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Abstract: Background: The mechanisms of the formation of immunological competence against
tuberculosis (TB), and especially those associated with HIV co-infection, remain poorly understood.
However, there is an urgent need for risk recurrence predictive biomarkers, as well as for predictors
of successful treatment outcomes. The goal of the study was to identify possible immunological
markers of TB recurrence in individuals with HIV/TB co-infection. Methods: The plasma levels of
IFN-γ, TNF-α, IL-10, and IL-1β (cytokines which play important roles in the immune activation and
protection against Mycobacterium tuberculosis) were measured using ELISA EIA-BEST kits. The cy-
tokine concentrations were determined using a standard curve obtained with the standards provided
by the manufacturer of each kit. Results: A total of 211 individuals were enrolled in the study as
follows: 62 patients with HIV/TB co-infection, 52 with HIV monoinfection, 52 with TB monoinfection,
and 45 healthy donors. Out of the 62 patients with HIV/TB, 75.8% (47) of patients were newly
diagnosed with HIV and TB, and 24.2% (15) displayed recurrent TB and were newly diagnosed with
HIV. Decreased levels of IFN-γ, TNF-α, and IL-10 were observed in patients with HIV/TB when
compared with HIV and TB patients. However, there was no difference in IFN-γ, TNF-α, or IL-10
secretion between both HIV/TB groups. At the same time, an almost 4-fold decrease in Il-1β levels
was detected in the HIV/TB group with TB recurrence when compared with the HIV/TB group
(p = 0.0001); a 2.8-fold decrease when compared with HIV patients (p = 0.001); and a 2.2-fold decrease
with newly diagnosed TB patients (p = 0.001). Conclusions: Significantly decreased Il-1β levels in
HIV/TB patients’ cohort with secondary TB indicate that this cytokine can be a potential biomarker
of TB recurrence.

Keywords: HIV infection; HIV/TB coinfection; tuberculosis recurrence; Il-1β; IL-10; INF-γ; TNF-α

1. Introduction

It is well known that tuberculosis (TB) is the leading cause of death among people
living with HIV (PLHIV). According to the WHO, 703,000 people living with HIV contracted
tuberculosis in 2021, of which about 187,000 died [1,2]. To date, a lot of clinical data have
already been accumulated, indicating that Mycobacterium tuberculosis (Mtb) and HIV act
synergistically, thus disrupting the body’s immune system, which leads to a subsequent
increase in mortality in the absence of proper treatment [3–5]. Thus, people living with
HIV are 16–18 times more likely to develop tuberculosis than people without HIV [1]. It is
assumed that HIV infection causes a decrease in the number of macrophages capable of
limiting the growth of Mtb [5]. Susceptibility to TB increases shortly after HIV infection,
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long before the number of CD4+ T cells decline to less than 500 cells/mL [5,6]. It is
believed that, in people with latent TB, HIV infection is the most significant risk factor for
tuberculosis, since HIV infection is highly likely to reactivate Mtb infection [7,8]. People
living with HIV, regardless of the duration of ART, have a high risk of tuberculosis when
compared to HIV-negative individuals [9]. In turn, TB also has a negative effect on the
immune system when infected with HIV, accelerating the transition from HIV infection
into AIDS [6,10]. It is suggested that since Mtb and HIV share anatomical reservoirs, such
as the lungs, a favorable microenvironment is created in patients with TB, contributing
to the development of HIV infection [6,11]. Constant immune activation in response
to Mtb infections induces HIV replication in blood cells and at sites of Mtb infection in
the lungs, as well as in activated cells of the pleural cavity [12–14]. This is due to the
production of cytokines, which activate signaling transmission pathways in T cells and
monocytic cells, which in turn leads to increased HIV transcription through the activation
of transcription factors NF-kB (Nuclear factor-kB) and NFAT (Nuclear factor of activated
T-cells) [5]. The differentiation of T cells in the foci of Mtb infections contributes to the fact
that the expression of CCR5 and CXCR4 co-receptors increases on the surface of T cells,
which makes these cells more susceptible to HIV infection since these co-receptors play a
key role in the penetration of the virus into the cell [15–20]. According to WHO estimates,
the mortality rate in HIV patients within 1 month after infection with Mtb in the absence
of therapy is 90% [2]. People with HIV/TB co-infection have a high viral load even after
recovery from tuberculosis when compared to people with HIV monoinfection [21,22]. At
the same time, it should be kept in mind that the symptoms of tuberculosis associated
with HIV infection are often non-specific [23]. Physicians note the difficulty of diagnosing
TB in HIV-infected patients, especially at the stage of secondary diseases [23,24]. The
atypical course of secondary tuberculosis in the late stages of HIV infection leads to an
increase in the untimely diagnosis of TB. At the same time, the risk of TB recurrence must
be taken into account. It is recognized that the key drivers of the high recurrence rate of TB
include such factors as the fibrous-cavernous form of the disease, the destruction of lung
tissue, positive sputum culture after 2 months of treatment [25,26], immunosuppressive
conditions, and, in particular, HIV infection. Numerous clinical studies show that HIV
infection is independently associated with a high risk of TB recurrence [27–31]. In regions
with a high incidence of TB, the rate of TB recurrence among people living with HIV after
standard treatments ranges from 14 to 37.7% [26,32,33]. Identifying individuals at high
risk of TB recurrence prior to treatment could help in adjusting treatment regimens for
such individuals, including the use of higher doses of drugs, additional drugs, or targeted
therapies [34,35]. In this regard, the problem of detecting biomarkers that make it possible
to identify among patients with HIV infection those at greatest risk of tuberculosis and a
high risk of TB recurrence, even before the initial phase of therapy, is rather intense.

