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Abstract: Background: Callous-unemotional (CU) traits are characterized by low empathy, guilt,
and prosociality, putting children at risk for lifespan antisocial behavior. Elevated CU traits have
been linked separately to difficulties with emotion understanding (i.e., identifying emotional states
of others) and disrupted parasympathetic nervous system (PNS) functioning. However, no study
has investigated how PNS functioning and emotion understanding are jointly related to CU traits.
Method: We explored associations between CU traits, emotion understanding, and PNS functioning
(indexed via respiratory sinus arrhythmia [RSA]) among children aged 7–10 years old (n = 55).
We also tested whether deficits in emotion understanding differ across specific emotions (i.e., fear,
pain, happiness, anger). Each child’s RSA was continuously recorded while they watched a film
that included emotionally evocative social interactions. To assess emotion understanding, children
identified emotions replayed in 1s animations of scenes from the film. Parents reported on child
CU traits, conduct problems, and demographic information. Results: Higher CU traits were related
to lower emotion understanding (β = −0.43, p = 0.03). PNS activity during the film moderated
this association (β = −0.47, p < 0.001), such that CU traits were associated with lower emotion
understanding among children with mean (B = −0.01, t = −2.46, p = 0.02) or high (i.e., 1 SD > M;
B = −0.02, t = −3.00, p < 0.001) RSA levels during the film, but not among children with low RSA
levels (i.e., 1 SD < M; B = 0.00, t = −0.53, p = 0.60). Moreover, we found that the observed moderated
associations are driven by deficits in fear, specifically. Conclusions: The link between poorer emotion
understanding, fear understanding in particular, and CU traits was attenuated for children who
demonstrated patterns of PNS functioning consistent with attentional engagement while viewing the
emotion stimuli.

Keywords: emotion understanding; callous unemotional traits; parasympathetic nervous system;
physiological regulation

1. Introduction

Emotion understanding is the ability to recognize others’ emotions and understand the
context within which those emotions are expressed [1,2]. Emotion understanding supports
social competence and motivates prosocial behavior [3]. Callous-unemotional (CU) traits
are characterized by a lack of empathy, low guilt, and limited prosociality [4,5] and predict
risk for severe and chronic antisocial behavior and violence across the lifespan [4]. CU
traits have consistently been linked to difficulties recognizing, interpreting, and responding
appropriately to the social and emotional cues of others, as evidenced by reduced attention
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to others’ emotions [6,7], inaccurate labeling of emotions and identification of the causes of
emotions expressed in spoken stories [8], and emotion recognition difficulties in the contexts
of facial expressions, illustrations, and stories [3]. Prior research has established that many
emotion deficits related to CU traits, such as emotion recognition and emotion regulation,
occur within the context of negative or ambiguous emotions, such as differentiating between
fear, anger, and neutral expressions [9–12], while other work proposes deficits may be seen
across a broader range of emotions [13].

Together, these research findings support a link between emotion understanding
difficulties and CU traits. However, prior studies examining emotion understanding are
limited by methods that have largely relied on static images or truncated single emotion-
specific vignettes [14], which do not require children to incorporate social and contextual
information and may not adequately capture the dynamic and complex nature of emo-
tion understanding. Indeed, varying measurement approaches may have contributed
to the mixed findings in the literature, with only a handful of prior studies having used
narrative-driven, video-based tasks to examine the relations between CU traits and emotion
understanding [14]. For example, no link was found between emotion understanding and
CU traits in a study of 3 year olds that used a puppet vignette task [15]. In contrast, in
a study of 4 to 8 year olds, children with higher CU traits showed lower emotion under-
standing, operationalized via tasks assessing emotion perception, emotion causes, and
ambivalent emotion recognition [16]. To better clarify the links between emotion under-
standing difficulties and CU traits, studies are needed that examine their associations using
video-based tasks that present emotion information in the context of a dynamic narrative.

In addition, very few studies have explored physiological patterns of functioning that
support children’s emotion understanding, which could provide further insight into the po-
tential mechanism underlying the links between CU traits and emotion understanding. The
activity of the parasympathetic nervous system (PNS) regulates cardiac output to support
adaptive engagement with the environment by regulating the distribution of behavioral,
emotional, and attentional resources to maintain homeostasis and meet environmental
demands [17]. Respiratory sinus arrhythmia (RSA) is a measure of the inhibitory influ-
ence of the PNS, which facilitates metabolic adjustments to respond to the ever-changing
environment [18,19] and provides insight into individual differences in the capacity to
respond appropriately to environmental challenges [20,21].

