperhomocysteinemia (HHcy), OS, insulin resistance (IR),
alteration of calcium phosphorus metabolism, and early aging in ED onset and progression
(Figure 1).
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Figure 1. Factors involved in ED genesis in CKD. Abbreviations: ADMA, asymmetric dimethylargi-
nine; CKD, chronic kidney disease; COX, cicloxigenase; DDAH, dimethylarginine imethylamino-
hydrolase; ED, endothelial dysfunction; eNOS, endotelial nitric oxide synthase; ET-1, endothelin-1;
FGF23, fibroblast growth factor 23; hs-CRP, high-sensitivity C-reactive protein; ICAM, intercellular
adhesion molecule; IL, inteleukin; LDL, low-density lipoprotein; MAPK, mitogen-activated protein
kinase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; NO, nitric oxide; PI3K,
phosphoinositide 3-kinases; TNF, tumor necrosis factor; VCAM, vascular cell adhesion molecule;
VSMC, vascular smooth muscle cells; ↑ increase; ↓ decrease.
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3.1. Asymmetric Dimethylarginine

NO production occurs by means of three different enzymes: neuronal nitric oxide syn-
thase (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). The latter is localized
on the plasma membrane invaginations at the level of the endothelial cells of the blood
vessels where, in physiological conditions, it produces NO at low concentrations [9]. In
addition to promoting endothelium vasodilation, NO is involved in the correct functioning
of the endothelium itself; in fact, it reduces the platelets’ aggregation, the migration and the
proliferation of smooth muscle cells, the adhesion of monocytes, the expression of adhesion
molecules, and the oxidation of low-density lipoprotein (LDL) cholesterol [10].

In this context, a strong endogenous inhibitor of eNOS is the ADMA, i.e., a dimethy-
lated amino acid that is produced from L-arginine in endothelial cells. In CKD patients,
the lower NO production is due to not only the high ADMA levels but also the reduced
activity of dimethylarginine dimethiamine hydrolase (DDAH), the enzyme responsible for
ADMA degradation [11].

ADMA is metabolized by the kidney and excreted in the urine; for this reason, in
conditions of impaired renal function, its excretion is reduced. Furthermore, the alteration
of the renal parenchyma leads to a decrease in the concentration of DDAH, resulting in
ADMA accumulation [12]. Being related to a lower NO availability, ADMA is involved in
the uncoupling of eNOS, which is responsible for free radical production [5].

3.2. Low-Grade Chronic Systemic Inflammation

Low-grade chronic systemic inflammation related to CKD is in part due to the activa-
tion of the innate immune system cells, including monocytes, macrophages, and granulo-
cytes, and it is a frequent cause of ED [13,14].

In CKD patients, inflammation is present not only systemically but also locally in the
kidneys. In fact, in the case of renal dysfunction, chronic low-grade inflammation triggers
resident kidney cells to produce proinflammatory cytokines and chemokines and induces
the deposition of the extracellular matrix (ECM), thus contributing to tubulointerstitial
fibrosis [15]. As such, chronic low-grade inflammation is an important driver of CKD
progression [14].

In nephropathic patients, an imbalance was observed between the production of the
anti-inflammatory and proinflammatory cytokines to the advantage of the latter, with a
serum increase of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and high-
sensitivity C-reactive protein (hs-CRP) due to either their augmented release or their
reduced kidney clearance [16].

Low-grade chronic systemic inflammation, in association with OS and the production
of the advanced glycation end-products (AGEs), leads to the activation of the nuclear factor
kappa B (NF-kB) pathway, resulting in lower eNOS enzyme activity and, consequently,
lower NO bioavailability. These data are corroborated by an in vivo study conducted on
CKD patients under conservative therapy. The authors evaluated, in 64 CKD patients, the
arterial stiffness and vascular endothelial function compared to those of healthy subjects
(the control group). Therefore, the authors demonstrated that the CKD patients exhibited a
greater arterial stiffness and a lower vascular endothelial function compared to the control
group, highlighting the role of OS and inflammation in ED observed in CKD patients under
conservative therapy [17].

In this regard, CKD induces a constant and progressive activation of the endothelium
with the release of soluble adhesion molecules (like the intracellular adhesion molecule ICAM-
1, VCAM-1, and the von Willebrand factor (vWF)). These factors are capable of activating the
NK-kB pathway, with possible damage at the level of both the endothelial and matrix cells [18].
Moreover, inflammation in several pathological conditions seems to reduce the serum levels
of triiodothyronine [19,20]. Currently, although the relationship between inflammation and
lower triiodothyronine levels is not completely clarified, it can be hypothesized that it is able
to mediate ADMA’s negative impact on the endothelium [5,21].
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In CKD, inflammation has been recognized since the late 1990s, when it was linked
to CV diseases, protein–energy wasting (PEW) syndrome, and mortality [22]. Persistent
inflammation in CKD is not only related to CV outcomes, including early atherosclerosis; it
is also one of the key players in the development of PEW syndrome [23].

Finally, the low-grade inflammatory state is also related to the gut dysbiosis that
characterizes CKD patients [24]. In fact, in those patients, proteolytic fermentation is
increased compared to the saccharolytic ones. This implies an enhanced release of gut-
derived uremic toxins, such as p-cresyl sulfate (pCS), trimethylamine n-oxide (TMAO), and
indoxyl sulfate (IS), and a reduction in the production of short-chain fatty acids (SCFAs),
such as acetate, propionate, and butyrate, compounds that exert healthy effects [25,26].
The composition of the gut microbiota in CKD patients is completely different from that
of healthy subjects [27]. Moreover, dysbiosis induced by uremia is attributable to several
factors and, with the decline in renal function, the colon assumes the role of the excretory
organ [26]. In CKD, an increase was observed in the colon’s pH, which induces a selection
of urease-positive species responsible for the conversion of urea into ammonia. This
leads to a degradation of the mucus, which physiologically acts as a protective layer, and
consequently alters the intestinal permeability due to the destruction of tight junctions [28].

Dysbiosis is also worsened by traditional nutritional management of the nephrotic
patient, especially in the more advanced stages, which provides for a strict restriction
of fibers and further unbalances microbial metabolism in the direction of proteolytic fer-
mentation [29]. Therefore, in CKD, the gut microbiota must be considered a new CV risk
factor, which can be modified through the inclusion of fibers in the diet or by following a
Mediterranean diet (MD) [30–32].

Among the various dietary supplementations suggested to counteract the inflamma-
tion in CKD, there are omega-3 fatty acids, catechins, pomegranate, soy isoflavones, fibers,
and probiotics [33–35].