The immune response against pathogens such as HIV and Mtb is vigorous in acute
infections, inducing the production of such pro-inflammatory cytokines as TNF-a, IFN-g,
IL-1beta, and, later, after the enhanced secretion of those cytokines, anti-inflammatory cy-
tokine IL-10 [36,37]. IFN-g controls a range of immunological and inflammatory responses
in HIV infection, as well as in Mtb infection, and is deeply involved in the activation of
monocytic cells [38–40]. In HIV infection, IFN-g plays a vital role in the reduction of HIV
replication. It was shown that the progression of immunodeficiency was associated with
diminished IFN-g production [40,41]. Also, IFN-g has a major role in protecting against
TB [38,42,43]. The importance of IFN-g is confirmed by the fact that the incidence of TB
in people with genetic abnormalities in the IFN-g expression increases dramatically [44].
TNF-α has a critical role in HIV infection by modifying HIV gene expression via the
receptor-mediated activation of the HIV promoter region [45]. TNF-α upregulates HIV
expression in T lymphocytes, macrophages, and monocytes by activating the NF-kB tran-
scription factor [45–47]. It is suggested that TNF-α increases NF-κB’s binding to the HIV
long terminal repeat, thus inducing viral replication. At the same time, TNF-α in HIV-1
infection mediates the death of HIV-infected cells due to apoptosis, and also inhibits HIV-1



Biomedicines 2024, 12, 954 3 of 18

replication in newly infected peripheral blood monocytes [46,48]. In Mtb infection, TNF-α
plays a pivotal role in the granuloma formation, which is critical for controlling bacterial
growth [8,49–51]. It is suggested that, in individuals with HIV/TB co-infection, Mtb ac-
celerates HIV infection due to the specific formation of granulomas. It was shown that
the granulomas formed in HIV-infected individuals were poorly formed and exhibited
necrosis [45,52]. A marked decrease in TNF-α concentrations was associated with the
formation of a defective granuloma [52]. IL-1beta is a key cytokine that induces host
defense responses to infection by enhancing the antimicrobial properties of phagocytes
and initiating Th1/Th17 adaptive immune responses [53,54]. It is shown that increased
IL-1beta levels are associated with the progression of HIV infection, and, at the same time,
the augmented secretion of this cytokine is vital for the control of Mtb infection [55,56].
Interleukin 10 (IL-10) is a key player in the establishment and persistence of viral infections.
It is a multifunctional cytokine secreted by monocytes, macrophages, T cells, and dendritic
cells, which can both induce or suppress the immune response [57,58]. This cytokine
inhibits pro-inflammatory cytokine expression and antigen presentation, and blocks T-
lymphocytes activation [58,59]. Its role in HIV infection is dual, as it can suppress HIV
replication or promote virus production, depending on the IL-10 promoter polymorphisms
and polymorphisms in chemokine receptors [60–64]. In Mtb infection, IL-10 is critical for
downregulating the inflammation at the site of infection, reducing tissue damage via cell
recruitment to the infected tissue [36].

Considering that both HIV and TB have a significant effect on the immune system,
disrupting the normal balance of cytokines and the functioning of the cytokine network as
a whole, a comparative study of the plasmatic level of cytokines (IFN-γ, TNF-α, IL-1 β, and
IL-10) playing a crucial role in the regulation of protection against Mtb [8,45,49,55,65,66]
was conducted in a group of patients with double HIV/TB infection (both newly diagnosed
with TB and with recurrent TB), as well as in patients with HIV and TB monoinfections.
The objective of this study was to identify potential markers of TB recurrence in people
living with HIV.

