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Abstract: Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of pre-
maturity. Postulated mechanisms leading to inflammatory necrosis of the ileum and colon include
activation of the pathogen recognition receptor Toll-like receptor 4 (TLR4) and decreased levels
of transforming growth factor beta (TGFβ). Extracellular nicotinamide phosphoribosyltransferase
(eNAMPT), a novel damage-associated molecular pattern (DAMP), is a TLR4 ligand and plays a role
in a number of inflammatory disease processes. To test the hypothesis that eNAMPT is involved
in NEC, an eNAMPT-neutralizing monoclonal antibody, ALT-100, was used in a well-established
animal model of NEC. Preterm Sprague–Dawley pups delivered prematurely from timed-pregnant
dams were exposed to hypoxia/hypothermia and randomized to control—foster mother dam-fed
rats, injected IP with saline (vehicle) 48 h after delivery; control + mAB—foster dam-fed rats, injected
IP with 10 µg of ALT-100 at 48 h post-delivery; NEC—orally gavaged, formula-fed rats injected
with saline; and NEC + mAb—formula-fed rats, injected IP with 10 µg of ALT-100 at 48 h. The
distal ileum was processed 96 h after C-section delivery for histological, biochemical, molecular,
and RNA sequencing studies. Saline-treated NEC pups exhibited markedly increased fecal blood
and histologic ileal damage compared to controls (q < 0.0001), and findings significantly reduced
in ALT-100 mAb-treated NEC pups (q < 0.01). Real-time PCR in ileal tissues revealed increased
NAMPT in NEC pups compared to pups that received the ALT-100 mAb (p < 0.01). Elevated serum
levels of tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), interleukin-8 (IL-8), and NAMPT
were observed in NEC pups compared to NEC + mAb pups (p < 0.01). Finally, RNA-Seq confirmed
dysregulated TGFβ and TLR4 signaling pathways in NEC pups that were attenuated by ALT-100
mAb treatment. These data strongly support the involvement of eNAMPT in NEC pathobiology and
eNAMPT neutralization as a strategy to address the unmet need for NEC therapeutics.

Keywords: necrotizing enterocolitis; NEC; extracellular nicotinamide phosphoribosyltransferase;
eNAMPT; NAMPT; DAMP; ALT-100; TLR4; TGFβ

1. Introduction

Despite advances in neonatal practice, necrotizing enterocolitis (NEC) remains the
most common gastrointestinal emergency in premature infants, with an incidence of 6–10%
in preemies weighing less than 1500g at birth [1]. NEC is characterized by hemorrhagic in-
flammation of the ileum and colon [2], with mortality of 20–30% [3,4]. Clinical presentation
ranges from abdominal distension to intestinal gangrene and necrosis [2], with surgical
intervention often resulting in short bowel syndrome and also being a significant predic-
tor of neurodevelopmental morbidity [5,6]. The economic costs of NEC are substantial;
surgical NEC is one of the costliest morbidities of premature infants [7]. While the major
risk factors for NEC—e.g., prematurity, formula feeding, and dysbiosis of the intestinal
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microbiome—are known [8], treatment strategies beyond laparotomy are predominantly
supportive [9–11].

While the pathogenesis of NEC remains poorly understood, disruption of the intesti-
nal barrier during the early stages of NEC development is thought to be crucial [12,13].
Gastrointestinal barrier failure can lead to translocation of Gram-negative bacteria and
bacterial wall products, such as lipopolysaccharide (LPS), into circulation to initiate the
proinflammatory cascade observed in NEC [14,15], including tumor necrosis factor alpha
(TNFα) [16,17], interleukin-6 (IL-6) [18,19], and interleukin-8 (IL-8) [15,20,21]. LPS binding
and activation of the pathogen recognition receptor Toll-like receptor 4 (TLR4) are essential
to innate immunity regulation and result in marked NF-κB-driven inflammatory cytokine
production [22,23]. TLR4 is well recognized as a major participant in NEC [24–29]. Infants
with NEC have increased expression of intestinal TLR4 compared to healthy preterm in-
fants [26]. Additionally, experiments in animal models of NEC have shown that inactivation
of TLR4 signaling protects against disease development [24,25]. Intestinal transforming
growth factor beta (TGFβ) is also implicated as a casual factor in NEC. TGFβ is an im-
portant family of growth factors that regulate development, wound healing, and immune
function [30]. The expression of TGFβ is downregulated in patients with NEC [31–33],
and treatment with exogenous TGFβ protects against disease in an experimental model of
NEC [32]. Interestingly, LPS-activated TLR4 can inactivate TGFβ signaling via crosstalk
between TLR4 signaling and the canonical Wnt/β-catenin pathway [34–36].