Although further studies are needed to better clarify the molecular relationship be-
tween metabolites derived from the intestinal microbiota and CKD progression [36], all
literature results indicate an involvement of gut dysbiosis in the onset of kidney disease and
its progression, thus providing interesting perspectives for those therapeutic interventions
aimed at modulating the gut–kidney axis [37].

3.3. Hyperhomocysteinemia

Homocysteine (Hcy) is a sulfur-containing amino acid that is generated by the demethy-
lation of methionine. Hcy’s physiological plasma concentration is between 5 and 15 µmol/L,
while values above 15 µmol/L indicate a condition of HHcy. The latter is induced by differ-
ent factors, and the main ones include genetic and acquired ones. Among genetic factors,
the most studied is the genetic polymorphism of methylenetetrahydrofolate reductase
(MTHFR), while among acquired factors, there are gender, age, lifestyle, and CKD fac-
tors [12]. In fact, HHcy is observed in approximately 85% of CKD patients, due to both an
altered metabolism of Hcy and its reduced excretion by the kidneys, which does not allow
Hcy to be eliminated in the form of cysteine [38].

The HHcy condition is directly capable of provoking ED through several mechanisms.
In fact, Hcy is enzymatically converted in Hcy thiolactone, which is able to thiolate the free
amino groups of LDLs, thus forming oxidized LDLs. This condition results in macrophage
aggregation and their adhesion to the endothelium. The homocysteinylated LDLs release
Hyc thiolactone within the vascular wall, which leads to the phenomenon of intimal injury,
the oxidation of cholesterol and unsaturated lipids, the platelets’ aggregation, myointimal
hyperplasia, the deposition of sulfated glycosaminoglycans, fibrosis, and the calcification
of atherosclerotic plaques [39].

On the other hand, HHcy also appears to be indirectly involved in ED through various
mechanisms.

(i). The reduction of the NO bioavailability. In fact, at high Hcy concentrations, NO seems
to react with the Hcy thiol group, thus reducing its bioavailability [40].



Biomedicines 2024, 12, 1085 5 of 24

(ii). The increase in the production of prostaglandins and thromboxanes via the arachi-
donic acid–prostanoids pathway. In fact, Hcy seems to increase the release of arachi-
donic acid and its conversion into inflammatory molecules through cyclooxygenase
(COX) enzymes [41].

(iii). The activation of the angiotensin II type 1 (AT1) receptor. It has been highlighted how
HHcy is capable of activating the AT1 receptor signaling pathway, thus provoking a
vasocontractile response through the release of prostanoids [42].

(iv). The increased production of reactive oxygen species (ROS), which, consequently,
induces OS [43]. In fact, the abnormal production of ROS, provoked by HHcy, is
able to damage the endothelial cells of the arterial wall and cause the modification
of intracellular endothelial redox homeostasis. Moreover, OS is capable of inducing
mitochondrial dysfunction and eNOS uncoupling, resulting in a decrease in the NO’s
bioavailability and in the worsening of ED [44,45].

(v). The activation of endothelin-1 (ET-1), an important biomarker of ED [42]. The ET-1 is
a powerful endogenous vasoconstrictor that is released by endothelial cells, and it can
cause vascular cell fibrosis and can increase the release of ROS and proinflammatory
cytokines [46].

However, in dialysis patients, the phenomenon of “reverse epidemiology” was de-
scribed, as the conventional CV risk factors that are directly related to an increased risk of
mortality in the general population paradoxically seem to be protective in hemodialysis
patients. In particular, Kalantar-Zadeh described an inverse association between total Hcy
plasma levels and the risk of mortality in end-stage renal disease (ESRD) patients. It is very
important to consider that ESRD patients with and without CV history had Hcy plasma
levels higher than those of the general population [47]. Moreover, another study analyzed
the possible “reverse epidemiology” of total Hcy plasma and mortality in ESRD patients,
demonstrating that after adjusting for confounding factors (namely, the inflammation and
nutritional biomarkers), in this patient population, higher Hcy levels were also related to
increased CV risk [48].

3.4. Oxidative Stress

OS is defined as an imbalance between the production of ROS and the ability to
neutralize them through an antioxidant defense system [49]. In CKD patients, Ang II,
shear stress, and hyperglycemia aggravate ROS production via NADPH oxidase, which
affects cell metabolism, and it can also trigger severe cell damage until developing ED [50].
Moreover, the augmented OS in the setting of the uremic milieu via disruption of NO
pathways promotes the enzymatic modification of circulating lipoproteins and lipids, the
proteins’ carbamylation, and ED itself [51].

ROS production is greatly increased in CKD patients, partially because of an altered
activation of the nuclear factor derived from erythroid 2 (Nrf2), which results in the
downregulation of antioxidant and cytoprotective molecules [52]. Several endothelial cell
enzymes, including xanthine oxidase, NADPH oxidase, and eNOS itself in its uncoupled
form, can produce superoxide anions. In particular, the phenomenon of eNOS uncoupling
has been observed in conditions of tetrahydrobiopterin (BH4) deficiency [53].

Physiologically, NO is produced by endothelial cells under the acetylcholine effect
(after parasympathetic stimulation) or under shear stress exerted on the arterial walls [54].
Factors involved in the development of a pro-oxidant state, as occurs in CKD, should
be both endogenous factors (such as mitochondrial dysfunction and NADPH oxidase
overactivation) and exogenous ones (namely, cigarette smoke, pollution, certain drugs,
radiation, and specific foods). They can contribute to decreased NO levels [55]. Among
other factors that can influence NO biosynthesis, the transport of L-arginine in endothelial
cells and the shifting of this amino acid in other pathways, such as those involving arginase,
can contribute to its reduced levels [56]. Furthermore, ROS decreases NO’s bioavailability
and promotes the generation of peroxynitrite, which causes DNA, proteins, lipids, and
carbohydrates oxidative damage [57].
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The monitoring of OS biomarkers, such as the evaluation of total antioxidant capacity
in the blood (like the free oxygen radical test-FORT), should be used in general clinical
practice to set drug or nutritional therapies able to counteract OS in CKD patients [58].
According to the previous mentioned causes already discussed, redox state balance should
be an important tool in the prevention of CV morbidity in the general population and,
above all, in CKD patients [59].