2. Materials and Methods
2.1. Study Population

The subjects were recruited during 2019–2020 from different population pools at two
large medical centers: the G.A. Zaharyan Tuberculosis Clinic and the Central Research
Institute of Epidemiology. The subjects represented different population pools as follows:
patients with dual HIV/TB infection (n = 62), patients with newly diagnosed TB infection
(n = 52), and patients with newly diagnosed HIV (n = 52). Out of the 62 patients with
HIV/TB, 47 (75.8%) patients were newly diagnosed with HIV and TB, and 15 (24.2%)
patients displayed TB recurrence and were newly diagnosed with HIV. TB diagnoses were
based on clinical symptoms, sputum microscopy, and radiological analyses. The patients
were diagnosed as HIV-seropositive using ELISA (ARCHITECT HIV Ag/Ab Combo,
Abbott Architect, Abbott GmbH, Wiesbaden, Germany; DS-IFA-AG/AT-SCREEN, NGO
Diagnostic Systems, Nizhny Novgorod, RF; Invitrologic HIV - AG/AT- Ultra, Medical
Biological Union LLC, Novosibirsk, RF; DS-IFA-AG- SCREEN, NGO Diagnostic Systems,
Nizhny Novgorod, RF), and were then confirmed using Western blot (MilaBlot-HIV, NGO
Diagnostic Systems, Nizhny Novgorod, RF). Healthy controls (n = 45) from the general
population were recruited for the study at the blood transfusion center. Healthy controls
(donors, HDs) were repeatedly tested negative for HIV-1 and had no history of TB or
exposure to the disease within the past 6 months. At the time of enrollment, patients with
HIV/TB were naive for ART and anti-tuberculosis therapy, HIV-positive patients were
naïve for ART, and TB patients were naïve for antituberculosis therapy. In patients with
TB recurrence, the second episode of TB occurred within 1.5–2.5 years following the initial
successful TB treatment.
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2.2. Ethical Statement

All individuals were over 18 years old and provided written informed consent for
participation in the study. According to the General Data Protection Regulation (GDPR)
requirements, all participants were deidentified and anonymized by assigning them unique
codes, expressed as identifiers. All clinical samples, data, and study results were stored
in an anonymized form. The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Biomedical Ethics Committee of the I.I.
Mechnikov Institute of Vaccines and Sera (protocol #1/01/17/2018).

2.3. Sputum Microscopy and Culture

Sputum samples were stained for acid-fast bacilli, and were graded with light mi-
croscopy. The cultures were examined weekly for a maximum of eight weeks, or until
positive for visible colonies.

2.4. CD4+ Cell Count

The CD4+ T-CELL count was carried out according to a standard procedure. The CD4+
T cell counting was performed with two-color flow cytometry using phycoerythrin-labeled
anti-CD4 antibodies (FACSort, Becton Dickinson, Franklin Lakes, NJ, USA), according
to the manufacturer’s instructions. The whole blood sample with anticoagulant was
incubated with the fluorescent antibodies, and then the CD4+ cell number was determined
with flow cytometry using Fluorescent Activated Cell Sorter BD FACSCount TM system
(Becton Dickinson).

2.5. Cytokine Quantitation

The plasma levels of the cytokines IFN-γ, TNF-α, IL-10, and IL-1β were measured
using the ELISA EIA-BEST Kit (Vector-Best, RF). Plasma was isolated according to the
standard procedure. The whole blood was collected in a vacutainer with EDTA and
centrifuged at 1000 rpm for 15–20 min with cooling. The plasma was collected, aliquoted,
and stored at −80 ◦C until further analysis. The cytokine concentrations were determined
using a standard curve obtained with the standards provided by the manufacturer with
each kit (sensitivity 0–5 pg/mL), and the results were expressed as pg/mL.

2.6. Quantification of HIV-1 RNA

The quantification of HIV-1 RNA in blood plasma was performed via a real-time
reverse transcription-polymerase chain reaction (RT-PCR) with the use of the “AmpliSens
HIV Monitor-FRT” reagent kit (FSBI CRIE, Moscow, RF). The study was performed on
the real-time PCR cycler Rotor-Gene Q (Qiagen, Hilden, Germany) using standardized
technology with automated sample preparation. The analysis of the results was carried out
using the software of the equipment.

