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Abstract: Investigation of breakdown pressure in wellbores in complex conditions is of great im-
portance, both in fracture design and in wellbore log interpretation for in situ stress estimation. In
this research, using a two-dimensional numerical model, the breakdown pressure is determined in
ellipsoidal and breakout wellbores. To find the breakdown pressure, the mixed criterion is used,
in which the toughness and the tensile strength criteria must be satisfied concurrently. In breakout
boreholes, the breakdown pressure is lower than the circular wellbores; indeed, the ratio of the
breakdown pressure of the breakout wellbore to the breakdown pressure in the circular wellbore
is between 1 and 0.04, depending on the deviatoric stress and the width and depth of the breakout
zone. In breakout wellbores, the fracture initiation position depends on the deviatoric stress. In small
deviatoric stresses, the fracture initiation position is aligned with the minimum in situ stress, unlike
circular boreholes; and in large deviatoric stresses, the fracture initiates in the direction of the major
principal stress. In large wellbores, the breakdown pressure is controlled by the tensile strength of
the rock; and in small wellbores, the breakdown pressure is under the control of the energy spent to
create new crack surfaces.

Keywords: fracture toughness; tensile strength; coupled criterion; fracture initiation length; wellbore
radius; in situ stress; breakout depth; breakout width; ellipticity

1. Introduction

There are several reasons why a wellbore cross-section may become non-circular. One
of the possible causes is the mechanical action of the drill string on the well after drilling;
also, the elastic deformations after drilling give the cross-section of the borehole a degree of
ovality. The washout of soft formations near the wellbore also causes the cross-section of the
borehole to become non-circular. The concentration of compressive stress in the borehole
wall causes a type of progressive failure, which is called borehole breakout. Wellbore
breakout also causes elongation of the wellbore cross-section. In the borehole breakout,
the expansion of the wellbore cross-section is aligned with the minor in situ stress. The
stress concentration along the wall of such a non-circular wellbore depends not only on
the in situ stresses, but also on the wellbore cross-section shape. If hydraulic fracturing is
performed for such a wellbore, the fracture initiation position and breakdown pressure
may be different from that obtained for a circular borehole.

To calculate the breakdown pressure of hydraulic fracturing in circular wellbores,
two classic theoretical criteria of Hubbert and Willis (HW) [1] and Haimson and Fairhurst
(HF) [2] are usually used. The HW criterion is simply gained from the theory of elas-
ticity. This criterion assumes that for wellbore under horizontal in situ stresses SH and
Sh (SH > Sh), tensile fracture occurs when the hoop stress along SH is reduced to the
rock tensile strength. This criterion provides the breakdown (fracture initiation) pressure
according to Equation (1).

PB,HW = −SH + 3 Sh + T (1)
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In this relationship, PB,HW is the breakdown pressure, SH and Sh are the maximum
and minimum horizontal in situ stress perpendicular to wellbore axis, respectively, and T
is the rock tensile strength. The HF criterion given in Equation (2) is simplified from a more
general expression in which poroelastic effects are also taken into account. This criterion
provides breakdown pressure as Equation (2)

PB,HF =
1
2
(−SH + 3Sh + T) (2)

These two criteria were presented for a simple case of hydraulic fracturing for circular
wellbores and are not suitable for complex conditions of hydraulic fracturing.