Adaptive patterns of RSA regulation support effective social interactions, including
emotional and social processing (see [22]). For example, in the context of an emotion-related
task, a lower task-related RSA relative to baseline or resting RSA can be interpreted as facil-
itating engagement with salient emotion cues of others, such as pain, anger, and fear [22].
That is, an adaptive diversion of physiological resources (i.e., comparatively lower RSA)
from the maintenance of homeostasis in response to emotion cues may allow for engage-
ment with the cues via attending and orienting [19,23,24]. In contrast, a comparatively
higher RSA may indicate a disregard for or a failure to engage with or attend appropriately
to emotionally challenging stimuli [22,25,26].

For example, a lower RSA in response to cues of emotion has been linked to fewer
externalizing problems [27] and more adaptive social behavior [19,28,29], whereas higher
levels of RSA are thought to underpin many emotion-related difficulties associated with
CU traits [22,30]. Most prior studies have examined RSA levels at the baseline (i.e., not
in response to emotion or social cues), finding that CU traits are related to a low baseline
RSA, suggesting reduced regulatory resources [25] in infancy [31], childhood [32,33], and
adolescence [34–36]. Among studies that have examined PNS functioning during emotion-
related tasks, lower prosociality (a key feature of CU traits) was associated with higher
RSA in response to emotional film clips among 7- to 11-year-old children [37]. Wagner and
colleagues (2017) report that CU traits in early childhood predict elevated externalizing
problems, but only for children demonstrating a higher baseline and little to no RSA
suppression in response to a fear stimulus [31]. CU traits were also linked to stable high
RSA levels during parent–child social interactions in 10 to 14 year olds [38]. Finally,
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CU traits were associated with high RSA levels during a virtual reality fear-induction
task in 12- to 14-year-old children [39]. In sum, there is preliminary evidence that CU
traits are associated with PNS regulation patterns suggestive of inadequate allocation of
physiological resources in response to salient emotional or social cues in the environment.
However, studies have yet to explore these associations using narrative-driven, video-based
tasks designed to induce emotions, and no studies have tested whether PNS functioning
moderates the associations between emotion understanding and CU traits in this context.

The current study aimed to address these gaps in the literature using a narrative-
driven animated film depicting complex interactions between characters across a range of
emotions. Under our first aim, we tested whether CU traits were related to general emotion
understanding deficits. We hypothesized that higher CU traits would be associated with
lower emotion understanding accuracy. Second, we tested whether associations between
CU traits and emotion understanding varied as a function of PNS functioning during
the film, indexed via RSA. We hypothesized that children with higher CU traits and who
showed relatively higher RSA throughout the animated film would demonstrate poorer
emotion understanding. Third, we aimed to test whether and how the hypothesized
emotion understanding deficits, and the moderating role of RSA, varied as a function
of emotion type. To address this aim, we first examined the main effect and moderated
associations between CU traits, RSA, and deficits in fear, pain, happiness, and anger. Given
the extant literature suggesting links between CU traits and deficits in understanding
negative emotions specifically, we hypothesized that children would show more deficits in
understanding of fear.

2. Methods
Participants

Participants were recruited from two large northeastern US cities using flyers, online
advertisements, social media, and institutionally maintained databases of families who
had agreed to be contacted about research participation. Inclusion criteria were (1) child
aged 7 to 10 years old, (2) fluency in English, (3) normal or corrected vision, and (4) the
participating parent is the primary caregiver who lived with the child ≥50% of the time.
Exclusion criteria were (1) diagnosed cognitive or psychiatric disability other than ADHD,
(2) developmental delays, and (3) receiving treatment or medication for any psychiatric
condition or behavioral issue. Parents provided informed written consent and children
provided verbal assent. Families were compensated $120. All procedures were approved
by the Institutional Review Boards at Boston University and University of Pennsylvania.
The final sample (n = 55; Boston University, n = 25; University of Pennsylvania, n = 30) was
diverse in socioeconomic position based on parental education (7.4% no high school degree,
33.4% high school degree, 27.8% bachelor or associate degree, 27.8% graduate degree) and
parent reports of child race (46.3% Black or African American, 24.1% White, 9.3% Asian,
16.7% Other) and gender (56.6% female, 43.4% male).

3. Procedure

Data were collected during a 3 h visit at a research lab at Boston University or [Uni-
versity of Pennsylvania. During the lab visit, tasks were completed in one of four blocks
that included a baseline block, during which the child quietly colored for 5 min, two blocks
of computer-based tasks, and one block of parent–child interaction tasks. While the child
completed computer-based tasks, the parent remained in a separate room and completed
a demographic interview and questionnaires. Physiological measures for the child were
collected continuously throughout the study. Visits were scheduled at the convenience of
the families, with most taking place in the morning or afternoon hours. Snacks and breaks
were provided during the visit.
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3.1. Measures
3.1.1. Emotion Understanding