2.7. Statistical Analysis

Comparisons of the variables between multiple groups were completed using Kruskal–
Wallis tests. In instances where the Kruskal–Wallis p value was less than 0.05, indicating
a difference between the groups, additional two-group comparisons were performed
using Mann–Whitney U tests. The receiver operating characteristic (ROC) analysis was
performed, and the area under the curve (AUC) was obtained for the potential marker
by comparing the HIV/TB and HIV/TB recurrence groups. The data were analyzed
using GraphPad Prism v9.5.0 (GraphPad Software, Boston, MA, USA) and STATISTICA
11.0 software (Tibco, Palo Alto, CA, USA). Multiple regression analysis was performed
using the respective module of STATISTICA 11.0. Values of p < 0.05 were considered
statistically significant.
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3. Results
3.1. Study Population

A total of 211 individuals were enrolled in the study as follows: 47 patients with
HIV/TB co-infection (HIV/TB); 15 displaying HIV/TB recurrence (HIV/TB-Rec); 52 pa-
tients with HIV monoinfection (HIV); 52 patients with TB monoinfection (TB); and 45 healthy
donors (HD). The baseline characteristics of the study population are shown in Table 1.
There were no significant differences in gender or age. There were no differences in cavities
between the two groups of patients with HIV/TB and with TB alone. However, there
were more patients with disseminated TB in the patients’ group with double infection,
with 67–68% vs. 19.2% in the TB group, respectively. In both groups with HIV/TB co-
infection prevailed patients with severe immunosuppression: 76.6% and 66.7% CD4+T cell
count < 200 cells/mm3 vs. 30.8% in group with HIV alone (p = 0.0250). There was no
difference in BMI (body mass index) or concomitant opportunistic infections between the
two groups with double infection (Table 2).

Table 1. Baseline demographic and clinical characteristics of the study population.

Characteristics HIV/TB
(n = 47)

HIV/TB-Rec
(n = 15)

HIV
(n = 52)

TB
(n = 52) Healthy Donors (n = 45)

Gender, (n/%):
Male 36 (76.6) 10 (66.7) 37 (71.2) 35 (67.3) 32 (71.1)
Female 11 (23.4) 5 (33.3) 15 (28.8) 17 (32.7) 12 (26.7)

Age (years), IQR
Male 36.6 (25–55) 35.6 (30–42) 34.8 (26–54) 36.9 (28–59) 33.7 (21–45)
Female 35.8 (26–55) 33.3 (23–39) 34.5 (27–56) 33.5 (26–68) 33.4 (22–40)

TB forms, (n/%):
Disseminated 32 (68.1) 10 (66.7) 10 (19.2)
Infiltrative 15 (31.9) 5 (33.3) _________ 37 (71.2) _________
TB of intrathoracic lymph nodes _________ _________ 5 (9.6)

CD4+ count (cells/mm3/%) IQR: 202 208 279
<200 59/76.6 (4–156) 54/66.7 (6–181) 56/30.8 (5–155)

<350 226/23.4
(203–248)

222/33.3
(204–246)

259/50
(204–343) 545 (458–575) 895 (805–1450)

>350 _________ _________ 395/19.2
(352–463)

Viral load (log10 copies/mL), IQR 6.02 (4.41–7.0) 6.87 (4.59–7.0) 6.67 (3.9–7.6) __________ _________

Smoked (n/%):
Yes 47/100 15/100 48/92.3 43/82.7 n/a
No _________ _________ 4/7.7 9/17.3

Cavity (n/%) 2/4.3 0 _________ 3/5.8 _________

Body mass index (BMI), 20.8 (16.3–39.8) 20.0 (16–38.7) n/a n/a n/a

Time after 1st TB treated episode (years,
n/%):
1.5 _________ 2/13.3 _________ _________ _________
2 6/40
2.5 7/46.7

IQR—interquartile range; n/a—not available.

There were no fatal outcomes during the studied period in any group.

Table 2. Rate of opportunistic infections in individuals with HIV/TB co-infection.

Characteristics HIV/TB
(n = 47)

HIV/TB-Rec
(n = 15) p-Value

Cytomegalovirus (CMV), n/% 3/6.4 1/6.6 0.229

Chronic hepatitis C/B virus (HCV/HBV) 31/65.9 9/60.0 1.

Herpes simplex virus (HSV) 1/2.1 0 na
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Table 2. Cont.

Characteristics HIV/TB
(n = 47)

HIV/TB-Rec
(n = 15) p-Value

Kaposis sarcoma 0 0 na

Candidiasis 10/21.2 3/20.0 0.108

Toxoplasmosis 0 0 na
na—not applicable.