Human breast milk contains components that modulate a variety of immune pathways,
including both TLR4 and TGFβ signaling [37,38]. Breast milk contains epidermal growth
factor, which inhibits activation of intestinal TLR4. This inactivation results in reduced
apoptosis of the intestinal epithelia and increased enterocyte proliferation [39]. Breast milk
also contains large quantities of TGFβ, which has been shown to decrease inflammation
in the neonatal intestine via Erk and SMAD6 [40]. These findings help explain the strong
protective effect that breast milk has in NEC [41–43]. However, there are currently no
treatments that can mitigate TLR4 signaling and promote TGFβ expression once NEC
has developed.

In addition to LPS, a number of proteins bind TLR4 with varying levels of cascade
activation, including damage-associated molecular pattern (DAMP) proteins that serve
as host defense sentinels [44–46]. DAMPs contribute to the severity of multiple inflam-
matory and fibrotic disorders via ligation of pathogen-recognition receptors (PRRs), such
as the Toll-like receptor family, and subsequent activation of evolutionary-conserved in-
flammatory pathways. We previously used genomic strategies and identified extracellular
nicotinamide phosphoribosyltransferase (eNAMPT) as a novel DAMP and TLR4 ligand
that potently initiates NF-κB transcription-dependent inflammatory responses and cytokine
release [47]. We have shown that the eNAMPT/TLR4 inflammatory cascade is a drug-
gable pathway in preclinical models of pulmonary hypertension [48–50], acute respiratory
distress syndrome [51], radiation-induced lung disease [52,53], lupus vasculitis [54], and
Crohn’s disease [55,56].

Because eNAMPT has been shown to activate TLR4—which is crucial to NEC
development—we hypothesized that treatment with an eNAMPT-neutralizing mAb would
protect against NEC. The objective of this study was to test whether the humanized
eNAMPT-neutralizing mAb ALT-100 (43)—currently in phase 2A acute respiratory distress
syndrome (ARDS) clinical trials (ClinicalTrials.gov, NCT05938036)—can protect against
NEC development in a well-established animal model of this disease [16,57–59]. The data
presented herein show, for the first time, the involvement of eNAMPT in NEC pathobiology
and point to eNAMPT neutralization as a potential novel strategy to address the unmet
need for effective NEC therapeutics.

2. Methods

Antibodies. Antibodies immunoreactive against b-actin were purchased from Invitro-
gen (Carlsbad, CA, USA). Goat, rabbit, and mouse secondary antibodies were purchased
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from Life Technologies (Waltham, MA, USA). Human PBEF/visfatin biotinylated antibody
(Cat #BAF4335) was purchased from R&D Systems (Minneapolis, MN, USA), NAMPT
monoclonal antibody from Thermo Fisher (Waltham, MA, USA, Cat # 66385-1-IG), ultra
streptavidin-HRP (Thermo Fisher, Cat #N504), and actin-HRP (Cat #A3854-200UL) from
Sigma-Aldrich (St. Louis, MO, USA). Peroxidase Affini Pure goat anti-mouse IgG (H + L)
(Cat #102646-170) and anti-IgG (H + L) goat polyclonal antibody (horseradish peroxidase)
(Cat #102645-188) and IgG for use as controls were obtained from Jackson ImmuneResearch
(West Grove, PA, USA). The eNAMPT-neutralizing humanized mAb ALT-100 [54] was
provided by Aqualung Therapeutics Corporation (Juno Beach, FL, USA).

NEC protocol. All protocols were approved by the Animal Care and Use Committee
of the University of Arizona (D16-00159 A-3248-01). All animals were monitored for signs
of abdominal distension, respiratory difficulty, or weight loss and euthanized prior to the
studies’ end if any of these parameters were excessive.

Experimental study and applied design. To develop NEC, a well-characterized rat
model was used [16,57–59]. The formula/hypoxia/hypothermia model of NEC was chosen
because it most closely mimics the risk factors for NEC: prematurity, formula feeding, and
stress (modeling apnea of prematurity [60,61] a common condition of premature infants,
and the inability of preemies to adequately regulate temperature [62,63]. Specifically, for
each of the two separate studies, pups from 3–5 timed-pregnant Sprague–Dawley rats
(Charles River, Hollister, CA, USA) were delivered via C-section one day prior to scheduled
birth. Pups were divided into four groups, each containing the same number of pups from
each litter and with similar mean birth weights per group.