To assess emotion understanding, children viewed a short, animated film (“Partly
Cloudy”, [5 min 30 s]; PIXAR Studios, 2009) on a computer in the lab. The film depicts
interactions between two non-human cartoon characters that vary in emotional content
(plot description found online at https://www.pixar.com/partly-cloudy#partly-cloudy-1
accessed on 19 December 2023). Prior research has combined viewing this film with
functional magnetic resonance imaging (fMRI) to establish that emotionally evocative
events during the film are associated with activation in brain regions associated with
emotion processing in adults and children [40]. In the current study, children watched the
film and were then asked to identify the emotions of the characters. The short film depicts
two characters: Gus, a storm cloud who makes dangerous baby animals, and Peck, the
stork who delivers them to their families. The film relies entirely on facial expressions,
body language, and context to convey the story, as there is no spoken dialogue between the
characters. Gus and Peck engage in multiple emotion-driven interactions, such as anger
(e.g., Gus is angry when Peck abandons him), pain (e.g., Peck is in pain when Gus hands
him a porcupine), happiness (e.g., Gus is happy when Peck returns), and fear (e.g., Peck
is afraid of the baby animal Gus has created). Grasping the emotions displayed by each
character individually requires an understanding of the context and the intentions of their
social partner.

Immediately following the film, children were shown a series of Graphics Interchange
Format (GIF) images presented individually in 1 s loops at 38 frames per second to scaffold
this process. These GIFs depicted happy, fearful, angry, and pained emotions expressed
by Gus and Peck during the film (Figure 1). Children were shown a total of 10 GIFs,
including 2 GIFs of each emotion. The question, “What was the [character] feeling?” was
displayed on the screen for each trial and simultaneously read aloud by the experimenter.
GIFs were shown in the same order across participants and displayed alongside a pictorial
response scale depicting prototypical facial configurations presented in the same order
with the corresponding emotion word displayed below each image [11,41]. Prior to the
task, children were asked to identify the emotions depicted in the pictorial response scale
to ensure they recognized each basic emotion representation. During the emotion selection
portion of the task, children used the mouse to click on the response option that they thought
corresponded to the emotion being shown by the characters in each GIF. The proportion
of emotions identified correctly in this task provided an index of emotion understanding.
Emotion-specific understanding was also calculated for each emotion separately.

3.1.2. RSA

Heart rate was assessed via electrocardiogram (ECG) signals, recorded continuously
with a BIOPAC data acquisition system (MP160 Windows), using an electrocardiogram
amplifier (ECG100C) and AcqKnowledge software (Version 4.3.1. BIOPAC Systems Inc.,
Goleta, CA, USA). Recording electrodes were placed at the top center of the chest (10 cm
below the suprasternal notch) and at the bottom left and right of the ribs (10 cm above the
bottom of the rib cage). The ECG signal was further processed by manually inspecting
the detected R peaks and valid interbeat intervals (IBI), which represent the time elapsed
between consecutive heartbeats, using the CardioEdit Plus v.1 software (Brain-Body Center,
University of Illinois at Chicago, Chicago, IL, USA). IBI data were visually inspected and
edited offline via CardioEdit by excluding outliers or by making arithmetic corrections to
the intervals [42]. RSA values were derived from IBI data defined as the variance within
the age-specific respiration frequency band associated with spontaneous breathing using
CardioBatch software (Brain-Body Center, University of Illinois at Chicago). The amplitude
of RSA values was calculated as the natural logarithm of the variance across the duration
of the task, consistent with the procedures developed by [43].

https://www.pixar.com/partly-cloudy#partly-cloudy-1
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Figure 1. An overview of the Pixar task to assess emotion understanding, including pictorial re-
sponse scale and stills from GIFs. (A) Example presentation of the task screen depicting a still from 
the GIF of the bird displaying “fear”. Cartoon images of prototypical facial expressions are pre-
sented below the film GIFs during the emotion understanding component of the task. GIFs pre-
sented in 1 s loops at 38 frames per second. (B) Examples of stills depicting angry, happy, and pained 
emotions during the task. Two different examples of each emotion were presented in separate trials 
throughout the task (n = 10 trials). Images ©2009 Pixar. 
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An average of RSA across the film clip was used to index individual variability in 
PNS functioning for each child. RSA during the baseline task was included as a covariate 
in all analyses to isolate the associations between levels of RSA during the film and study 
outcomes. Simulation studies have demonstrated that adjusting for autoregressive effects 

Figure 1. An overview of the Pixar task to assess emotion understanding, including pictorial response
scale and stills from GIFs. (A) Example presentation of the task screen depicting a still from the GIF
of the bird displaying “fear”. Cartoon images of prototypical facial expressions are presented below
the film GIFs during the emotion understanding component of the task. GIFs presented in 1 s loops
at 38 frames per second. (B) Examples of stills depicting angry, happy, and pained emotions during
the task. Two different examples of each emotion were presented in separate trials throughout the
task (n = 10 trials). Images ©2009 Pixar.