Investigating the fracture process in complex wellbore conditions is important not
only for fracture design, but also for the interpretation of well logs used to estimate in
situ stress. It has been observed that most wellbores in the North Sea have some degree
of non-circularity or oval shape, and this was the motivation for the theoretical studies of
Aadnoy and Angell-Olsen [3]. Using circumferential (hoop) stress equations around the
wellbore, they showed that the fracture initiation pressure for an oval borehole is different
from a circular borehole. They also found that the fracture initiation position is the same
in both wellbores except for the case where the stress ratio is larger than the ellipticity [3].
Akgun et al., using a finite-element numerical model and ANSYS v5.2 software, showed
that in elongated wellbores due to breakout, the hydraulic fracture initiation pressure is
slightly reduced, but the fracture initiation position does not change [4]. Using a numerical
model, Zhang et al. showed that the fracture paths and pressure required for fracture
propagation both depend on the wellbore shape when the fracture initiates at a location
that is not aligned with the maximum principal in situ stress, and the wellbore geometry
does not significantly affect the initiation pressure when the fracture initiates align with
the maximum principal stress direction [5]. Using a developed inverse technique, Han
et al. worked on the evaluation of in situ stresses in elliptical wellbores with arbitrary
trajectory [6]. Their results showed that the difference in the axes of the elliptical wellbore
even by 2% causes a 5% difference in the estimation of the minimum horizontal stress and
also causes a 10% difference in the estimation of the maximum horizontal stress. Liu et al.,
by performing hydraulic fracturing experiments on oval wellbores representing breakout
wells, found that the shape of the wellbore and the difference between in situ stresses has a
meaningful impact on the breakdown pressure of hydraulic fracture in sandstones. So when
there is a deviatoric stress, the breakdown pressure declines with the increase in the minor
axis of the oval wellbores; but in the absence of deviatoric stress (isotropic field stress),
the situation is completely opposite. They also found that if the wellbore is circular, the
breakdown pressure is negatively correlated with the horizontal stress difference [7]. The
authors investigated the breakdown pressure and fracture initiation site in oval wellbores
using only the tensile strength criterion and an analytical model [8]. We found that when
the in situ stress field is isotropic, the fracture initiates in the direction of the major radius
of the wellbore, and as the eccentricity increases, the breakdown pressure decreases.

But it is not only the geometry of the wellbore that affects the breakdown pressure,
but the injection rate, the size of the wellbore radius and the compliance of the injection
system also affect the fracture initiation pressure or breakdown pressure. The effects of the
injection rate on breakdown pressure can be investigated by considering a defect in the
wellbore wall from which the fracture propagates [9–14]. Laboratory tests clearly show that
the breakdown (initiation) pressure increases with an increase in the pressurization rate,
or with a declines in the wellbore radius [9,15–19]. The effects of the injection rate are also
reported in the field. Lakirouhani et al. investigated the effect of the compressibility of the
injection system, initial crack length and viscosity on the breakdown pressure using a two-
dimensional mathematical/numerical model with plane strain assumption [19]. Ito and
Hayashi investigated the effect of the injection rate and cavity radius on fracture initiation
pressure using a theoretical model and laboratory experiments. They postulated that tensile
fracture initiates just after the tangential stress at a situation far from the wellbore wall
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reduces to the rock tensile strength. Ito and Hayashi introduced the distance between the
wellbore wall and that point and as a material constant. Their results showed that the
breakdown pressure declines with increasing wellbore radius and increases with increasing
pressurization rate [9].

Carter and Carter et al., with uniaxial compression tests performed on rock blocky
samples with a cavity, showed that for a very small hole radius, the compressive stress causing
tensile failure is high; and with increasing hole size, it decreases and approaches a horizontal
asymptote [20,21]. Leguillon showed that both the fracture toughness principle and the tensile
stress model are essential conditions for the fracture initiation, and neither of them alone is
sufficient. It was then found that size effects result from the interplay of crack increment
and further characteristic length [22,23]. The interpretation of the duality between tensile
strength and toughness on breakdown pressure can be investigated from the point of view
of non-linear fracture mechanics [24]. However, recently, the conception of combining the
fracture toughness principle and the tensile stress model to find the breakdown pressure and
fracture initiation length has been used by some researchers [24–26]. Using displacement
discontinuity numerical method and dual strength and toughness criterion, Zhou et al.
obtained the breakdown pressure in the breakout wellbores and found that the effect of
the borehole geometry on the breakdown pressure is very small and imperceptible [27].
We recently obtained the hydraulic fracture initiation pressure using a numerical model
with coupled criteria and fracture mechanics criteria and compared the results of the
initiation pressure with the classical hydraulic fracture criteria based on tensile strength
(that is, Equations (1) and (2)). We found that the initiation pressure gained from the dual
criterion has a strong dependence on the wellbore size, so that for a small-cavity radius,
the toughness criterion governs the fracture mechanism, and for a large-cavity radius, the
fracture mechanism is in accordance with the tensile strength criterion [28].