1. Control + vehicle (Ctrl), n = 10: fed by a foster dam and injected with 50 µL of saline
48 h post-delivery

2. Control + ALT-100 (Ctrl + mAb), n = 10: fed by a foster dam and injected with 10 µg
of ALT-100 diluted in 50 µL of saline 48 h post-delivery

3. NEC + vehicle (NEC), n = 29: exclusively hand-fed via oral gavage with 200 µL of
formula (2:1 Similac Advance powder, Abbott Nutrition, Columbus, OH, USA) and
Esbilac Puppy Milk Replacer, Pet-Ag, Hampshire, IL, USA) 5 times per day and
injected with 50 µL of saline 48 h post-delivery

4. NEC + ALT-100 (NEC + mAb), n = 28: exclusively hand-fed via oral gavage with
200 µL of formula 5 times per day and injected with 10 µg of ALT-100 in 50 µL of
saline 48 h post-delivery

Pups from all four groups were exposed to hypoxia (N2 gas for 60 s), followed by
hypothermia (4 ◦C for 10 min) twice daily [16,57–59] (Figure 1).

Data source. All studied pups were euthanized at 96 h post-delivery, and trunk blood
was collected for serum analyses. A section of the distal ileum was removed and fixed in
paraformaldehyde and then paraffin-embedded for H & E staining, and a separate, adjacent
section of the ileum was flash-frozen for RNA sequencing and Western blotting.

Procedure: histological scoring of NEC. Pathologic changes in the intestinal architec-
ture were evaluated using our previously published NEC scoring system. Histological
changes were scored by a blinded evaluator and graded as follows: 0 (normal)—no damage;
1 (mild)—slight submucosal and/or lamina propria separation; 2 (moderate)—moderate
separation of the submucosa and/or lamina propria, and/or edema in submucosal and
muscular layers; 3 (severe)—severe separation of the submucosa and/or lamina propria,
and/or severe edema in submucosal and muscular layers and regional villous sloughing;
and 4 (necrosis)—loss of villi and necrosis. Intermediate scores of 0.5, 1.5, 2.5, and 3.5 were
also used to more accurately assess ileal damage. Animals with scores below 2.0 were
considered to be NEC-free [64–66].
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formula and injected with the vehicle 48 h post-delivery; and NEC + ALT-100, n = 28: exclusively 
hand-fed via oral gavage with formula and injected with ALT-100 diluted in the vehicle 48 h post-
delivery. Pups from all four groups were exposed to hypoxia (N2 gas for 60 s), followed by hypo-
thermia (4 °C for 10 min) twice daily. Pups from all groups were sacrificed at 96 h post-delivery. 

Occult blood in feces. Feces were obtained at 72 h post-delivery during urogenital 
stimulation prior to feeding. Occult blood was determined via the guaiac test, as previ-
ously described, and scored on a scale of 0–4 [58]. 

Serum cytokine levels. Cytokine levels in rat serum were analyzed for levels of eN-
AMPT, IL-6, serum chemokine C-X-C motif ligand 1 (CXCL1), and TNFα using the U-Plex 
MSD ELISA platform (Meso Scale Diagnostics, Rockville, MD, USA), as previously de-
scribed [49,52–54,67]. 

TGFβ levels in ileal tissues. Ileal tissues from control + mAb, NEC, and NEC + mAb 
groups were homogenized in T-PER tissue lysis buffer (Thermo Fisher Scientific, Carls-
bad, CA, USA), and the samples were quantified to determine the protein concentration 
using the BCA protein estimation kit (Thermo Fisher Scientific). Legend Max Total TGFβ1 
ELISA kit assay (Biolegend Inc., San Diego, CA, USA) was performed to determine TGFβ1 
levels normalized to the protein concentration per µg. ELISA plate data were calculated 
with GainData software (Arigo Biolaboratories, Zhubei City, Taiwan) using a 4-parameter 
logistics curve-fitting algorithm. The mean absorbance for each set of triplicate standards 
was obtained. 

NAMPT Western blotting. The snap-frozen ileum was homogenized in RIPA buffer 
(50 mmol/L Tris-HCl, pH 7.4, 150 mmol/L NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 
1% NP-40, 5 mmol/L EDTA) supplemented with a complete protease/phosphatase inhibi-
tor cocktail (Cell Signaling, Danvers, MA, USA, Cat #5872S) using a tissue grinder with 
glass pestles (VWR, Radnor, PA, USA, Cat #26307-606). After centrifugation (15,000× g for 
20 min at 4 °C), the protein concentration of homogenates was determined by Bio-Rad DC 
protein assay (Hercules, CA, USA, Cat #5000112). Following a 5 min incubation at 90 °C 
in loading buffer, aliquots containing equal amounts of protein (25–30 µg) were subjected 
to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). Subse-
quently, proteins were transferred to PVDF membranes and probed with specific primary 
and then with secondary antibodies. Proteins were visualized using an ECL system 

Figure 1. In each of the two separate studies, pups from 3–5 timed-pregnant Sprague–Dawley rats
were delivered via C-section one day prior to scheduled birth. Pups were randomized and divided
into four groups: control + vehicle, n = 10: fed by a foster dam and injected with saline (vehicle) 48 h
post-delivery; control + ALT-100, n = 10: fed by a foster dam and injected with ALT-100 diluted in the
vehicle 48 h post-delivery; NEC + vehicle, n = 29: exclusively hand-fed via oral gavage with formula
and injected with the vehicle 48 h post-delivery; and NEC + ALT-100, n = 28: exclusively hand-fed via
oral gavage with formula and injected with ALT-100 diluted in the vehicle 48 h post-delivery. Pups
from all four groups were exposed to hypoxia (N2 gas for 60 s), followed by hypothermia (4 ◦C for
10 min) twice daily. Pups from all groups were sacrificed at 96 h post-delivery.