An average of RSA across the film clip was used to index individual variability in PNS
functioning for each child. RSA during the baseline task was included as a covariate in
all analyses to isolate the associations between levels of RSA during the film and study
outcomes. Simulation studies have demonstrated that adjusting for autoregressive effects
(e.g., examining RSA during the film, controlling for RSA during the baseline task) provides
superior statistical estimation as compared to change scores or percent change from baseline
scores [44]. Comparatively lower levels of RSA during the film clip suggest PNS withdrawal
in response to the stimuli. Studies examining RSA functioning across a specific context
have adopted similar autoregressive approaches (see [45–47]).

3.1.3. CU Traits

CU traits were measured using parent reports on the Inventory of Callous Unemotional
Traits (ICU; [48]), a 24-item measure that assesses callousness, uncaring, and unemotionality,
with items rated on a four-point scale (0 = not at all true; 3 = definitely true). The ICU is an
assessment tool designed to measure traits associated with callousness and lack of empathy
in children. It includes items related to the child’s interpersonal style, emotional expression,
and behavioral tendencies. The ICU has been validated in clinical and community samples
of children and adolescents [49,50]. The internal consistency was high (α = 0.86).
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3.1.4. Covariates

Conduct Problems (CP) were assessed using the 5-item Conduct Problem subscale
of the parent-reported Strengths and Difficulties Questionnaire (SDQ; [51]), with parents
rating their child’s behavior in the last six months (e.g., often loses temper). Using a
three-point scale (0 = not true; 2 = certainly true). As CU traits are often co-occurring
with CP, including CP as a covariate isolates the effects of CU traits specifically. The CP
subscale covers a range of conduct-related behaviors, including aggression, defiance, and
rule-breaking. The internal consistency of the CP subscale was acceptable (α = 0.75). Child
age, gender, parent education, and race were reported by parents during a demographic
interview. The study site was also included as a covariate in all models.

3.2. Analytic Plan

Study hypotheses were tested by estimating saturated path models in Mplus 8.3 [52]
using full information maximum likelihood (FIML) [53]. The first set of models examined
the links between CU traits and overall emotion understanding performance. In these
models, we first tested whether CU traits and task RSA were independently related to
emotion understanding, controlling for baseline RSA, CP, and covariates. Second, we
created a product term of mean-centered CU traits and task RSA scores (i.e., interaction) to
test whether the relationship between CU traits and emotion understanding varied as a
function of task RSA. We probed interactions using standard recommendations, including
exploring associations between CU traits and emotion understanding at one SD above and
below the mean for RSA. Second, we used regions of significance (RoS) analyses to identify
the range of values of RSA for which CU traits predicted emotion understanding [54].

The next set of models were designed to test the potential links between CU traits,
RSA, and emotion-specific deficits (e.g., happiness, fear, anger, pain). A series of saturated
path models were estimated to (1) test whether CU traits predicted performance on each
specific emotion, controlling for performance on the other emotion categories and other
covariates, and (2) examine whether the relationship between CU traits and specific emotion
performance varied as a function of task RSA. The final interaction model was informed
by preceding models and included fear and pain as covarying outcomes to directly test
their relative associations with CU traits and task RSA. Similar to the first set of models,
significant interactions were probed following established procedures.

4. Results

Table 1 presents descriptive statistics and bivariate correlations for study variables.
First, a saturated path model testing main effects showed that CU traits were related to
lower emotion understanding accuracy (B = −0.01, β = −0.43, p = 0.03) (Table 2, Model 1).
The interaction model showed that this relationship was moderated by task RSA (B = −0.02,
β = −0.45, p < 0.001) (Table 2, Model 2). Simple slopes analyses demonstrated that higher
CU traits were associated with lower emotion understanding accuracy for children with
mean (B = −0.01, t = −2.46, p = 0.02) or higher levels (i.e., 1 SD > M; B = −0.02, t = −3.00,
p < 0.001) of task RSA, but not for children with low task RSA (i.e., 1 SD < M; B = 0.00,
t = −0.53, p = 0.60) (Figure 2A). The RoS analysis established that higher CU traits were
related to lower emotion understanding accuracy when children were just below or above
the mean for RSA during the film (upper bound threshold of −0.10, range of observed,
centered values were −1.68 to 2.05; Figure 2B). The lower bound RoS for RSA was outside
the data range and was not interpreted.
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Table 1. Zero-order bivariate correlations between study variables.

Site Age Gender Race Parent
Edu.