Obtaining the breakdown pressure and investigating the factors affecting it are of great
importance in geomechanics because the breakdown pressure is used in the prediction of
field stress and also in fracture design. Despite the many studies that have been performed
on circular wellbores, fewer studies have been performed on non-circular and breakout
wellbores; furthermore, few previous studies have clearly defined the effect of wellbore
breakout and wellbore cross-sectional expansion on breakdown pressure. The purpose
of this study is to evaluate the effect of wellbore geometry and wellbore size on the
breakdown pressure and fracture initiation location. Analyses are performed on ellipsoidal
and breakout wellbores; and for them, the breakdown pressure is found using the validated
mixed criterion. In the mixed criterion, the tensile failure initiates in the wellbore wall when
both the fracture toughness model and the tensile strength model are met concurrently.
Modeling is two dimensional and assumes plane strain conditions. Using a code written on
the basis of the FEM and MATLAB R2018a software, the problem is solved. The obtained
results are useful and important both in the field and in hydraulic fracturing laboratory tests.

2. Problem Definition, Mixed Criterion
2.1. Elliptical Wellbores

Figure 1 illustrates the problem geometry for an elliptical wellbore. In this figure, a
cross-section of the wellbore under field stresses SH and Sh is shown. If the wellbore is vertical
and one of the principal stresses is aligned with the center line of the wellbore, then SH and
Sh are the maximum and minimum horizontal in situ stresses, respectively (Sh < SH). a is
the minor radius of the ellipse and b is the major radius of the ellipse. Pw is the wellbore
pressure, which has a uniform distribution on the wellbore wall. The rock is supposed to be
impermeable and has a linear elastic behavior with the characteristics of Poisson’s ratio υ, the
modulus of elasticity E, the tensile strength T, and fracture toughness KIc.
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Figure 1. Problem geometry for elliptical wellbores.

2.2. Breakout Wellbores

Figure 2 illustrates the problem geometry for a breakout wellbore. Breakout is shear
failure caused by compressive stress that is formed symmetrically on both sides of the
wellbore and along the minimum in situ stress (Sh) [29–31]. Breakout failure expands
episodically with the separation of crushed rock layers until it reaches stability. The
breakout failure zone is V shaped or dog eared and has two characteristics, width (θB) and
depth (rB) [32–37]. According to field reports, breakouts have been observed in different
types of rocks such as limestone, siltstone, granite, dolomite and sandstone [38–40].
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Figure 2. Problem geometry for breakout wellbores.

2.3. The Numerical Model

To solve the problem presented in the previous sub-sections, the FEM is used. Thus,
the geometries shown in Figures 1 and 2 are meshed using eight node elements. The
boundary conditions that are a combination of traction and displacement are applied at the
domain of the model. The left and bottom boundaries are on the roller, and field stresses are
assigned to the right and top boundaries. Figures 3 and 4 show the geometry of the model
for the ellipsoidal and the breakout wellbore, respectively. Verification of the finite-element
model is given in Appendix A.
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2.4. The Mixed Criterion, Procedure for Finding Hydraulic Fracture Breakdown Pressure
and Initiation Length

As mentioned in the introduction, the mixed criterion is used to find the wellbore
breakdown pressure in this paper. In the mixed criterion, the breakdown occurs when both
toughness and the rock tensile strength criteria are satisfied at the same time:{

KI(Pw,𝓁) = KIc
σθ(Pw,𝓁) = T

⇒
{

PB,Mixed = Pw
𝓁ini,Mixed = 𝓁

(3)

where σθ(Pw,𝓁) is the circumferential (hoop) stress at a distance 𝓁 from the wellbore wall,
KI(Pw,𝓁) is the stress intensity at the fracture tip with length 𝓁, Pw is the wellbore pressure
that acts uniformly on the wellbore surface, T is the rock tensile strength, and KIc is the
fracture toughness. If both criteria are met simultaneously, the obtained length is the
fracture initiation length (𝓁ini,Mixed) and the minimum wellbore pressure obtained is the
breakdown pressure (PB,Mixed). In fact, the compatibility of the two criteria provides a new
form of a general criterion for crack initiation. This criterion provides both breakdown
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pressure and fracture initiation length. The initiation length is the length that is assumed at
the onset of failure, the crack jumps to this length. To evaluate the first condition of relation
3 (toughness criterion), two transverse symmetrical cracks are considered in the wellbore
wall, and since this condition must be satisfied between the cracked and un-cracked state, the
fluid pressure on the crack surfaces is not considered, in other words, it is assumed that, at
the moment of initiation, the fluid has not yet penetrated within the crack. Here, to calculate
the stress intensity factor, the J-integral technique has been used, which is accurate, and the
model has been validated in this regard in Appendix A. The second condition of relation 3
(strength criterion) is evaluated in the absence of a crack, that is, the tensile stress must exceed
the rock tensile strength in all the lengths of the crack that has not yet been created.