3.5. Insulin Resistance

IR is typically defined as the inability of exogenous or endogenous insulin to increase
glucose uptake and its utilization by target tissues, including skeletal muscles, the liver,
and adipose tissue [60]. This condition results in hyperglycemia and compensatory hyper-
insulinemia [61]. The alterations of insulin signaling pathways lead to the development
of metabolic disorders, including diabetes mellitus, impaired glucose tolerance, obesity,
dyslipidemia, and chronic low-grade inflammation. Nevertheless, these pathological condi-
tions are also characterized by CV comorbidities and renal dysfunction, including arterial
hypertension, coronary artery disease, atherosclerosis, and CKD. For this reason, they are
better named cardiorenal metabolic syndrome, namely, pathological conditions that predis-
pose to ED triggering [62]. In optimal conditions of insulin sensitivity, insulin, by binding
with its cell surface receptor and the consequent activation of the phosphoinositide-3 kinase
(PI3K)/akt signaling pathway, is capable of exerting both metabolic and vascular actions.
The first, through an increased translocation of the glucose transporters type 4 (GLUT4),
are able to reduce the blood glucose levels through increased glucose uptake by the adipose
tissue and the skeletal muscle. The second action, instead, leads to an increase in NO
production via eNOS enzyme activation. In fact, at the vascular endothelium level, the NO
is able to exert a vasodilation response through capillary recruitment and increased blood
flow, which contribute to the glucose uptake facilitating insulin action at the level of its
organs’ target [63].

In CKD patients, chronic low-grade inflammation, metabolic acidosis, anemia, phys-
ical inactivity, vitamin D deficiency, and hormonal imbalance contribute to the onset of
IR [64]. All of these CKD-associated comorbidities are able to cause IR by suppressing the
insulin-receptor-mediated PI3K signaling pathway [65]. The lower GLUT4 translocation
and the lower activation of the eNOS enzyme provoke both a reduced uptake of glucose
and a reduced vasodilator response, thus developing into IR and ED. Moreover, in CKD pa-
tients, compensatory hyperinsulinemia creates an imbalance between prohypertensive and
antihypertension vascular actions. In fact, the compensatory hyperinsulinemia, through
the insulin-receptor-mediated mitogen-activated protein kinase (MAPK) signaling pathway
(which is the least impaired pathway in the IR setting), leads to the production of ET-1,
which, in turn, exerts an important vasocontraction action at the vascular endothelium
level [66,67]. Moreover, the compensatory hyperinsulinemia induces the activation of the
sympathetic nervous system, sodium reabsorption, cation pump activation, and vascular
smooth muscle cell (VSMC) hypertrophy, which altogether cause a blood pressure increase,
a phenomenon underlying ED [68].

The gut dysbiosis of CKD patients involves increased inflammation and epithelial
barrier impairment, leading to a systemic translocation of gut-derived uremic toxins,
which exert harmful effects via amplification of glucotoxicity, lipotoxicity, and systemic
inflammation [69,70]. In particular, the glucotoxicity is involved in the increase in the ROS
and hexosamine biosynthetic pathway (HSP) activity and the subsequent formation and
buildup of AGEs [71]. The lipotoxicity, instead, is implicated in the OS increasing, the
overactivation of proinflammatory signaling pathways, and the production of long-chain
saturated fatty acids, called ceramides [72], which are potential biomarkers for coronary
atherosclerosis [73]. Finally, systemic inflammation is characterized by an increase in
proinflammatory factors [74]. All of the by-products of glucotoxicity, lipotoxicity, and
systemic inflammation are capable of activating a variety of serine/threonine kinases,
including I-kappa-β-kinase beta (IKKβ), NF-kβ, and activating protein-1 (AP-1), which
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directly or indirectly increase serine phosphorylation of IRS-1, resulting in a decreased
PI3K/akt signaling pathway and, thus, in IR and ED [67].

In addition, in CKD patients, glucotoxicity, lipotoxicity, and systemic inflammation
are capable of inducing ED through different mechanisms that do not involve the insulin
receptor. In particular, regarding glucotoxicity, the AGEs are able to modify the ECM
proteins, like collagen and laminin, leading to decreased vessel elasticity and increased
macrophage infiltration. Infiltrated macrophages become foam cells that amplify vascular
inflammation and promote atherosclerosis [5]. The protracted increase in glucose uptake
by the glomerular and the proximal tubular cells leads to enhanced glucose flux through
HSP, resulting in the formation of uridine diphosphate N-acetylglucosamine, which drives
the O-GlcNAcylation of thousands of intracellular proteins, such as eNOS, causing the
impairment of eNOS activity [75]. Moreover, the increased O-GlcNAcylation intensifies
the OS, the apoptosis, and the activation of proinflammatory and profibrotic pathways
through an increased expression of TGF-β, a relevant factor in ED pathogenesis [76,77].
Concerning the lipotoxicity, elevated levels of free fatty acids (FFAs) are able to stimulate
NADPH oxidase, produce ROS, activate the NF-κB proinflammatory signaling pathway,
inhibit eNOS activity, and increase endothelial cell proliferation. All of these mechanisms,
induced by FFAs, affect the vascular wall through multiple events, including ED [78].
Finally, systemic inflammation, through the activation of NF-κB and the production of
the proinflammatory cytokines, stimulates the expression of adhesion molecules, such as
ICAM, VCAM, and E-selectin, which contribute to ED [79]. Likewise, high levels of CRP
directly contribute to the pathogenesis of atherosclerosis and ED through reduced eNOS
expression, the upregulation of the AT1 receptor in the endothelium [80], and the increase
in the adhesion molecules’ expression [81].

3.6. Alteration of Calcium Phosphorus Metabolism

Calcium–phosphorus metabolism alterations cause mineral bone disorder (MBD), a
typical comorbidity of CKD advanced stages. CKD–MBD can contribute to the onset of
ED [12], and it is characterized by phosphorus retention, which, at high concentrations,
leads to vascular calcifications and increases vascular stiffness. The enhanced vascular
stiffness, in turn, is related to an increased CV risk in nephropathic patients [82]. In
fact, uremic patients affected by CKD–MBD have a higher risk of developing vascular
complications, such as the formation of atherosclerotic plaque, myocardial infarction,
and post-angioplasty dissection [83]. An in vitro study evaluated the effects of inorganic
phosphorus on vascular calcifications, highlighting how high concentrations of phosphorus,
typical of uremic patients, induce ectopic calcifications, i.e., an anomalous mineralization
of the soft tissues [84].

The calcification of blood vessels may involve either the media or the intima layers.
Uremic patients often exhibit calcifications in the media layer. Specifically, the presence of
vascular calcifications is linked to unfavorable clinical results, such as the eventual onset of
myocardial ischemia and heart failure, induced by a reduced arterial elasticity, a heightened
arterial rigidity, and an accelerated pulse wave velocity (PWV) [82,85]. Several studies have
demonstrated that when the calcium/phosphorus product is increased, an enhancement
of CV morbidity and mortality in dialysis patients is observed [86]. A direct correlation
between Ca-P product value and the severity of the aortic insufficiency in dialysis patients
has also been observed [82,87].