Conduct
Problems

Baseline
RSA

CU
Traits

Film
RSA

Emot. Under-
standing

Site -
Child age −0.06 -
Child gender −0.01 −0.08 -
Child race −0.27 0.15 0.05 -
Parent education −0.47 ** −0.17 −0.06 0.38 ** -
Conduct problems 0.15 −0.16 −0.05 −0.14 0.10 -
RSA at baseline 0.35 * 0.24 0.10 0.11 −0.11 0.09 -
CU Traits 0.11 −0.19 0.22 −0.05 0.07 0.60 ** 0.04 -
Avg. RSA during
film 0.14 0.35 * −0.05 −0.11 −0.33 * −0.01 0.48 ** 0.00 -

Emot.
understanding
accuracy (%
correct)

−0.11 0.31 * 0.20 −0.12 0.05 −0.04 0.13 −0.28 0.14 -

M 1.54 9.03 0.43 0.25 3.06 1.14 6.86 15.61 7.24 0.86
SD 0.50 1.14 0.50 0.44 1.79 1.69 1.05 8.70 0.85 0.15

Min 1.00 7.08 0.00 0.00 0.00 0.00 4.83 2.00 5.56 0.38
Max 2.00 10.92 1.00 1.00 6.00 9.00 9.56 44.00 9.29 1.00

n 55 53 53 52 53 51 45 51 41 51

Note. * p < 0.05, ** p <0.01.

Table 2. Unstandardized and standardized estimates from path models examining direct and interac-
tive associations between CU traits and average RSA during the film and emotion understanding
accuracy across all emotions.

Model 1, Main Effects Model 2, Interactive Effects

Emotion Understanding Accuracy (% Correct)

B (β) 95% Confidence
Interval B (β) 95% Confidence

Interval

Main effects
Site −0.04 (−0.13) −0.11, 0.04 −0.03 (−0.09) −0.12, 0.06

Child age 0.05 (0.34) ** 0.01, 0.08 0.06 (0.47) ** 0.04, 0.09
Child gender 0.11 (0.34) ** 0.04, 0.17 0.11 (0.37) ** 0.04, 0.18

Child race −0.09 (−0.26) * −0.18, −0.002 −0.10 (−0.29) * −0.2, −0.002
Parent education 0.01 (0.16) −0.01, 0.04 0.01 (0.06) −0.01, 0.02

Conduct problems 0.03 (0.27) * 0.002, 0.05 0.03 (0.29) ** 0.01, 0.05
Baseline RSA 0.02 (0.13) −0.03, 0.06 0.00 (0.00) −0.06, 0.06

CU Traits −0.01 (−0.43) * −0.02, −0.001 −0.01(−0.47) ** −0.01, −0.004
Avg. RSA during film 0.01 (0.03) −0.05, 0.06 0.01 (0.03) −0.05, 0.06

Interaction
CU traits × Avg. RSA during film −0.02 (−0.45) ** −0.02, −0.01

Note. * p < 0.05, ** p < 0.01.

Table 3 presents a set of saturated path models testing the main effects of CU traits and
RSA on the prediction of each emotion (pain, fear, anger, happiness), controlling for the
other emotions and covariates. Results suggest that CU traits only directly predict emotion
understanding accuracy for pain (B = −0.01, β = −0.36, p = 0.02). Individual interaction
models (Table 4) showed that the interaction between CU traits and task RSA significantly
predicted both pain (B = −0.02, β = −0.37, p = 0.01) and fear (B = −0.04, β = −0.60, p < 0.001).
when controlling for the other emotions. To further clarify these associations, pain and
fear performance were included as covarying outcomes and regressed on model predictors
(Table 5). Results suggest that the interaction between CU traits and task RSA predicts fear
(B = −0.04, β = −0.37, p < 0.0001) but not pain when predicted simultaneously, accounting
for their overlap via the inclusion of their covariance. Happiness and anger were retained
as covariates in this model. Simple slopes analyses revealed that higher CU traits were
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associated with lower emotion understanding accuracy of fear for children with higher
levels (i.e., 1 SD > M; B = −0.03, t = −2.23, p = 0.03) of task RSA, but not for children with
mean (B = 0.01, t = −0.99, p = 0.33) or low (i.e., 1 SD < M; B = −0.01, t = −1.24, p = 0.22)
task RSA (Figure 3A). The RoS analysis established that higher CU traits were related to
lower emotion understanding accuracy of fear when children were inside the mean interval
for RSA during the film (0.31, 3.40; range of observed, centered values were −1.68 to 2.05;
Figure 3B).
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accounting for their overlap via the inclusion of their covariance. Happiness and anger 
were retained as covariates in this model. Simple slopes analyses revealed that higher CU 
traits were associated with lower emotion understanding accuracy of fear for children 
with higher levels (i.e., 1 SD > M; B = −0.03, t = −2.23, p = 0.03) of task RSA, but not for children 
with mean (B = 0.01, t = −0.99, p = 0.33) or low (i.e., 1 SD < M; B = −0.01, t = −1.24, p = 0.22) task 
RSA (Figure 3A). The RoS analysis established that higher CU traits were related to lower 
emotion understanding accuracy of fear when children were inside the mean interval for 
RSA during the film (0.31, 3.40; range of observed, centered values were −1.68 to 2.05; 
Figure 3B).  