In wellbores with circular cross-sections, the initiation of hydraulic fracture is along the
major in situ stress, but in ellipsoidal wellbores or breakout wellbores, due to the elongation
of the cross-section, the initiation of fracture can also occur along the other direction. For
this reason, in this article, the conditions of relation 3 are controlled both along θ = 0

◦

and along θ = 90
◦
, and the breakdown pressure is determined for these two directions,

consequently, the minimum of them is the breakdown pressure and the corresponding
direction is the fracture initiation direction.

But to solve the two criteria of relation 3 at the same time and find the breakdown
pressure and the fracture initiation length, the breakdown pressure curves gained from each
criterion are drawn in one plot. The intersection point of two curves shows the breakdown
pressure and fracture initiation length. Figure 5 shows an illustration of obtaining fracture
initiation length and breakdown pressure for a breakout wellbore with the specifications
presented in Table 1. The width and depth of the breakout are presented in Figure 5a. In
Figure 5b, the red curve displays the wellbore pressure against the flaw length gained from
the tensile strength theory (second term in Equation (3)) and the blue curve presents the
wellbore pressure versus the crack length gained from the fracture toughness theory (the
first law of Equation (3)). The intersection point of two curves indicates the breakdown
pressure and the fracture initiation length based on the mixed criterion. Calculations are
performed both along the maximum in situ stress

(
θ = 90

◦)
and along the minimum in situ

stress
(
θ = 0

◦)
; and for each direction, the breakdown pressure is obtained. The minimum

wellbore pressure obtained for two directions is the breakdown pressure, accordingly, the
tensile fracture initiates in the direction for which the breakdown pressure is minimum. So
for this example

PB,Mixed = 33.63 MPa; 𝓁ini,Mixed = 0.11 cm; θini = 0◦

Table 1. Characteristics of rock materials.

E υ T KIc
GPa --- MPa MPa

√
m

59 0.25 8 1.16

Using the solution procedure described above, all models of ellipsoidal and breakout
wellbores are analyzed and the breakdown pressure is calculated for them. The results
are given below. Verification of the numerical model for the stress intensity factor and
circumferential stress is very important; the verification is performed in this regard and is
given in Appendix A.
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3. Results for Elliptical Wells
3.1. The Effect of the Wellbore Shape Parameter on Fracture Initiation Position
and Breakdown Pressure

The analysis presented in this research work has been performed for the characteristics
of the materials given in Table 1. Also, Sh = 20 MPa is considered constant in all analyses.
The shape parameter e is defined as follows and indicates the eccentricity of the ellipsoidal
wellbore cross-section:

e =
b − a
b + a

(4)

where a is the minor radius of the ellipse and b is the major radius of the ellipse, 0 ≤ e ≤ 1
and for circular wellbore e = 0, parameter D indicating the dimensionless deviatoric stress
is also defined as follows:

D =
SH − Sh

2T
(5)
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For the sake of brevity, the analysis performed in this section has been for e < 0.3;
however, the model has no limitations for calculating the breakdown pressure for large e.

Figure 6 shows the wellbore breakdown pressure obtained from the mixed criterion
versus e for different values of D. Here, a = 0.1 m and b has been changed to create a
different cross-section. Several results can be obtained from this plot, which are described
below. In the case where D = 0, with the increase in e, the breakdown pressure declines;
instead, if the in situ stress field is anisotropic (D > 0), with the increase in e, the breakdown
pressure increases until it reaches a maximum value, and then with the increase in e, the
breakdown pressure declines. For D > 0, the maximum breakdown pressure occurs for the
critical shape parameter ec.
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less deviatoric stress.