Occult blood in feces. Feces were obtained at 72 h post-delivery during urogenital
stimulation prior to feeding. Occult blood was determined via the guaiac test, as previously
described, and scored on a scale of 0–4 [58].

Serum cytokine levels. Cytokine levels in rat serum were analyzed for levels of
eNAMPT, IL-6, serum chemokine C-X-C motif ligand 1 (CXCL1), and TNFα using the
U-Plex MSD ELISA platform (Meso Scale Diagnostics, Rockville, MD, USA), as previously
described [49,52–54,67].

TGFβ levels in ileal tissues. Ileal tissues from control + mAb, NEC, and NEC + mAb
groups were homogenized in T-PER tissue lysis buffer (Thermo Fisher Scientific, Carlsbad,
CA, USA), and the samples were quantified to determine the protein concentration using
the BCA protein estimation kit (Thermo Fisher Scientific). Legend Max Total TGFβ1
ELISA kit assay (Biolegend Inc., San Diego, CA, USA) was performed to determine TGFβ1
levels normalized to the protein concentration per µg. ELISA plate data were calculated
with GainData software (Arigo Biolaboratories, Zhubei City, Taiwan) using a 4-parameter
logistics curve-fitting algorithm. The mean absorbance for each set of triplicate standards
was obtained.

NAMPT Western blotting. The snap-frozen ileum was homogenized in RIPA buffer
(50 mmol/L Tris-HCl, pH 7.4, 150 mmol/L NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1%
NP-40, 5 mmol/L EDTA) supplemented with a complete protease/phosphatase inhibitor
cocktail (Cell Signaling, Danvers, MA, USA, Cat #5872S) using a tissue grinder with glass
pestles (VWR, Radnor, PA, USA, Cat #26307-606). After centrifugation (15,000× g for
20 min at 4 ◦C), the protein concentration of homogenates was determined by Bio-Rad DC
protein assay (Hercules, CA, USA, Cat #5000112). Following a 5 min incubation at 90 ◦C
in loading buffer, aliquots containing equal amounts of protein (25–30 µg) were subjected
to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). Subsequently,
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proteins were transferred to PVDF membranes and probed with specific primary and then
with secondary antibodies. Proteins were visualized using an ECL system (Pierce West
Pico, Cat #34580) and an ChemiDoc MP imaging system (Bio-Rad, Hercules, CA, USA).
Densitometric analysis was performed using Bio-Rad Image Lab 6.01.

RNA sequencing of murine ileal tissue samples. Ileal RNA was extracted, and RNA
was QC-assessed by the RIN value, 28S/18S and fragment length distribution (Aligient
2100 Bio analyzer, Agilent RNA 6000 Nano Kit, Santa Clara, CA, USA). Following library
construction, RNA was sequenced using the Illumina Hiseq (NovaSeq) PE150 platform
(San Diego, CA, USA), generating an average of 6 Gb raw data per sample. RNAseq data
bioinformatic analyses included data quality control and calculation of Pearson correlations
of all genes expressed to reflect the correlation of gene expression between samples. The
Hierarchical Indexing for Spliced Alignments of Transcripts Bowtie2 (HISAT2) program was
used to align and clean reads to the reference genome and to the reference genes [68–70]. The
abundance and distribution of transcripts were assessed, obtaining the expected number of
fragments per kilobase per million base pairs (FPKM) [71]. Correlation analysis to assess
the variation between samples was performed by Pearson correlation. Deseq2 algorithms
were used to detect DEGs with Bioconductor software packages, version 3.18 [72]. To
control for multiple testing errors, the adjusted p-value false discovery rate was used [73].
Enrichment analysis for Gene Ontology (GO) classification was performed, focusing on
biological process and pathway classification with KEGG and Reactome sources [74].