Figure 2. Higher levels of CU traits are related to lower emotion understanding accuracy at mean and
high levels of RSA during the animated film, but not at low levels of RSA. Note: * p < 0.05, ** p < 0.01,
n.s. = Not Significant. (A) Simple slopes plot showing that higher CU traits were associated with
lower emotion understanding accuracy for children showing mean (B = −0.01, t = −2.46, p = 0.02) or
high levels (i.e., 1 SD > M; B = −0.02, t = −3.00, p < 0.001) of RSA during the animated film, but not for
children with low levels of RSA (i.e., 1 SD < M; B = 0.00, t = −0.53, p = 0.60). (B) Johnson-Neyman plot
showing the range of significant slope values for the prediction of emotion understanding accuracy
using CU traits for children just below mean task RSA and above (upper bound threshold of −0.10,
range of observed, centered values were −1.68 to 2.05). The lower bound RoS for RSA was outside
the data range and was not interpreted.
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Table 3. Main Effects, Emotion Specific. Unstandardized and standardized estimates from path models examining associations between CU traits and average RSA
during the film and emotion understanding accuracy, exploring each emotion as individual outcomes.

Fear Pain Happy Anger

Emotion Understanding Accuracy (% Correct)

B (β) 95% CI B (β) 95% CI B (β) 95% CI B (β) 95% CI

Main effects
Site −0.06 (−0.10) −0.23, 0.11 −0.01 (−0.02) −0.13, 0.11 0.06 (0.11) −0.16, 0.28 −0.08 (−0.23) −0.20, 0.04
Child age 0.11 (0.38) * 0.02, 0.19 0.04 (0.19) −0.02, 0.11 0.02 (0.07) −0.08, 0.12 0.00 (0.01) −0.04, 0.04
Child sex 0.21 (0.32) ** 0.06, 0.35 0.11 (0.21) −0.03, 0.25 0.12 (0.21) −0.09, 0.32 −0.03 (−0.09) −0.14, 0.07
Child race −0.04 (−0.06) −0.26, 0.17 0.01 (0.01) −0.19, 0.21 −0.17 (−0.26) −0.41, 0.07 −0.10 (−0.24) −0.24, 0.04
Parent education 0.02 (0.12) −0.19, 0.83 0.02 (0.12) −0.02, 0.06 0.01 (0.08) −0.13, 0.49 0.00 (−0.04) 0.06, 0.39
Conduct problems 0.02 (0.11) −0.32, 0.30 −0.01 (−0.08) −0.06, 0.04 0.05 (0.30) −0.77, 0.14 0.04 (0.33) * −0.27, 0.04
Baseline avg. RSA −0.01 (−0.02) −0.53, 0.25 0.02 (0.08) −0.05, 0.10 0.00 (0.00) −0.29, 0.27 0.03 (0.14) −0.07, 0.27
CU traits −0.01 (−0.17) −0.02, 0.07 −0.01 (−0.36) * −0.02, 0.00 −0.01 (−0.19) −0.03, 0.06 0.00 (−0.07) −0.03, 0.02
Avg. RSA during film 0.07 (0.19) −0.05, 0.09 0.03 (0.08) −0.09, 0.14 0.00 (0.01) 0.00, 0.10 −0.06 (−0.28) 0.00, 0.07

Note. * p < 0.05, ** p <0.01; Note. All emotions included as covariates.

Table 4. Interactions, Emotion Specific. Unstandardized and standardized estimates from path models examining direct and interactive associations between CU
traits and average RSA during the film and emotion understanding accuracy, exploring each emotion as individual outcomes.

Fear Pain Happy Anger

Emotion Understanding Accuracy (% Correct)

B (β) 95% CI B (β) 95% CI B (β) 95% CI B (β) 95% CI

Main effects
Site −0.02 (−0.04) −0.19, 0.15 0.00 (−0.01) −0.14, 0.13 0.07 (0.13) −0.15, 0.29 −0.08 (−0.23) −0.20, 0.04

Child age 0.17 (0.61) ** 0.08, 0.26 0.09 (0.39) * 0.01, 0.17 0.02 (0.08) −0.10, 0.14 0.03 (0.17) −0.03, 0.09
Child sex 0.27 (0.42) ** 0.11, 0.42 0.16 (0.31) * 0.01, 0.32 0.12 (0.22) −0.08, 0.33 0.00 (0.00) −0.11, 0.11

Child race −0.09 (−0.12) −0.31, 0.13 −0.03 (−0.05) −0.24, 0.18 −0.16 (−0.24) −0.38, 0.07 −0.12 (−0.28) −0.25, 0.01
Parent edu. 0.00 (0.01) −0.04, 0.04 0.01 (0.06) −0.03, 0.05 0.01 (0.08) −0.04, 0.06 −0.01 (−0.08) −0.04, 0.02