Furthermore, high concentrations of phosphorus can result in the conversion of VSMCs
to an osteoblast-like phenotype, although the exact mechanism by which this happens is
still unknown [88]. It has been hypothesized that this occurs following the increase in the
expression of osteo-chondrogenic proteins and osteogenic genes. This increased expression
occurs in the presence of high concentrations of phosphorus and calcium, which activate
an intra-cellular signaling cascade [89]. This phenomenon is probably ascribable to the
same mesenchymal origin between smooth muscle cells and osteoblast-like cells, which
leads to the phenotypic transformation of the former. In fact, the development of vascular
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calcifications is intricate. It involves more than a mere deposition of calcium and phosphate.
The VSMCs’ transformation into an osteoblast-like phenotype promotes matrix formation
and attracts local factors that play an important role in the mineralization process. This is a
dynamic process wherein VSMCs undergo apoptosis, which in turn causes the formation
of microvesicles responsible for calcifications. [90]. Elevated phosphate levels enhance the
activity of sodium-dependent cotransporters PiT-1 and PiT-2. This, in turn, induces the
upregulation of the genes associated with matrix mineralization [91].

It was suggested that heightened intracellular phosphate levels might directly prompt
the VSMCs’ transformation into calcifying cells by activating genes linked to osteoblastic
functions. In fact, elevated phosphate levels play a significant role in increasing both the
number and the activity of osteoclasts, thereby contributing significantly to increasing the
bone resorption in CKD [92].

In addition, in the presence of pathological concentrations of inorganic phosphate, the
transdifferentiation of VSMCs into calcifying cells is under the control of several non-coding
RNAs, such as miR-223. Taibi et al. found that inorganic phosphate increased the levels
of miR-223 in a vascular calcification in vitro model, and they also confirmed an increase
in miR-223 in an in vivo model of calcified aortas of CKD mice. The same findings were
detected in CKD patients [93].

Moreover, hyperphosphatemia seems to be related to the increase in the fibroblast
growth factor 23 (FGF23) levels and to the decrease in its co-receptor expression, called
Klotho, which are ED-inducing factors. FGF23 is a hormone synthesized by bone cells,
such as osteoblasts and osteocytes, in response to elevated phosphate levels [94]. Increased
circulating FGF23 levels contribute to phosphate-wasting disorders and robustly inhibit
the expression of renal 1α-hydroxylase. This, in turn, diminishes the synthesis of vitamin
D’s active form (1α,25-dihydroxyvitamin-D3) in the renal proximal tubules. Vitamin D
deficiency, as well as the alteration of the calcium–phosphorus balance, are considered
potential ED risk factors. In fact, vitamin D is involved in the regulation of NO synthesis
by mediating eNOS activity [95].

Furthermore, several studies have demonstrated how vitamin D deficiency is asso-
ciated with chronic low-grade inflammation in chronic non-degenerative communicable
disease, thus synergically amplifying ED [96–98].

Finally, hyperphosphatemia can induce an increase in OS and an alteration in NO’s
bioavailability [12]. In fact, in nephropathic patients with hyperphosphatemia, a reduction
in the activity of iNOS and an increase in the activity of protein kinase C are observed,
which are responsible for ROS production and the inhibition of iNOS expression [99].

3.7. Early Aging

It is well-known that CKD is characterized by traditional and non-traditional CV risk
factors. Among the latter, early aging plays a key role [100]. In fact, aging is one of the
main risk factors for the onset of numerous pathologies, especially chronic degenerative
non-communicable ones and their related comorbidities.

Among the factors that influence early aging, there are OS and systemic inflammation.
These conditions are exacerbated during CKD and cause earlier aging of nephropathic
patients compared to the general population.

The speed with which aging occurs depends on numerous factors, which are both
genetic and environmental [101]. Among the genetic factors, the role of extracellular
vesicles, which are physiologically responsible for cellular communication, has recently
been evaluated. During CKD, due to IS accumulation, there is an increase in the levels
of endothelial-derived extracellular vesicles, which transport microRNA (miR) [102]. The
overexpression of miRs in CKD patients induces immune disorders, chronic inflammation,
and ED [103].

Among the environmental factors, chronic pain has also recently been described. In
fact, it appears to significantly influence the telomere length [104]. CKD patients exhibit
early aging due to stress signals that induce cellular apoptosis. Physiologically, cells
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have an anticoagulant and non-adherent surface; however, during CKD, the alteration of
molecules expressed on the surface of endothelial cells can be impaired, thus increasing
cell adhesion [105]. This phenomenon determines a hyper-coagulative state characterized
by thrombosis and inflammation [106].

4. Methods for Diagnosing Endothelial Dysfunction

The study of endothelial function in vivo is based on two methods (Figure 2).
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The first one is an indirect method, while the second is a direct method. In particular,
the first is based on the measurement of specific ED biomarkers, whereas the second is
based on the response of the endothelium to vasomotor tests.

In the detail, the first consists of the measurement of the concentration of peripheral
circulating markers using indirect information regarding the state of the endothelium.
These markers include direct products of endothelial cells, such as (i) inflammatory cy-
tokines, (ii) nitrites and nitrosylated proteins, which in part reflect endothelial generation
of NO [107], (iii) ADMA, whose levels are elevated in CKD patients and in subjects with
high CV risk and preclinical atherosclerosis disease [108,109], (iv) circulating endothelial
cells and endothelial progenitor cells, detected through flow cytometry, which are consid-
ered markers of endothelial damage and repair [110,111], (v) adhesion molecules, namely
ICAM-1, VCAM-1, and platelet endothelial cell adhesion molecule-1 (PECAM-1), which
are able to predict the presence of adverse CV events [81], (vi) selectins, like P-selectin,
L-selectin, and E-selectin, and (vii) miR-126, whose lower serum levels in CKD patients
have been associated with higher levels of several ED biomarkers, namely the syndecan-1
and the free-indoxyl sulfate [112].
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Due to their difficult to dose and their cost, these circulating markers are currently
used for research purposes and, furthermore, only a small quantity of them (around 20%)
are released into the bloodstream [113].

The second method, on the other hand, is able to provide direct information on the
functional capacity of the endothelium. This method is based on endothelium-dependent
vasomotor tests that allow for evaluating the response of endothelial cells through the
stimulation by specific agonists or antagonists [114]. These molecules are infused in the
coronary arteries in order to study the endothelial function of coronary circulation or in the
brachial artery in order to study the endothelial function of peripheral circulation without
any changes in the systemic hemodynamic [115]. Endothelial agonists (such as acetyl-
choline, bradykinin, substance P, serotonin, and adenosine) possess specific endothelium
receptors and are capable of stimulating the production of NO [116], while antagonist (such
as NG-Monomethyl-L-arginine- L-NMMA), as with those for the NOS enzyme, can block
NO production [117]. The endothelial function of the coronary circulation can be investi-
gated through either quantitative coronary angiography (QCA) or using an intracoronary
Doppler device. The QCA evaluates the vascular diameter change of the anterior inter-
ventricular artery, while the intracoronary Doppler device is used to study the coronary
microcirculation blood flow and the coronary vascular resistance [118].