Statistical analysis. Statistical tests were performed using GraphPad Prism version 7.00
for Windows (GraphPad Software, La Jolla, California, USA). Outliers were determined by
the ROUT method (Q = 1%). Differences in NEC pathology and occult blood were analyzed
with the Kruskal–Wallis test for nonparametric values, followed by the Benjamini–Kreiger–
Yekutieli false discovery rate method for multiple comparisons. Differences between groups
were considered statistically significant when q values were less than 0.05 (q < 0.05). All
other data were analyzed using standard one-way ANOVA, and groups were compared
using the Newman–Keuls test. Differences between groups were considered statistically
significant when p-values were less than 0.05. Principal component analysis (PCA) was
derived based on the maximum variance in transcriptomic data and generated by the
Partek algorithm, version pE150.

3. Results
3.1. Elevated NAMPT Expression in NEC Pup Blood and Ileal Tissues Is Attenuated by an
eNAMPT-Neutralizing mAb

To determine whether NAMPT expression is altered during NEC, premature rat pups
were delivered via cesarean section and subjected to a well-established protocol for inducing
NEC in rodents. Experimental pups (NEC and NEC + mAb) were exclusively hand-fed
formula, whereas control pups (Ctrl and Ctrl + mAb) were fostered by a lactating dam. All
pups underwent hypoxia/hypothermia stress twice daily (Figure 1). Previous studies have
shown that control pups do not develop ileal damage, whereas formula-fed pups exposed
to hypoxia and hypothermia develop significant ileal pathology consistent with human
NEC [16,57–59]. As proof of concept, we examined changes in serum eNAMPT levels in
dam-fed, stressed pups and formula-fed littermates exposed to hypoxia and hypothermia.
Figure 2A shows that serum eNAMPT levels were significantly elevated in experimental
NEC (p < 0.05), a finding corroborated by significant elevations in both NAMPT mRNA
levels (p < 0.05) (Figure 2B) and NAMPT protein immunoreactivity in ileal tissues (p < 0.05)
(Figure 2C). NAMPT expression levels in blood and ileal tissues were significantly reduced
in the NEC + mAb group (p < 0.01) (Figure 2B,C).
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Figure 3. eNAMPT-neutralizing mAb reduces NEC pathology. (A) Pathology scores represent ileal 
damage, as graded on a scale of 0 (healthy) to 4 (necrosis), with half point values used for a more 
refined assessment of disease. A score of 2 or greater is considered NEC. Data compiled from two 
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Figure 2. Elevated NAMPT expression in blood and ileal tissues from NEC pups. (A) Serum eNAMPT
levels were evaluated in Ctrl + mAb (n = 5), NEC (n = 5), and NEC + mAb (n = 5) groups. There was
a significant increase in serum eNAMPT levels among rat pups with NEC, which was attenuated
in the NEC + eNAMPT ALT-100 mAb group. mAb RT-PCR (B) and Western blot (control 1-4 lanes;
NEC 5-7 lanes; NEC + mAb 8-10 lanes) and densitometry (C) analyses of NAMP from ileal tissue
homogenates showed a significant increase in protein NAMPT levels in the NEC group (n = 3)
compared to the Ctrl + mAb group (n = 3) and a significant reduction in NAMPT expression in the
NEC + ALT-100 mAb group (n = 3). Significant differences were determined by one-way ANOVA,
followed by the Newman–Kuels post hoc test: * p < 0.05, ** p < 0.01.

3.2. An eNAMPT-Neutralizing mAb Attenuates Ileal Tissue Pathology in Experimental NEC

Using our previously reported histologic scoring system [16,57–59], ileal damage was
assessed [16,58,59] via histologic ileal damage in the four experimental groups. Both Ctrl
and Ctrl + mAb groups had no histological damage consistent with NEC, indicating the
eNAMPT-neutralizing mAb alone does not affect the ileal architecture. In contrast, the NEC
group displayed statistically significant increased ileal damage compared to either control
group (q < 0.0001 vs. Ctrl and Ctrl + mAb). Ileal damage scores in the NEC + eNAMPT mAb
group were significantly reduced compared to NEC alone (q < 0.01) (Figure 3A). A similar
pattern was observed in fecal occult blood scores, with the NEC + eNAMPT mAb group
exhibiting significantly lower scores than the NEC group (q < 0.01) (Figure 3B). These results
show that injection with the anti-eNAMPT mAb reduces the severity of experimental NEC.
The representative histology for each group is shown in panels Figure 3C–F.
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refined assessment of disease. A score of 2 or greater is considered NEC. Data compiled from two
independent studies. Ctrl, n = 10; Ctrl + mAb, n = 10; NEC, n = 29; and NEC + mAb, n = 28. Lines
represent the mean pathology score for each group. (B) Fecal occult blood was measured by the
guaiac test in Ctrl, n = 5; Ctrl + mAb, n = 5; NEC, n = 15; and NEC + mAb, n = 15. Scores represent the
level of blood in the feces, as graded on a scale of 0 to 4, and lines represent the mean occult blood
score for each group. Significant differences were determined by the Kruskal–Wallis test, followed by
the Benjamini–Kreiger–Yekutieli false discovery rate method for multiple comparisons (** q < 0.01,
**** q < 0.0001). Representative histology images show ileal damage in Ctrl (C), histological damage
score 0.0), Ctrl + mAb (D), histological damage score 0.5), NEC (E), histological damage score 2.5),
and NEC + mAb (F), histological damage score 1.5). Yellow arrowheads indicate RBC accumulation
in the lamina propria. Scale bars represent 50 µm.