3.2. Cytokines Distinguishing TB Recurrence in Individuals with HIV

The highest level of INF-γ production was observed in the group of patients with TB
monoinfection, exceeding the levels observed in both patients with HIV monoinfection and
with double HIV/TB infection (Figure 1A). In patients with HIV/TB, there was a 2.5-fold
decrease in INF-γ production when compared to patients with HIV, and a 4.5-fold decrease
when compared to patients with tuberculosis, respectively (p < 0.0001). The TNF-α levels
in patients with HIV/TB co-infection were also significantly lower than in patients with
HIV and TB monoinfection; cytokine production was reduced by 3.1 times and 3.4 times
(p < 0.0001 and p < 0.0001, respectively; Figure 1B). At the same time, there was no statisti-
cally significant difference in the production of INF-γ and TNF-α in the groups of patients
with HIV/TB and HIV/TB-Rec. A similar pattern was observed in the production of IL-10.
The cytokine levels in patients with double infection were also reduced when compared to
groups with HIV and TB alone; 11.1 times against the group with HIV monoinfection and
14.8 times against the group with TB monoinfection (p < 0.0001 and p < 0.0001, respectively;
Figure 1C); however, between the two groups with HIV/TB, there was no difference in IL-
10 production. However, in the group of patients with HIV/TB-Rec, there was a significant
decrease in the production of IL-1β compared to the other three groups, especially with the
HIV/TB group (Figure 1D). If, in patients with HIV/TB, IL-1β production was reduced
1.4 times (p < 0.0001) when compared with patients with HIV alone, then in patients with
HIV/TB-Rec, cytokine production was reduced by 2.8 times (p < 0.0001) when compared
with the group with HIV monoinfection and 3.9 times (p < 0.0001) when compared to the
HIV/TB group. Multiple linear regression analysis showed that a statistically significant
difference in cytokine production in the HIV/TB-Rec group was observed only for IL-1β
(Table 3).

Table 3. Distinct profiles of cytokines production in patients with HIV/TB and HIV/TB-Recurrence
through multiple linear regression analysis.

n = 62 b* Standard
Error of b* b Standard

Error of b T(99) p-Value

Intercept 100.933 0.244074 497.822

IL-1β 0.9366 0.088347 0.0394 0.006855 3.44891 0.039412

IFN-γ 0.77082 0.038262 0.0571 0.003417 2.0874 0.057138

TNF-α 0.002776 0.052191 0.0041 0.002889 1.4722 0.276703

IL-10 0.085931 0.04356 0.0038 0.001624 2.0760 0.378127
Regression Summary for Dependent Variable “TB Recurrence or not”: R = 0.87435818; R² = 0.76455317; Adjusted
R2 = 0.74909907; F(5,58) = 33.348 p < 0.0000; Std. Error of estimate: 0.7834.

In order to determine whether IL-1β can be considered a potential biomarker for
predicting TB recurrence in HIV-infected individuals, a ROC analysis was performed.
The ROC curve was obtained by comparing the HIV/TB group and the group with
HIV/TB recurrence (Figure 2). Interleukin-1β showed significantly high AUC (0.9270,
p-value < 0.0001), indicating that IL-1β could distinguish between the patients with HIV/TB
and the patients with HIV/TB recurrence.
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Figure 1. Plasma levels of cytokines in patients with HIV/TB co-infection, HIV/TB recurrence co-
infection, HIV monoinfection, TB monoinfection, and controls. Interferon-γ (IFN-g) (A), tumor ne-
crosis factor-alpha (TNF-alpha) (B), interleukin-10 (IL-10) (C), interleukin-1Beta (IL-1Beta) (D). Red 
circles designate the values of the group of HIV/TB co-infected; rose, HIV/TB patients with TB re-
currence; lilac, HIV monoinfected; green, TB monoinfected patients; and beige, controls = HD. Sta-
tistical difference: Kruskal–Wallis test was used with multiple comparisons; p-value < 0.05 was con-
sidered significant. 

Table 3. Distinct profiles of cytokines production in patients with HIV/TB and HIV/TB-Recurrence 
through multiple linear regression analysis. 

Figure 1. Plasma levels of cytokines in patients with HIV/TB co-infection, HIV/TB recurrence
co-infection, HIV monoinfection, TB monoinfection, and controls. Interferon-γ (IFN-g) (A), tumor
necrosis factor-alpha (TNF-alpha) (B), interleukin-10 (IL-10) (C), interleukin-1Beta (IL-1Beta) (D).
Red circles designate the values of the group of HIV/TB co-infected; rose, HIV/TB patients with
TB recurrence; lilac, HIV monoinfected; green, TB monoinfected patients; and beige, controls = HD.
Statistical difference: Kruskal–Wallis test was used with multiple comparisons; p-value < 0.05 was
considered significant.
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patients with HIV/TB and HIV/TB recurrence.

A stringent analysis of the correlations of the cytokine levels with CD4+ cell counts
did not reveal statistically significant differences between the two groups with HIV/TB
co-infection (p values > 0.01).