The endothelium is considered physiologically healthy when agonist molecules cause
NO-mediated vasodilation. On the contrary, the presence of ED is detected by the absence
of vasodilation or the paradoxical vasoconstriction. The degree of vasodilation is considered
a measure of endothelial function, so the greater the vasodilation, the higher the endothelial
function [119].

The study of coronary endothelial function, thanks to its sensitivity, accuracy, repeata-
bility, and reproducibility, is considered the gold standard technique to evaluate if coronary
ED is present [120]. However, due to its complexity and its invasiveness, this procedure
is not used as a screening test in the low-risk population. The endothelial function of the
peripheral circulation can be studied by measuring flow-mediated dilatation (FMD) of
the brachial artery by using high-resolution ultrasound [121]. This technique consists of
measuring the brachial artery diameter before and after an increase in shear stress because
of local endothelial NO release [122,123]. The latter is induced by reactive hyperemia pro-
voked using a sphygmomanometer cuff placed proximal to the brachial artery and inflated
up to 200 mmHg for a period of 5 minutes. FMD investigates the endothelial vasodila-
tor properties at the peripheral site, which reflect the coronary endothelial function and
therefore the vascular NO’s bioavailability [124]. In fact, several studies have shown a cor-
relation between the brachial artery FMD and the carotid intima-media thickness [125,126].
Peripheral circulation can also be investigated through venous occlusion plethysmography
or finger-pulse plethysmography [120,127]. The first method uses the plethysmograph to
measure forearm volume changes, which depend on the arterial blood flow. This technique
uses two cuffs, inflated at the upper arm and wrist, which block venous drainage and
simultaneously exploit an intrabrachial infusion of endothelium-dependent vasodilators.
Venous occlusion plethysmography has been widely used in the past, but nowadays it
has been abandoned due to its invasiveness and its poor reproducibility [128]. The second
method uses a fingertip plethysmograph through the pulse amplitude tonometry (PAT) to
quantify the arterial pulse volume at rest and during conditions of hyperemia due to the
increase in the shear stress provoked by 5 minutes of insufflation of a sphygmomanometer
cuff at the forearm level, as seen in FMD [129].

The reactive hyperemia index (RHI) is given by the ratio of the PAT value at rest and
the PAT value after reactive hyperemia [130]. The study of peripheral endothelial function
through FMD, at the forearm level, is the most used method in clinical practice, thanks
to its non-invasiveness, cheapness, and safety [131]. Moreover, it is worth considering
that even if the coronary district appears to be more susceptible to developing ED than
the peripheral district, ED is a systemic disorder, and there seems to be a correlation
between the two districts. In fact, peripheral ED is always associated with coronary
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ED [6]. However, the FMD test has numerous limitations, as changes in the brachial artery
caliber are reduced, and numerous technical measures are required to give this method
better reproducibility [132]. In order to increase the FMD’s reproducibility, additional
precautions by the operator should be required. Some of them should be (i) standardizing
the assessment time (preferably in the morning), (ii) fasting for at least 8 hours before the
endothelial function study, (iii) no smoking and no use vasoactive drugs the morning of
the measurements, and (iv) awareness that endothelial function can also be influenced by
hormonal factors, such as the menstrual cycle, mental stress, and sleep deprivation [133,134].
In addition, not all cases of coronary ED are associated with peripheral ED. For all of these
reasons, no method able to diagnose ED can be considered a surrogate for another one.
Therefore, nowadays, no definitive diagnostic conclusion can be drawn from a single
technique assessing endothelial function [135].

5. Innovative and Traditional Treatments

ED has an important role in the kidney’s microvascular hemodynamics, tubulo-
glomerular feedback, and natriuresis. Therefore, it is involved not only in the development
but also the exacerbation of albuminuria in CKD progression [136]. In a previous study,
Clausen et al. demonstrated a significant and direct association between impaired FMD
and elevated urinary albumin excretion [137]. Several clinical trials are ongoing to evaluate
the effect of selected pharmacological interventions on endothelial function, specifically in
CKD patients. Direct and indirect endothelial protective effects of antihypertensive drugs
(i.e., calcium channel blockers, angiotensin-converting enzyme ACE inhibitors, angiotensin
II receptor blockers, and ultra-selective 1-blockers, such as nebivolol) [5], lipid-lowering
(i.e., statin) and hypoglycemic drugs, commonly used in CKD patients, have been widely
documented [138].

Innovative approaches to counteract ED can also include nutritional therapy and
adapted physical activity programs [12]. Unlike pharmacological treatments, which require
adjustment of the dosage based on renal and hepatic function, an adjuvant therapy based
on NBCs is free from side effects if it respects the recommended intakes, despite the renal
and hepatic function [139,140]. Both innovative and traditional treatments are reported
in Table 1.

5.1. SGLT-2 Inhibitors

Recently, a novel class of glucose-lowering drugs, called sodium glucose co-transporter
2 inhibitors (SGLT-2is), have been associated with an improvement in CV and renal out-
comes, irrespective of the presence of diabetes mellitus [141].

The primary nephroprotective mechanism of SGLT-2is is the increase in distal sodium
delivery and the inhibition of tubule-glomerular feedback, resulting in arteriolar afferent
vasoconstriction and reduction of intraglomerular pressure, with a consequent reduction in
albuminuria [142].

Natriuresis and the subsequent contraction of plasma volume lead to a decrease in
blood pressure and arterial stiffness, with a significant ED reduction [143].

SGLT-2is exerts protective effects on the endothelial cells via several pathways: (i) the
inhibition of OS, thus counteracting ROS production; (ii) the prevention of the inflamma-
tory reaction, thus re-establishing the correct NO bioavailability; (iii) the mitigation of
mitochondrial injury; and (iv) the modulation of angiogenesis and cellular senescence.

SGLT-2is’s anti-inflammatory effects include a reduction in cytokine secretion, the
downregulation of ICAM-1 and VCAM-1, and the prevention of the adhesion of the
monocytes at the endothelium [144].

In preclinical studies, SGLT-2is was demonstrated to prevent ED. In particular, em-
pagliflozin decreased aortic stiffness by promoting glycosuria in a mouse model of T2DM [145],
and, in another model, it mitigated the endothelial senescence induced by high glucose
levels, thus inhibiting the local renin–angiotensin–aldosterone system [146]. Dapagliflozin
reduced arterial stiffness in a diabetic model and improved diastolic function in non-
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diabetic mice [147,148]. Moreover, SGLT2is ameliorated the inflammatory phenotype and
glucotoxicity by acting on AGE/RAGE signaling in diabetic models [149].