Conduct problems 0.03 (0.18) −0.03, 0.10 0.00 (−0.01) −0.05, 0.04 0.05 (0.31) 0.00, 0.10 0.04 (0.35) * 0.01, 0.07
Baseline avg. RSA −0.07 (−0.22) −0.18, 0.05 −0.01 (−0.05) −0.09, 0.06 −0.01 (−0.05) −0.13, 0.11 0.02 (0.10) −0.04, 0.07

CU traits −0.01 (−0.27) −0.02, 0.00 −0.01(−0.43) ** −0.02, 0.00 −0.01 (−0.20) −0.02, 0.01 0.00 (−0.13) −0.01, 0.01
Avg. RSA during film −0.01 (−0.02) −0.12, 0.10 −0.01 (−0.02) −0.12, 0.11 0.01 (0.04) −0.13, 0.15 −0.08 (−0.36) * −0.14, −0.01

Interaction
CU traits ×

Avg. RSA during film −0.04(−0.60) ** −0.06, −0.02 −0.02(−0.37) * −0.04, −0.01 0.00 (−0.01) −0.03, 0.03 −0.01 (−0.27) −0.03, 0.01

Note. * p < 0.05, ** p < 0.01; Note. All emotions included as covariates.
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Table 5. Unstandardized and standardized estimates from path models examining direct and interac-
tive associations between CU traits and average RSA during the film and emotion understanding
accuracy, with fear and pain included as covarying outcomes.

Fear Pain

Emotion Understanding Accuracy (% Correct)

B (β) 95% CI B (β) 95% CI

Main effects
Site −0.02 (−0.04) −0.19, 0.14 0.00 (0.01) −0.13, 0.13

Child age 0.15 (0.55) ** 0.07, 0.24 0.05 (0.23) −0.01, 0.12
Child sex 0.24 (0.37) ** 0.09, 0.38 0.11 (0.2) −0.02, 0.23

Child race −0.09 (−0.12) −0.30, 0.12 −0.01 (−0.01) −0.21, 0.19
Happy accuracy −0.05 (−0.04) −0.36, 0.26 0.13 (0.14) −0.07, 0.33
Anger accuracy −0.03 (−0.02) −0.46, 0.40 0.33 (0.23) −0.19, 0.84

Parent education −0.002 (−0.01) −0.04, 0.04 0.01 (0.06) −0.03, 0.05
Conduct problems 0.04 (0.20) −0.03, 0.11 −0.01 (−0.06) −0.06, 0.04
Baseline avg. RSA −0.07 (−0.23) −0.18, 0.04 0.00 (0.01) −0.07, 0.07

CU traits −0.01 (−0.18) −0.02, 0.00 −0.01 (−0.38) ** −0.02, 0.00
Avg. RSA during film −0.01 (−0.02) −0.13, 0.11 −0.01 (−0.02) −0.13, 0.12

Interaction
CU traits ×

avg. RSA during film −0.04 (−0.55) ** −0.05, −0.02 −0.01 (−0.22) −0.03, 0.00

Note. * p < 0.05, ** p < 0.01.
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Figure 3. Higher levels of CU traits are related to lower fear accuracy at mean and high lev-
els of RSA during the animated film, but not at low levels of RSA. Note: * p < 0.05, ** p < 0.01,
n.s. = Not Significant. (A) Simple slopes plot showing that higher CU traits were associated with
lower emotion understanding accuracy for children showing high levels (i.e., 1 SD > M; B = −0.03,
t = −2.23, p = 0.03) of RSA during the animated film, but not for children with mean (B = 0.01, t = −0.99,
p = 0.33) or low levels (i.e., 1 SD < M; B = −0.01, t = −1.24, p = 0.22) of RSA. (B) Johnson-Neyman plot
showing the range of significant slope values for the prediction of emotion understanding accuracy
using CU traits for children just below mean task RSA and above (upper bound threshold of −0.10,
range of observed, centered values were −1.68 to 2.05). The lower bound RoS for RSA was outside
the data range and was not interpreted.
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5. Discussion

Emotion understanding supports healthy socioemotional development in children,
whereas emotion understanding difficulties are associated with many forms of psychopathol-
ogy, including the presence of CU traits. Consistent with prior research, higher CU traits
were associated with lower emotion understanding accuracy overall [3,6–8]. The current
findings also suggest that these effects may be driven by deficits in fear accuracy. Prior
studies assessing emotion understanding have used tasks that assess knowledge and recog-
nition of emotions, but only a few have used narrative-driven video measures (see [14]
for review). The current study advances the literature by using an animated film that
required children to interpret and select the emotions of multiple characters within a nar-
rative context rather than solely relying on static features of an image. Our findings are
generally consistent with previous studies that assessed emotion understanding using
narrative-based tasks [16,55].