4. Discussion

Cytokines play an important role in the immune response that determines the outcome
of infections with intracellular pathogens. It is a well-known fact that both HIV and Mtb
have a significant effect on the immune system, and both infections are characterized by
a dysfunctional immune response [8,67–72]. HIV infection leads to a decrease in early
immune control and a delay in the onset of adaptive immunity, which then results in a
higher level of Mtb and, as a consequence, a greater bacterial load [73–75]. The important
role of IFN-γ, TNF-alpha, IL-1β, and IL-10 as the cytokines essential for protection against
Mtb is well established [8,45,49,55,59,65,75–81].

IFN-gamma plays a key role in the host defense against M. tuberculosis via activating
the macrophages necessary for the production of reactive nitrogen species, in particular
nitric oxide (NO), in order to restrict the growth of Mtb [59,76,82]. Furthermore, IFN-γ also
plays a crucial role in several antibacterial processes, including granuloma formation and
phagosome–lysosome fusion, which both cause the death of intracellular Mtb [49,76,82].
Many studies demonstrate that determining the level of IFN-γ can help in predicting active
tuberculosis much earlier than the existing diagnostic algorithms. It has been shown that a
high level of IFN-γ is a marker of the transition of TB from the latent stage to the active one,
as well as the marker of early TB disease [77,83,84]. This is consistent with the data obtained
in this study, during which a high level of IFN-γ production was detected in the group of
patients with active TB, exceeding a similar indicator in the control group by 19.1 times,
and 4.5 times in the groups with double infection (both p < 0.0001). We wanted to see if
this indicator could be extrapolated in the case of TB recurrence in patients with HIV/TB
co-infection. Here, in agreement with other studies, in patients with HIV/TB co-infection,
we detected the decreased production of IFN-γ beyond the levels observed in both HIV
and TB monoinfections (p < 0.0001), [85–88]. Previously, it was shown that low IFN-γ
levels differentiated HIV/TB co-infection regarding the severity of clinical manifestations
of TB [89]. This was confirmed by the results of this study, in which, in patients with double
infection both with and without TB recurrence, a reduced level of IFN-γ has been correlated
with a high percentage of severe forms of TB as follows: 48.4% of patients were diagnosed
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with disseminated TB, and 30.6% with infiltrative TB in the decay phase. However, no
difference in IFN-γ production between the two HIV/TB groups was detected.

TNF-α, along with IFN-γ, play a significant role in the immunological and patholog-
ical reactions to tuberculosis (TB) via inhibiting the recurrence of TB and controlling the
pathogenic response of the immune system and pulmonic expression of certain immuno-
logic components [49,80,81]. TNF-α, interacting with other cytokines, and, in particular,
with IFN-γ, induces a competent cell-mediated immune response to pathogens such as
M. tuberculosis [90]. But, first of all, TNF-α has been identified as one of the key cytokines
in controlling Mtb infection due to its role in the formation and maintenance of granulo-
mas [51,80,91,92]. As the infection progresses, TNF-α coordinates the chemokine response
within the lung and facilitates the development of the granuloma [49]. TNF-α has im-
portant pro-inflammatory functions, and low levels of this cytokine are associated with
the progression of TB, right up to a fatal outcome. This is primarily a consequence of a
decrease in the antimycobacterial reactions of macrophages simultaneously with a violation
of the functionality of granulomas [93]. A number of studies have shown that TNF-α, in
addition to IFN-γ, could serve as a diagnostic biomarker of TB infection since its production
differed significantly between individuals infected with Mtb and those with no evidence of
infection [77,94,95]. This was confirmed by the results of this study, where it was found
that the level of TNF-α production in patients with TB monoinfection was 12.1 times higher
(p < 0.0001) when compared with the control group. Nevertheless, we did not detect a
statistical difference in TNF-α production between patients with HIV and TB monoinfec-
tions. The plasma levels of TNF-α were comparable in both groups with monoinfection,
which is in line with other studies [51,85–87]. At the same time, in both patients’ groups
with HIV/TB co-infection, the TNF-α levels were significantly decreased (on average by
3.3 times, p < 0.0001) when compared with groups with HIV and TB monoinfections. In
one experimental model in vivo, it was shown that low TNF-α levels were associated
with recurrent TB [96]. However, herein, as in the case of IFN-γ production, there was no
statistical difference between the groups with TB recurrence and those without it.