Indeed, several ex vivo and in vivo studies support a SGLT-2is class effect on the
regulation of the endothelial function [144]. In fact, SGLT-2is also seems to induce a positive
impact on the non-invasive vascular function tests, such as FMD and PWV.

A meta-analysis including 26 clinical studies assessed the effects of different types of
antidiabetic drugs, including dipeptidyl peptidase-4 (DPP-4) inhibitors, GLP-1-Ras, and
SGLT2is, on FMD. The authors concluded that only SGLT2is significantly enhanced the
FMD [150]. However, further studies are necessary in order to confirm these interest-
ing data.

5.2. Mineralocorticoid Receptor Blockers

Aldosterone increases OS in the vascular wall, thus acting on the mineralocorticoid
receptor (MR) and contributing to ED development [151]. Commonly used steroidal MR
antagonists (MRAs), like spironolactone and eplerenone, are effective in reducing ED [152],
but in patients with an advanced CKD stage, their use is limited because of the risk of
severe hyperkaliemia and faster progression until ESRD.

Finerenone, a novel highly selective non-steroidal MRA, is able to counteract both ED
and albuminuria. It shows a similar potency compared to spironolactone and a greater
selectivity compared to eplerenone towards MR [153]. This drug is also characterized by a
significantly smaller increase in kaliemia and a lower decrease in the estimated glomerular
filtration rate (eGFR) [154]. For these reasons, it can be used in patients with mild to
moderate CKD. Finerenone acts by determining an upregulation of the Mn–superoxide
dismutase, with a consequent decrease in superoxide anion levels and an enhancement of
NO’s bioavailability [155].

5.3. Nutritional Treatments and Adapted Physical Activity

It is well-known and widely documented that for an ideal clinical management of
CKD patients under conservative therapy, nutritional therapy, based on reduced protein
intake, which varies between 0.6 and 0.8 g/kg of observed or ideal body weight (b.w.)/day,
represents an important tool to be combined with pharmacological treatment. This com-
plete approach is successful for the management of CKD-related complications and for
preventing its progression to ESRD [156]. In fact, a low-protein-diet (LPD), based on
0.6 g/kg of observed or ideal b.w./day of protein intake, is able to reduce uremic toxin
accumulation, counteract metabolic acidosis, restore calcium–phosphorus metabolism and
the gut microbiota eubiosis, increase insulin sensitivity, and decrease OS and arterial blood
pressure values [157]. It has been widely discussed how all of these factors are involved
in ED pathogenesis in CKD patients. However, in this patient population, in order to
prevent malnutrition, a normo-mildly hypercaloric diet is strongly recommended [158].
Extra virgin olive oil (EVOO), a lipid food that constitutes a pillar of the MD, plays a
crucial role in the clinical management of CKD patients and, in particular, in counter-
acting PEW syndrome, a comorbidity typical of CKD patients [159]. EVOO’s beneficial
effects are attributable to its chemical composition, including fatty acids (98–99%) and
other bioactive compounds (1–2%), such as minor polar compounds (MPCs), especially of
the secoiridoid and phenolic variety. Among these, oleocanthal (OLE), oleacin, hydroxy-
tyrosol (HT), tyrosol, and HT glycole are of particular importance [160]. Several studies
have demonstrated how daily consumption of EVOO exerts beneficial effects on human
health, including, in particular, in relation to CV and metabolic diseases [161]. For this
reason, the MPCs’ health value contained in EVOO was reinforced by the European Food
Safety Authority (EFSA) in 2011. The EFSA, through European Commission Regulation
no. 432/2012, granted permission to put a health claim on the label concerning EVOO’s
polyphenols’ efficacy in counteracting LDL oxidation [162]. The latter action refers to
the initial event that leads to atherosclerotic plaque formation through alterations in the
eNOS signaling pathway [163]. EVOO’s positive effect is achieved by daily consumption of
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20 g containing at least 5 mg of HT and derivatives (e.g., oleuropein complex and tyrosol)
(5 mg/day per 20 g of EVOO) [162]. However, we believe that the health effects induced
by the intake of EVOO, which complies with the EFSA’s health claim, may refer to real
CV protection. In fact, in the study conducted by Marrone et al., intake of 40 mL/day of
raw EVOO for 9 weeks, containing a very high content (>900 ppm) of MPCs, was also able
to exert a cardioprotective action in CKD patients. At the end of the study, the authors
highlighted (i) a significant increase in high-density lipoprotein (HDL) cholesterol; (ii) a
significant reduction in values related to OS and anti-inflammatory parameters, monitored
in relation to FORT, CRP, TNF-α, and IL-6; (iii) a significant decrease in atherogenic indices,
calculated through total cholesterol/HDL-cholesterol, LDL-cholesterol/HDL-cholesterol,
and log triglycerides/HDL-cholesterol); (iv) a significant reduction of other inflammatory
parameters, like the platelet-to-lymphocyte ratio, the neutrophil-to-lymphocyte ratio, the
lymphocyte-to-monocyte ratio, and the lymphocyte count; and (v) a significant reduction
in carotid intima-media thickness [164].

In addition to HT, another important EVOO MPC is OLE, which is characterized
by anti-inflammatory action. In fact, this compound is homologous to ibuprofen, a non-
steroidal anti-inflammatory drug (NSAID) that is able to inhibit COX enzymes [160,165].
Several studies demonstrate that a chronic low dose of ibuprofen and other COX inhibitors
(like aspirin) exerts anti-neoplastic and anti-thrombotic effects [166–168]. Therefore, it
may be speculated that a low dose of OLE may counteract the platelets’ aggregation and,
consequently, ED. An interesting study conducted by Beauchamp et al. highlighted that
OLE is not only able to inhibit COX enzymes in the same manner as ibuprofen but also in a
more effective manner. In fact, at equimolar concentrations, the inhibiting action of OLE is
significantly higher compared to ibuprofen [169].

All of the scientific studies regarding the ideal nutritional treatment for metabolic
patients agree that dietary patterns that include more plant-derived foods and less saturated
fats (mainly present in animal products) are able to improve high blood pressure values,
high serum total cholesterol, glucose metabolism, gut microbial dysbiosis, and chronic
low-grade inflammation [170].

In CKD patients, the first researcher who talked about nutritional therapy character-
ized by the consumption of plant-based sources was Professor Kalantar-Zadeh. He defined
the plant-dominant (PLADO) LPD, a diet consisting of >50% plant-based sources, sodium
intake <4g/day (<3 g/day if CKD is accompanied by edema or hypertension), fiber intake
>25 g/day, and energy intake between 30 and 35 kcal of observed or ideal b.w./day.