3.3. eNAMPT-Neutralizing mAb Decreases NEC-Induced Increases in Serum
Proinflammatory Mediators

Proinflammatory mediators play an important role in NEC pathogenesis, including tu-
mor necrosis factor alpha (TNFα) [16,75], IL-6 [33,76], and IL-8 [77,78]. Figure 4 depicts the
elevated serum levels of (A) TNFα, (B) IL-6, and (C) IL-8 in NEC (p < 0.05 vs. Ctrl + mAb)
and their reduction in rat pups that received ALT-100, the eNAMPT-neutralizing mAb
(p < 0.01 vs. NEC).
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Figure 4. Serum proinflammatory mediators in NEC are reduced by ALT-100, the eNAMPT-
neutralizing mAb. Serum samples were obtained from pups’ blood at sacrifice from Ctrl + mAb,
n = 8; NEC, n = 12; and NEC + mAb, n = 9. TNFα (A), IL-6 (B), and IL-8 (C) levels were deter-
mined by ELISA. Significant differences were determined by one-way ANOVA, followed by the
Newman–Kuels post hoc test (* p < 0.05, ** p < 0.01).

3.4. RNA Sequencing Analysis of NEC Ileal Tissues and TLR4 and TGFβ Pathway Analyses

RNA sequencing of NEC ileal tissues from the four experimental NEC groups with
principal component analysis (PCA) revealed differentially expressed genes (DEGs)/
pathways associated with innate immune responses, cytotoxicity, inflammation, NK-
mediated immunity, and autoimmunity between NEC and NEC + eNAMPT mAb groups
(Supplemental Figure S1A,B). PCA of all genomic data showed clear separation by
PC1 = 64.75%, PC2 = 19.59%, and PC3= 10.51% (Supplemental Figure S1A) and showed
distinct sample variance at gene levels, as illustrated by Pearson’s sample similarity matrix
(Supplemental Figure S1B). Differential Deseq2 algorithm analysis of normalized data
between groups revealed DEGs associated with genes/pathways regulated with innate
immune responses, cytotoxicity, inflammation, NK-mediated immunity, and autoimmunity.

The eNAMPT mAb blocks inflammation by inhibiting the activation of innate immune
pathways via TLR4 [49,51–54]. Given that the inactivation of TLR4 has been shown to
protect against NEC in experimental models of the disease [25,26,79], we hypothesized that
treatment with the eNAMPT mAb would result in altered TLR signaling. The normalized
gene count heat map for TLR signaling gene enrichment showed downregulation of genes
that negatively affect TLR signaling, leading to its activation in the NEC group, while in the
NEC + mAB group, the expression of these genes was reinstated, indicating its suppressive
effect on the negative regulation of TLR signaling pathway activation (Figure 5A). The
gene expression of Ccl5 (Figure 5B), Birc3 (Figure 5C), and Oasl (Figure 5D) was reduced
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in the NEC group (p = 1.2 × 10−16, 6.41 × 10−4, and 7.9 × 10−6, respectively) and in-
creased in NEC pups treated with the eNAMPT mAb (p = 3.07 × 10−5, 9.03 × 10−5, and
7.24 × 10−4, respectively). Cish (Figure 5E) was also upregulated in the NEC + mAb group
(p = 1.0 × 10−4) but without any difference between Ctrl + mAb and NEC groups. DEG-
related pathways in the NEC + mAb group revealed upregulation of ileal inflammatory
cytokine repressor genes Atf3 (Figure 5F), Fos (Figure 5G), and Jun (Figure 5H) compared to
the NEC group (p = 2.48 × 10−48, 2.77 × 10−7, and 5.03 × 10−5, respectively) and negative
regulation of TLR and the non-canonical NF-κB pathway in the NEC group.
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Principal component analysis of all genomic data in the Ctrl + mAb, NEC, and
NEC + mAb groups showed excellent separation with dramatic differential gene expression
between the NEC and NEC + mAb groups (Supplemental Figure S2). The heat map for
TGFβ receptor signaling showed changes in Atf3, Jun, and Fos (Figure 6A), which were also
upregulated in the TLR4 analyses. Gene enrichment studies showed positive regulation
of the TGFβ receptor signaling pathway in the NEC + mAb group compared to the NEC
group, as depicted by the heat map in Figure 6A. Expression of the TGFβ pathway gene
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Foxo4 (Figure 6E) was reduced in the NEC group compared to the Ctrl + mAb group
(p = 1.88 × 10−4). The expression of Foxo4, as well as Mmp12 (Figure 6B), Fosb (Figure 6C),
Dynlrb2 (Figure 6D), Klf6 (Figure 6F), and Itgb4 (Figure 6G), was markedly increased in the
NEC + mAb group (p = 4.01 × 10−4, 1.63 × 10−4, 5.68 × 10−4, 2.83 × 10−5, 1.58 × 10−8,
and 4.01 × 10−4, respectively). As observed in previous studies [31–33], levels of TGFβ
from ileal tissue homogenates were significantly decreased in the NEC group (p < 0.05 vs.
Ctrl + mAb). However, treatment with the anti-eNAMPT mAb significantly increased the
TGFβ level (p < 0.01 vs. the NEC group) (Figure 6H). Together, these results are consistent
with the involvement of eNAMPT/TLR4 inflammatory signaling and TGFβ in influencing
genes involved in NEC pathobiology and driving disease severity.
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In (H), reduced ileal TGFβ in the NEC groups is normalized by treatment with the anti-eNAMPT mAb
(Ctrl + mAb, n = 8; NEC, n = 11; and NEC + mAb, n = 12). Significant differences were determined by
one-way ANOVA, followed by the Newman–Kuels post hoc test (* p ≤ 0.05, ** p ≤ 0.01).