There are data that the TNF-α/IL-10 and IFN-γ/Il-10 ratio may also serve as a reliable
indicator of Mtb infection, as well as a marker that could distinguish between active TB and
latent TB [95,97,98]. IL-10 is one of the regulatory cytokines that reduces inflammation and
limits the activation of adaptive immune responses [99]. It is known that, at the initial stage
of Mtb infection, when IL-10 levels are elevated, it acts as an inhibitor, downregulating
the immune response and thereby limiting tissue injury [77,80,100–103]. However, the
excessive production of this cytokine can lead to the failure of infection control and the
reactivation of TB [80,101,102,104,105]. Herein, we, as well as other researchers, found an
elevated expression of IL-10 in TB patients versus healthy subjects [103,106]. However, in
both groups of patients with HIV/TB co-infection, that indicator was significantly decreased
(on average by 14.8 times, p < 0.0001), and again there was no statistical difference in IL-
10 production.

Thus, we observed no significant changes in IFN-γ, TNF-α, and IL-10 expression
between the two groups with double infection. Interleukin-1β was the only cytokine that
distinguished patients with HIV/TB and HIV/TB recurrence. Interleukin-1β is one of the
powerful proinflammatory cytokines with pleiotropic activities [53,107]. It is known that
IL-1β is necessary for the host’s control of mycobacterial infection [55,108]. Interleukin
1-β participates in the differentiation of naive T cells and affects the effector functions of
various subpopulations of T and B lymphocytes. There are data that the IL-1β response
is characterized by the inflammasome independence, which indicates that this cytokine
may also be produced by an atypical cellular source [109]. It was shown that IL-1β is
one of the cytokines critically required for host resistance, and that the absence of IL-1β
could severely compromise the host response to Mtb [109–111]. Numerous data indicate
that in the advanced stages of HIV monoinfection, as well as in Mtb monoinfection, there
is an increase in the production of IL-1β [56,112,113]. Our findings are consistent with
these reports. We detected a 4.5-fold increase in the IL-1β expression in the TB group
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and a 4.9-fold increase (both groups, p < 0.0001) in the HIV group when comparing with
the reference values. On the contrary, the IL-1β production in both groups with HIV/TB
co-infection was reduced, especially in the HIV/TB group with TB recurrence. The IL-1β
levels in the HIV/TB-Recurrence group was decreased by 2.2 times, (p < 0.0064) compared
with TB group; by 2.8 times, (p < 0.0001) vs. HIV group and by 3.9 times (p < 0.0001) vs.
HIV/TB group. The strongest association of decreased IL-1β levels with TB recurrence was
confirmed using multiple linear regression analysis, which makes it possible to consider
this cytokine a potential marker. This is in concordance with another study, where it was
showed ex vivo that lower IL-1β levels could serve as a predictor of TB recurrence [114].

The mechanism of IL-1β secretion is still poorly understood. However, the data accu-
mulated suggest that several factors have a strong impact on its expression. IL-1β is pro-
duced as an inactive precursor of pro-IL-1β in response to the so-called pathogen-associated
molecular patterns (PAMPs) [53,111,115]. The active form of IL-1β is formed as a result of
the activation of inflammasomes, a multi-protein complex that stimulates the activation
of caspase-1, thereby contributing to the production and secretion of proinflammatory
cytokines [45,111,116]. After that, mature IL-1β is released into the external environment.
The main producing cells of IL-1β are monocytes, macrophages, and dendritic cells [115].
However, for the transcription of IL-1β mRNA with the subsequent translation into pro-
IL-1β protein, monocytic cells require the stimulation of TLR (Toll-like receptor) ligands,
such as LPS (lipopolysaccharide) or NLR (Nod-like receptors) agonists [115,117]. Studies
show that in the absence of an additional stimulus, cells release only a small amount of
mature IL-1β into the extracellular environment [53,115]. Thus, the reduced expression of
IL-1β may partly be explained by a lack of activating components. Also, another factor
affecting the underexpression of IL-1β may be the depletion of the pool of cells secreting
this cytokine. As a result of chronic immune activation caused by HIV and Mtb, cells
function in an elevated mode, which then inevitably leads to their exhaustion [5,45]. In
addition, CD4+ cell depletion may also be the result of pyroptosis. As mentioned earlier, the
expression of IL-1β is triggered by two different triggers as follows: a signal that induces
the expression of pro–IL-1β, and a signal that promotes the maturation of the IL-1β proteins
via the activation of caspase-1 [109,118]. It has been shown that in HIV infection, caspase-1
triggers the pyroptosis of CD4+ cells [119–121]. Thus, if, in bacterial infections, pyroptosis
contributes to the rapid elimination of pathogens via the elimination of intracellular replica-
tion reservoirs, then, in HIV infections, pyroptosis leads to an aggravation of the infectious
process, thus contributing to the depletion of the CD4+ cell pool and chronic inflammation.