In this review, we focus only on reporting the beneficial CV outcomes induced by
PLADO LPD. In particular, this nutritional therapy exhibits the following cardioprotec-
tive effects: (i) anti-inflammatory and antioxidant effects due to a higher intake of anti-
inflammatory and antioxidant plant-based food rich in polyphenols; (ii) better control of
metabolic pathways producing AGEs due to an higher dietary fiber intake; (iii) minor pro-
duction of gut-derived uremic toxins (such as IS and pCS) due to a reduction in nitrogenous
compounds contained in plant-based foods; and iv) reduction of metabolites derived from
the gut bacteria (such as trimethylamine-TMA and TMAO) [171].

Because the PLADO LPD is mainly based on the legume consumption as a plant-based
protein source, it is worth emphasizing the cardiometabolic effects of this food category.
The actions exerted by legumes on ED can be summarized by the improvement of (i) lipid
metabolism, monitored by total cholesterol, LDL-cholesterol, triglycerides, and HDL-
cholesterol; (ii) inflammation, detected by a reduction in CRP levels; and (iii) vasodilation,
monitored by an increase in eNOS and NO bioavailability and a reduction in TNF-α and
Ang II gene expression [172].

However, in CKD patients, in order to enhance the beneficial effects for ED exerted by
the PLADO LPD, an adapted physical activity (APA) program is strongly recommended.
Growing evidence of the beneficial effects of exercise training for ED in CKD patients is
present in the literature [173,174]. Aerobic exercise favorably impacts the levels of ET-1,
NO, and other vasoactive substances [175–177], thus normalizing plasma ET-1 levels [178].
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Common to ED is excessive OS, which plays an important role in those processes underlying
vascular changes. Moderate to vigorous aerobic exercise improves the redox state and,
consequently, NO’s bioavailability, thus ameliorating microvascular endothelial function,
maintaining the artery vessels’ function, preventing the progression of vascular diseases,
facilitating substrate delivery for NO production, reversing impairment to the L-arginine
transport system [179], and reducing CV morbidity and mortality in CKD [174]. It was
also shown that resistance training (RT) evokes NO release, thus reducing ADMA and
improving redox and inflammatory profiles [180].

In conclusion, as suggested in the literature, APA may represent an established stim-
ulus, an attractive, well-recommended, non-pharmacological strategy, and a new tool to
counteract ED in CKD.

5.4. Use of Ketoanalogues

During amino acid degradation, transamination, catalyzed by the aminotransferase
enzymes, involves the removal of the amino group (NH2) bound to the α-carbon from
the rest of the amino acid carbon skeleton and its replacement by a keto or hydroxyl
group. Further steps lead to ammonia production, which is rapidly converted into urea
and eliminated with the urine [181]. In CKD patients, increased urea concentration and its
consequently augmented flux into the colon lead to gut microbiota dysbiosis.

The increase in proteolytic bacteria at the expense of the saccharolytic ones is able
to produce gut-derived uremic toxins, resulting in an impairment of the epithelial tight-
junctions and in an intestinal permeability enhancement that induces the bacterial translo-
cation in blood circulation (a phenomenon also called “bacterial endotoxemia”) [182].
This crosstalk between uremia and gut microbiota dysbiosis seems to explain the chronic
low-grade inflammation in CKD patients, thus resulting in faster CKD progression [183].

In patients with CKD stages 4–5, according to the Kidney Disease Improving Global
Outcomes (KIDGO) guidelines, a very low-protein diet (VLPD) providing 0.3–0.4 g of
protein/kg of observed or ideal b.w./day is used to delay the necessity of renal replace-
ment therapy.

In order to reduce the uremic toxins’ accumulation and maintain good nutritional
status, the VLPD must necessarily be supplemented with alpha ketoacid or alpha hydroxy-
acid analogs of an essential amino acid (EAA) (ketoanalogues-KAs), with approximately
one tablet per 5 kg of observed or ideal b.w./day [184].

Another innovative therapeutic option for the clinical management of ESRD patients
is incremental dialysis, namely a renal replacement therapy scheme, characterized by a
single-weekly dialysis treatment combined with a high-protein diet on the dialysis day
(1.2 g of protein/kg of observed or ideal b.w./day) and a VLDP supplemented with KAs
on the non-dialysis days. This therapeutic approach is ideal for hemodialysis patients with
residual renal function [185].

In contrast with its mandatory use in the VLDP, the supplementation of KAs in the
LPD is optional, as recommended by the authorities’ consensus [186].

Because KAs lack the amino group linked to the α-carbon of an amino acid, they can
be converted to their respective amino acid without providing an additional nitrogen load.
Once they are aminated by the amino groups of the amino acids, KA supplements provide
a nutritional source of EAA, resulting in a reduction in urea synthesis and other nitrogen-
containing potential toxins. The amino acid carbon skeletons can be degraded without a
net production of nitrogenous waste products or may be used to reform amino acids.

The decreased amino acids’ degradation and the recycling of the amino groups, to-
gether with the reduced urea synthesis, are successful in (i) preventing malnutrition;
(ii) improving insulin sensitivity, calcium–phosphate metabolism, the lipid profile, and
quality of life; (iii) slowing the progression of CKD; and (iv) decreasing uremic toxins [186].

Unfortunately, few studies to date have investigated the positive effects of LPD or
VLPD supplemented with KAs for ED in CKD patients. In the study conducted by Chang
et al., the administration of the LPD combined with KA supplementation (6 tab/day) for
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6 months in CKD patients (stage 3b–4) was able to decrease IS and pCS levels, thus leading
to an increase in FMD of the brachial artery, which reflects the amount of NO production.
At the end of the study, the authors highlighted a significant increase in eGFR due to the
reduced endothelial damage, which was probably related to the IS and pCS decrease [187].
In another study conducted on 111 CKD patients (stage 3–4) with obesity (body mass index
(BMI) ≥ 30 kg/m2 and waist/hip ratio > 0.85) for 36 months, Teplan et al. evaluated the
effects of the LPD supplemented with KAs (at the dose of 100 mg/kg b.w./day) on ED
plasma markers, including ADMA. As previously discussed, elevated ADMA levels in
CKD patients have been detected, and they seem to be implicated in ED pathogenesis.
However, in CKD patients, elevated ADMA levels may depend not only on CKD itself
but may also be influenced by the presence of other CKD-related comorbidities, such as
obesity, which is considered one of the main CKD risk factors. The principal ED markers,
assessed by the authors, in addition to ADMA, were adiponectin and pentosidine. High
levels of adiponectin protect the vascular endothelial function through anti-atherosclerotic
and anti-inflammatory actions, while pentosidine is an AGE that contributes to CV disease.
At the end of the above-mentioned study, the authors pointed out how, in CKD patients
with obesity, long-term LPD administration, supplemented with KAs, led to a significant
reduction in ADMA and pentosidine levels and a significant increase in adiponectin levels
compared to the control group. Moreover, in the study group, the combined approach was
able to significantly reduce BMI and significantly delay the decline of renal function. The
ameliorations in ADMA, pentosidine, and adiponectin levels were closely linked to BMI.
In fact, the relationship of these three parameters was mainly associated with improved
BMI and then with GFR. Furthermore, in the study group, the decrease in body fat was
accompanied by an improvement in lipid metabolism through a significant reduction in
total cholesterol, LDL-cholesterol, and triglycerides values and an improvement in glucose
metabolism, detected by a significant reduction in glycated hemoglobin levels. Finally, the
administration of the LPD supplemented with KAs was also associated with a significant
reduction in systolic and diastolic blood pressure and in proteinuria values. The authors
hypothesized that by decreasing the BMI and visceral fat, cells are not able to synthesize
ADMA, while a better glycemic metabolism can improve DDAH activity and, thus, further
reduce ADMA levels [188].