In addition, we provide insight into the neurophysiological mechanisms underpinning
associations between emotion understanding difficulties and CU traits. There was no
association between CU traits and emotion understanding for individuals demonstrating
comparatively lower levels of RSA during the film. Within trials specific to each emotion,
only the accuracy of understanding pain had direct associations with CU traits. However,
the interaction between CU traits and task RSA predicted the accuracy of understanding
fear but not pain when accounting for their shared variance. Specifically, results suggest
that higher CU traits were associated with lower emotion understanding accuracy, and
lower fear accuracy in particular, but only among children displaying comparatively higher
RSAs during the film. Taken together, results are consistent with the literature suggesting
that the PNS may support emotion understanding by facilitating engagement with emotion
stimuli, and that activation of the PNS (i.e., comparatively lower task RSA as compared to
baseline RSA) attenuates links between deficits in emotion understanding and CU traits.

Reduced activation of the PNS while viewing social and emotional stimuli was asso-
ciated with lower emotion understanding and may therefore represent one mechanism
underlying established links between emotion-related difficulties and CU traits. Our
findings suggest important heterogeneity in patterns of PNS functioning while engag-
ing with emotional content that could provide insight into the etiology of CU traits in
childhood and potential treatment targets, including interventions that directly target phys-
iological regulation [56,57]. For example, meta-analytic evidence suggests that variability
biofeedback improves a range of symptoms and functioning and may represent a useful
complementary treatment [58], while Autonomic Nervous System Biofeedback Modality
treatment has shown some efficacy in the treatment of attention problems [59].

Additionally, our findings highlight the need for future research examining links
between emotion deficits and CU traits to consider the nuances across various emotion-
specific stimuli. Our results are consistent with other research suggesting that CU traits may
be associated with deficits in recognizing negative emotions specifically [31,60], and that
PNS functioning may support emotion recognition and regulation in the context of negative
emotions, including fear [37,47,61,62]. However, more work should be performed to
elucidate the attentional and regulatory mechanisms underlying these deficits and whether
and how children’s attention and physiological regulation might further our understanding
of variation in performance among negative emotion categories (e.g., pain, fear).

In addition to research linking CU traits with poorer understanding and recogni-
tion of negative emotions, particularly cues of social threat, such as fear, anger, and
sadness [9,12,63,64], additional research suggests that these deficits may be driven by a lack
of attention to salient emotional features including the eye region [65]. Indeed, children
and adolescents with CU traits appear to make less eye contact with caregivers [66,67] and
focus less on the eye region during emotion recognition tasks [68]. Studies that incorporate
information about specific attentional processes in the context of emotion understanding
and recognition are important, but results from the current study, and others exploring
links between children’s physiology and emotion, suggest that indices of PNS functioning



Children 2024, 11, 184 12 of 15

during emotion experiences may provide additional insight into observed deficits associ-
ated with CU traits. Indeed, interventions that promote reciprocal eye gaze have reported
mixed results [69,70], highlighting persistent gaps in our understanding of the specific
mechanisms underlying the links between CU traits and emotion deficits.

The current study used a rigorous multi-method approach, including continuous
physiological recording during a narrative-based video task used to assess emotion under-
standing. Nevertheless, the findings should be viewed alongside several key limitations.
First, the sample size was small and prohibited examining epoch-by-epoch associations
between PNS functioning during the film. Moreover, we tested a community sample,
reducing the generalizability of findings to children in clinic or juvenile justice settings.
Second, although we took advantage of continuous physiological recording to index en-
gagement with social and emotional content, we did not assess attention. Thus, future
research combining physiological and attentional measures (e.g., eye-tracking) would help
to clarify whether links between RSA, CU traits, and lower emotion understanding are
the consequence of difficulties attending to the salient portions of stimuli or deficits in
arousal and engagement despite the adequate allocation of attention [67]. Finally, this was
a cross-sectional and observational study, limiting implications about temporal or causal
relationships between variables. Future research is needed to clarify how links between
PNS functioning, emotion understanding, and the development of CU traits unfold over
time and across a variety of contexts, including experimental conditions that manipulate or
promote physiological engagement in different ways [71].

In sum, CU traits are associated with difficulties in understanding the emotions of
others, as evidenced using a narrative-driven video task that required children to appre-
ciate feelings around loyalty, betrayal, and friendship. There was evidence that emotion
understanding difficulties were specific to negative emotions including fear and were
most strongly associated with CU traits when children showed reduced PNS activation
(i.e., comparatively higher levels of RSA) while watching the film. These findings sug-
gest that the PNS should be considered as a potential mechanism underlying treatment
response in the context of emotion skills training (e.g., [71]) and that future research should
consider whether physiological [71] and attentional [66] processes could be considered
treatment targets themselves to facilitate adaptive engagement with social or emotional
environmental cues.
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