4. Discussion

This work addresses the serious unmet need for therapies for NEC by targeting
eNAMPT, a critical innate immunity DAMP and TLR4 ligand. Previously, the research
team successfully identified and developed a humanized eNAMPT-neutralizing mAb, ALT-
100, as a highly innovative therapeutic strategy to address IAI/chorio to delay premature
birth and improve maternal and premature infant outcomes [49,50]. The data presented
herein validate the ALT-100 mAb as a treatment modality in a rat model of NEC, an
innovative approach to attenuate NEC pathophysiology.

Due to the current lack of effective NEC therapies, a number of small molecules
and biologic agents targeting the inflammatory pathway and TLR4 have been suggested
as potentially novel NEC therapeutic strategies [80]. Human milk [81] reduces TLR4
signaling, inhibits LPS binding to TLR4 [82], and reduces TLR4-induced NF-κB activation
via epidermal growth factor activation of the PI3K–AKT pathway [39]. The TLR4 inhibitor
C34, a member of a novel class of oligosaccharides, significantly reduces NEC in mice [79].
Administration of a NOD2 agonist prevents NEC through secondary inhibition of TLR4 [83].
In preclinical models, the aryl hydrocarbon receptor (AHR) ligand indole-3-carbinole (I3C),
or breast milk administration, leads to the activation of AHR ligands, resulting in reduced
TLR4 signaling and decreased NEC in newborn mice [84]. A systematic review and meta-
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analysis involving 106 infants with NEC versus controls concluded that the fecal microbiota
from preterm infants with NEC has a marked increase of Proteobacteria before NEC
onset [85,86], which can activate TLR4. Other studies have shown that probiotics offer a
protective role by the activation of TLR9, which inhibits TLR4 signaling within the intestine
via IRAK-M upregulation in mice and piglets [87,88]. Biologic therapies for NEC have been
also studied, and it is suggested that anti-IL-17 and all-trans-retinoic acid supplementation
restores the balance between the pro-inflammatory and the anti-inflammatory Treg cell and
can reduce NEC in mice [89]. Despite these data implicating TLR4 signaling, to date, there
are no NEC clinical trials that target TLR4.

This study provides compelling support for eNAMPT involvement in NEC patho-
biology and eNAMPT neutralization as a novel therapeutic strategy in NEC. While the
inhibition of intracellular NAMPT with FK866 has been shown to reduce NEC [90], we are
the first to target eNAMPT in NEC using the eNAMPT-neutralizing mAb ALT-100. The
safety of ALT-100 was validated in a completed phase 1A safety trial, and pharmacokinetic
studies of a single IV-delivered ALT-100 dose (0.1–4 mg/kg) in healthy human volunteers
showed the complete absence of serious adverse events, with a therapeutic half-life of
21–30 days. A phase 2A study of the IV-delivered ALT-100 mAb is currently underway
for moderate-to-severe ARDS [91]. We have previously reported the effective use of the
ALT-100 mAb in preclinical models of ARDS [51], radiation fibrosis [53], pulmonary hyper-
tension [49,92], lupus vasculitis [54], NASH hepatic fibrosis and ischemia induced cardiac
fibrosis [76], and chorioamnionitis [50]. Highly relevant to this study, in a preclinical preg-
nant mouse model of chorioamnionitis-related preterm birth (PTB), the ALT-100 mAb was
shown to delay PTB, increase neonate survival, and reduce IAI-related PTB complications,
including bronchopulmonary dysplasia and pulmonary hypertension [48].