It is worth concluding that an LPD supplemented with KAs seems to significantly delay
the progression of kidney damage and exert beneficial effects on ED and the accumulation
of protein-bound uremic toxins in CKD patients, affected or not by obesity.

Table 1. Innovative and traditional treatments for endothelial dysfunction.

Type of Treatment Mechanisms of Action Beneficial Effects on Endothelial
Function Bibliography

SGLT-2 inhibitors ↑ distal sodium delivery
↓ tubule – glomerular feedback
↓ ROS production
downregulation of ICAM-1 and VCAM-1
↓mitochondrial injury
modulation of angiogenesis and cellular
senescence
↓ renin–angiotensin–aldosterone system
activity

↓plasma volume and blood pressure
↓arterial stiffness
↓ inflammation and oxidative stress
↑ NO bioavailability

[143,144]

Mineralcorticoid
receptor blockers

↓ aldosterone action
upregulation of the superoxide dismutase

↓ superoxide anion levels
↑ NO bioavailability

[151,152,155]
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Table 1. Cont.

Type of Treatment Mechanisms of Action Beneficial Effects on Endothelial
Function Bibliography

Nutritional treatments:

A) Extra virgin olive oil ↓ LDL oxidation
↓ ROS production
↓ IL-6, TNF-α
↓ COX enzymes activity
↓ eNOS activity

↓ atherosclerotic plaque formation
↓ inflammation and oxidative stress
↑ NO bioavailability

[160–163]

B) PLADO diet ↑ ROS production
↑AGEs production
↑gut-derived uremic toxins
↑ Ang II gene expression

↑ inflammation and oxidative stress
improvement in lipid metabolism
↑ NO bioavailability

[171,172]

C) Use of ketoanalogues ↓ IS and pCS levels
↓ ADMA
↑ adiponectin
↓ pentosidine
↓ glycated hemoglobin levels
↓ uremic toxins

↓ inflammation and oxidative stress
improvement in lipid and glucose
metabolism
↓ systolic and diastolic blood pressure

[187,188]

Adapted physical activity normalizing ET-1 levels
↓ ADMA

↑ NO bioavailability
↓ inflammation and oxidative stress

[175–178,180]

Abbreviations: SGLT, sodium glucose co-transporter 2 inhibitors; ROS, reactive oxygen species; NO, nitric oxide;
ICAM-1, intracellular adhesion molecule-1; VCAM-1, vascular cellular adhesion molecule-1; LDL, high-density
lipoproteins; IL, interleukin; TNF, tumor necrosis factor; COX, cyclooxygsenase; PLADO, plant-dominant; Ang,
angiotensin; ET, endothelin; ADMA, asymmetric dimethylarginine; IS, Indoxyl sulfate; pCS, p-cresyl sulfate; ↑
increase; ↓ decrease.

6. Conclusions

CV diseases are one of the most frequent comorbidities in CKD patients due to several
CV risk factors underlying the pathogenesis of CKD itself. ED represents the primum
movens of the CV disease, and, in nephropathic patients, several mechanisms of action
contribute to ED onset. These pathogenic mechanisms seem to compromise the production
of a series of endothelium-derived relaxing factors responsible for the maintenance of
vascular homeostasis. Although the study of the coronary endothelial function is considered
the gold standard to assess if ED is present, no methods among those able to diagnose ED
can be considered a surrogate for the other ones. Once ED has been identified, its treatment
necessarily requires both a traditional pharmacological treatment but also an adjuvant
non-pharmacological therapy. Concerning pharmacological therapy, in this review, we
focused on describing the beneficial role that MRA and SGLT-2is exert on endothelial
cells. In particular, the first are capable of reducing superoxide anion levels and increasing
NO bioavailability, while the second are capable of reducing the blood pressure, arterial
stiffness, and inflammation, thus restoring the correct NO bioavailability and counteracting
ROS production. All of these pharmacological effects produce an improvement in the FMD
and the PWV. In CKD patients, in order to set an appropriate pharmacological and adjuvant
non-pharmacological therapy, OS monitoring through the FORT should also be used in
general clinical practice.

Among innovative non-pharmacological therapies, in this review, we wanted to ex-
plain how EVOO rich in MPCs is able to exert CV protection in CKD patients. However,
only EVOOs that comply with the EFSA health claim are able to protect the endothelium
from LDL oxidation. In CKD patients, these beneficial effects can be enhanced through
adherence to the PLADO LPD, whose main characteristic is the inclusion of at least 50%
plant-based proteins. Several studies have highlighted how vegetable proteins are capable
of improving lipid metabolism, inflammation, and vasodilation through an increase in
eNOS activity and NO bioavailability and through a reduction in the TNF-α and Ang II
gene expression. The triad can be completed through adherence to an AFA program, which
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several studies showed to be able to determine a balance between substances with vasodi-
lating and vasoconstrictive action, improve NO bioavailability, ameliorate microvascular
endothelial function, and reduce ADMA levels. These measures also become essential for
the clinical management of patients at an advanced CKD stage. However, with this review,
we also wanted to elucidate the role of KAs in ED. These latter may be taken optionally
when combined with the LPD, while they must be taken when combined with the VLPD.
Few studies to date have highlighted the beneficial effects induced by the LPD or the VLPD
combined with KA supplementation for ED. However, it has been demonstrated that the
LPD supplemented with KAs has been able to increase FMD of the brachial artery and
DDAH activity, reduce ADMA and pentosidine levels, and increase adiponectin ones. In
conclusion, we believe that it is very important evaluate the impact of the combination
of all adjuvant treatments, as previously described, on ED in CKD patients through a
randomized clinical trial conducted on a large sample size.
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