Another reason affecting the secretion of IL-1β may be the genetic diversity of Mtb
strains. Numerous clinical data indicate that different strains of M. tuberculosis induce
completely different immune responses [92]. In this work, we did not conduct a study
concerning which Mtb genotypes the patients were infected with. But, for example, it has
been shown that in the case of infection with Mtb strains belonging to the “not Beijing”
genotypes, the inhibition of the basal proliferation of blood lymphocytes is observed, which
inevitably leads to the reduced secretion of various cytokines [122]. And strains of Mtb
Beijing are more virulent when compared to other Mtb genotypes, causing an unprotected
immune response [92,123–125]. In vitro studies have shown that Mtb isolates associated
with severe and moderate forms of TB induced a greater decrease in cytokine expression
(including IL-1β) than in isolates obtained from patients with mild TB [126], which is
evidence that the genetic diversity of M. tuberculosis affects aspects of host interaction with
the pathogen, thus modulating immune responses.

Many studies have shown that a low CD4+ cell count might be one of the main
predictors of TB recurrence in HIV-infected patients [26,30,33,127]. Nevertheless, in the
present study, there was no statistical difference in the CD4+ cell number between the
HIV/TB group and the HIV/TB group with TB recurrence. Both groups were distinguished
by a low number of CD4+ cells as follows: 76.6% of patients in the HIV/TB group and
66.7% in the HIV/TB group with TB recurrence had a CD4+ cell count below 60 cells/mm3.
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It is a well-established fact that smoking is one of the factors of TB recurrence, in
addition to HIV infection [26,128–132]. However, this was not a decisive factor among
the participants in this study, since the number of smokers among people with HIV and
TB monoinfection was 92.3% and 82.7%, respectively, and, in both groups with HIV/TB
co-infection, absolutely all (100%) participants smoked.

It is currently known that the incidence of TB recurrence can be mainly attributed
to two mechanisms as follows: through a relapse of previous infections (endogenous re-
activation), or through reinfection with a new isolate (exogenous reinfection) [6,133–136].
A relapse of the disease is defined as the second (or third) episode of active TB caused
by the recurrence of the initial infection [135]. A mounting set of data show that, in
HIV-negative individuals, most recurrences following successful TB treatment are due to
endogenous reactivation [6,134–137]. Reinfection is a result of exogenous infection with a
new Mtb isolate that differs from the isolate that caused the initial infection [135]. How-
ever, it should be noted that in high-TB endemic settings, in some cases, the individual
could be exposed to reinfection with the same TB isolate that induced the primary infec-
tion [135,138]. Reinfection could happen in areas with high incidences of TB, as well as
in settings with low to moderate incidences of disease [31,135,139,140]. These findings
indicate that the initial Mtb infection does not protect against subsequent infection. Accu-
mulated data show that relapses occur early following the end of TB treatment, usually
within a year following therapy, while reinfection occurs after the first year following the
treatment [134,135,141,142]. A growing body of evidence reveals that an increased inci-
dence of TB recurrence in HIV-infected persons after the successful treatment of TB is
due to exogenous reinfection, but not due to the relapse [6,134,136,140,142]. Moreover, it
was demonstrated that 37.7% of patients with recurrent TB after being cured were HIV
positive [32]. Lately, using molecular fingerprinting techniques, it is possible to differentiate
between reactivation and reinfection [135,137,143], and whole genome sequencing (WGS)
is the most preferred method due to its’ high discriminatory power [144,145]. However,
this method is still quite expensive, limiting its use. We were unable to perform molecular
genotyping in this work, but the data suggest that, among the HIV-infected participants
of this study who had secondary TB, with a high degree of probability, we are referring
to about exogenous reinfection. Indirectly, this is evidenced by the fact that, in all studies
with recurrent TB participants, the time interval between the successful treatment of the
first case of TB and a second episode of Mtb infection was 1.5–2.5 years.

5. Conclusions

In summary, we have shown that IL-1β was the only cytokine that distinguished
the HIV/TB patients with TB recurrence from the HIV/TB patients. Neither IFN-γ, TNF-
alpha, or IL-10 could differentiate between the two groups with double infection. We
are aware of the limitations of this work associated with the small sample of patients (a
limitation characteristic of several other studies in this field [114,146]), as well as the lack of
opportunity to perform molecular genotyping. Future studies will be conducted for a wider
group of patients and will include the fingerprinting of Mtb isolates. Nevertheless, the
differences in the production of IL-1β between the two groups with HIV/TB co-infection
with and without TB recurrence were large enough to identify statistical differences between
those groups. Thus, the significantly decreased Il-1β levels detected in the cohort with
HIV/TB patients than those with secondary TB indicate that this cytokine could be a
potential biomarker of TB recurrence.
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