Our previously reported studies demonstrate that eNAMPT neutralization rectifies
inflammatory-induced gene dysregulation, consistent with reports in preclinical models
of RNA sequencing, and differential gene expression analysis has identified predictable
ileal tissue-specific differences between anti-NAMPT-treated and non-treated animals
(Supplemental Figure S2). NEC-mediated dysregulated genomic pathways are associated
with innate immune responses, e.g., cytotoxicity, inflammation, NK-mediated immunity,
and autoimmunity, and are consistent with the involvement of eNAMPT/TLR4 signaling-
influenced genes in NEC pathobiology [93]. NEC genomic studies have confirmed that
dysregulated inflammatory and apoptotic pathways are rectified by eNAMPT mAb treat-
ment. JunB plays a pivotal role in the inflammatory response triggered in the NEC model,
as well in cell proliferation/apoptosis [94]. Further, data showed that eNAMPT mAb
treatment played a significant role in the upregulation of inflammatory cytokine repressor
genes, such as ATF3, FOS, and JUN, and the negative regulation of TLR and the non-
canonical NF-κB pathway in the NEC group (Figure 5). The current NEC genomic data are
compatible with the comparative histological, molecular, and biochemical findings among
treated versus non-treated NEC groups.

In addition to the decreased inflammation induced by neutralizing eNAMPT, the
data presented herein suggest a novel mechanism that improves pathology in experimen-
tal NEC. First, we showed positive regulation of the TGF-β receptor signaling pathway
after treatment with anti-eNAMPT in experimental NEC (Figure 6). TGFβ is a growth
factor involved in numerous physiological processes, such as embryonic development,
tissue repair, differentiation, and cell growth [95]. TGFβ, particularly the TGFβ2 isoform,
suppresses macrophage inflammatory responses in the developing intestine and protects
against inflammatory mucosal injury. TGFβ2 expression and bioactivity are decreased in
NEC to lower levels than those in the premature/fetal intestine [32]. The phenotype of
macrophages during NEC is strongly inflammatory and associated with increased gene
expression of Smad7 and inhibition of TGFβ2 [32,96,97], which interrupts TGF-β-mediated
downregulation of the pro-inflammatory response by macrophages in the NEC model [96].
Enterally administered TGFβ protects mice from experimental NEC-like injury [32]. Im-
portantly, LPS-activated TLR4 inactivates TGFβ via crosstalk between TLR4 signaling
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and the canonical Wnt/β-catenin pathway [34–36]. In the studies presented herein, we
found eNAMPT mAb alterations in both TGFβ receptor and TLR4 signaling pathways
and changes in Aft3, Fos, and Jun gene expression, which are common to both pathways.
Moreover, gene enrichment set analysis was performed on NEC and NEC + eNAMPT
mAb-treated groups and showed that TGFβ-regulated gene sets were positively correlated
with NEC + eNAMPT mAb-treated samples (Supplemental Figure S3).

A limitation of this study is that it lacks data from human samples. Rodent
models—while important for proof-of-concept studies—do not completely simulate human
pathology. Furthermore, our model does not take into account predisposing maternal
factors that can lead to NEC. For example, maternal chorioamnionitis can cause a fetal
inflammatory systemic response [98], an inflammatory cascade that increases the risk for
developing NEC [99]. Thus, while the results of this study are promising, further research
using human tissue is necessary to validate the role of eNAMPT in NEC.

In conclusion, this research demonstrates that the DAMP eNAMPT is upregulated in
an experimental model of NEC and that treatment with the eNAMPT-neutralizing mAb
ALT-100 protects against NEC pathology. These findings indicate that ALT-100 has potential
as a therapeutic strategy in neonates with NEC. Future studies will explore additional
mechanisms involved in NEC pathology that are affected by eNAMPT.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines12050970/s1, Figure S1. Principal component analysis of
genes/pathways associated with innate immune responses, cytotoxicity, inflammation, NK-mediated
immunity, and autoimmunity showed excellent separation (A) and impressing differential gene
expression (B) between NEC (n = 3) vs. NEC + mAb (n = 3); Figure S2. RNA sequencing and
differential gene expression analysis of NEC (n = 3) and NEC + mAb groups (n = 3); Figure S3. GSEA
analysis of the RNAseq dataset against the GSEA gene set for Hallmark of TGF beta signaling profile
of running Enrichment Score (ES) of 0.5, Normalized Enrichment Score (NES) of 1.84, Nominal
p value < 0.001, and FDR q-value of 0.000 (Pathway on the y-axis indicates positive correlation with
NEC treated with eNAMPT mAb compared with NEC saline-treated samples.
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