For the case where D = 0 (isotropic in situ stresses), the fracture initiates along the
major diameter of the borehole or minimum in situ stress

(
θini = 0

◦)
. If the in situ stress

field is anisotropic (D > 0), for e < ec, the fracture initiation is aligned with the major in
situ stress or the minor diameter of the wellbore

(
θini = 90

◦)
; and for e > ec, the fracture

initiation is aligned with the minor in situ stress or the major diameter of the ellipse(
θini = 0

◦)
; and if e = ec, the chances of fracture initiation being along θ = 0

◦
or θ = 90

◦

are the same.
When D = 0 (isotropic stress field), the expansion of the wellbore cross-section causes

more wellbore pressure to be applied to the wall of the wellbore (the pressure increases in
the direction of the minor radius of the ellipse), so the fracture initiates in the direction of the
major radius of the ellipse, and by increasing the shape factor, the surface under wellbore
pressure increases and the breakdown pressure declines; in such a situation, fracture initiation
direction and the breakdown pressure are under the control of wellbore elongation.

However, if D > 0, when 0 < e < ec, due to the small elongation of the wellbore, it
is no longer decisive in determining the position of tensile fracture, and the initiation of
tensile rupture is under the control of deviatoric stress. Meanwhile, with the increase in e,
the dominance of the wellbore elongation gradually increases, because when 0 < e < ec,
with the rise of the shape factor, the breakdown pressure increases; in this situation, the
initiation of fracture is aligned with the SH

(
θini = 90

◦)
, like circular wellbores under an

anisotropic stress field. When e = ec, wellbore elongation and deviator stress have a 50/50
effect on the fracture initiation position and breakdown pressure. With a further increase
in e, and when ec < e < 0.3, the initiation of fracture is dominated by the elongation of
the wellbore; in this situation, with the increase in the shape factor, the surface under
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the wellbore pressure gradually increases, and therefore, the breakdown pressure has a
decreasing trend.

Figure 6 shows that with the increase in the dimensionless deviatoric stress, the critical
shape parameter and the breakdown pressure at the ec increase. The ec obtained from the
numerical calculation on the basis of the mixed criterion is similar to the critical shape
parameter obtained from the analytical model. In our previous article, based on a simple
analytical model, we obtained the critical shape parameter as follows [8]:

ec =
SH − Sh

SH + Sh + 2T
(6)

This relationship shows that with increasing rock tensile strength, ec decreases; as a
result, considering the fact that for the rock materials T ≃ 0, by comparing Equation (4)
with Equation (6) and a little manipulation, we find that if:

b
a
=

SH
Sh

(7)

then the cross-section of the wellbore has the most strength against tensile failure.

3.2. The Effect of Wellbore Size on Breakdown Pressure Behavior

In this sub-section, the impact of the size of the ellipsoidal wellbore on the breakdown
pressure and fracture initiation length is investigated. For this purpose, we consider four
series of ellipsoidal wellbore cross-sections according to Figure 7. In each series of wellbores,
the small and large diameters of the ellipsoidal cross-section of the wellbore are enlarged by a
constant factor, so that the shape parameter remains constant. Series A wellbores have shape
parameter e = 0, series B wellbores have shape parameter e = 0.1, series C wellbores have
shape parameter e = 0.2, and series D wellbores have shape parameter e = 0.3 (Figure 7).
In the following, the results of the analysis performed on these four series of models, in the
conditions where the field stress are anisotropic and isotropic, are presented.
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Figure 7. Four series of wellbores with different sizes but the same shape parameters.

3.2.1. The Isotropic Stress Field

Figure 8 shows the breakdown pressure obtained from the mixed criterion versus the
semi-minor axis of the wellbore cross-section for different values of the shape factor in
the case that the stress field is isotropic (D = 0). This figure shows that the breakdown
pressure first has a sharp decline, and then gradually decreases until it tends to a horizontal
asymptote. As previously observed, if the in situ stresses are isotropic, the tensile fracture
initiates in the direction of major axis of the ellipse

(
θini = 0

◦)
. Now, we want to examine

the results in a dimensionless space. First, we make the breakdown pressure dimensionless
by the breakdown pressure gained from the tensile strength model. In the situation that
the field stress is isotropic, the breakdown pressure determined by the rock tensile stress
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model and using the relationship of hoop stress distribution around the elliptical wellbores
is as follows [8]:

PB,T = 2 S
(

− e2 + 1
−3 e2 + 2 e + 1

)
+ T

(
e2 − 2 e + 1

−3 e2 + 2 e + 1

)
(8)

where S = SH = Sh, and the initiation of the fracture is aligned with the major radius of
the wellbore

(
θini = 0

◦)
. The breakdown pressure obtained from only a tensile strength

criterion based on Equation (8) is dependent on the shape factor, rock tensile strength, and
in situ stress and is independent of the wellbore size. Next, semi-minor axis of the wellbore
made dimensionless by the Irwin length scale as follows:

χ =
a T2

K2
Ic

(9)Processes 2024, 12, x FOR PEER REVIEW 12 of 29 
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Figure 8. Breakdown pressure obtained from the mixed criterion versus the minor axis of the ellipse
for different shape parameters (D = 0).

χ is the ratio of the minor radius of the wellbore (a) to Irwin length scale
(

LIR =
K2

Ic
T2

)
.

In Figure 9, we plot the ratio of the dimensionless breakdown pressure gained from
the mixed criterion versus the dimensionless semi-minor axis of the wellbore (χ). It can be
seen that all four curves of Figure 8, which were for different values of the shape parameter,
coincide with each other in the dimensionless space. But the interesting aspect of Figure 9 is
that it shows the effect of the size of the wellbore on the mechanism controlling the tensile
failure of the borehole. Simply put, it can be seen in this figure that for χ > 4, PB,Mixed

PB,T
→ 1 ,

and this means that in wellbores with a large cross-sectional area, the breakdown pressure
is dominated by the tensile strength of the rock; however, for small values of χ (small
wellbore radius), the breakdown pressure is controlled by the energy spent to create new
crack surfaces. When the wellbore size is small enough, the breakdown pressure gained
from the mixed criterion shows a strong singularity. Figure 10 shows the fracture initiation
length versus χ−1. The double-log curves in this plot illustrate that the fracture initiation
length has relatively little sensitivity to the shape factor; in addition, the tensile strength
criterion provides an upper bound for the fracture initiation length, while the toughness
criterion results in a lower bound for the fracture initiation length. At the initiationit is
supposed that the flaw to jump the fracture initiation length.
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Figure 9. Dimensionless breakdown pressure versus the dimensionless size of the wellbore (made
dimensionless by relation (8)) (D = 0).
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Figure 10. Dimensionless fracture initiation length versus the χ−1(D = 0).

3.2.2. The Anisotropic Stress Field

The analysis in this section has been performed for dimensionless deviatoric stress
D = 0.6. According to Figure 6 and for this dimensionless deviatoric stress, ec = 0.15.
Numerical analyses are performed for four series of wellbores shown in Figure 7, and
fracture initiation position and the breakdown pressure are determined for them based on
the mixed criteria. The results are shown in Figures 11 and 12. A- and B-series wellbores
have a shape factor lower than the critical shape factor, so the initiation of fracture in them
is along the minor axis of the wellbore or maximum in situ stress

(
θini = 90

◦)
. Figure 11

illustrates the breakdown pressure versus wellbore size for A and B series wellbores with
shape factors of 0 and 0.1, respectively. The shape factor of C and D series wellbores is
larger than the critical shape factor, so the initiation of fracture for these wellbores is aligned
with the major radius of the ellipse or the minimum in situ stress

(
θini = 0

◦)
. Figure 12

illustrates the breakdown pressure versus wellbore size for series C and D wellbores with
shape factors of 0.2 and 0.3, respectively. Here, we also want to display the results in
dimensionless space.
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Figure 11. Breakdown pressure versus the minor axis of the ellipse for e = 0 and e = 0.1 (D = 0.6).
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Figure 12. Breakdown pressure versus the minor axis of the ellipse for e = 0.2 and e = 0.3 (D = 0.6).

Here again, we want to represent the results in dimensionless space, and again the
breakdown pressure is made dimensionless by the breakdown pressure resulting from
the tensile strength theory, because the breakdown pressure resulting from the tensile
stress theory is independent of the wellbore size and just depends on the shape factor, rock
tensile strength and in situ stress. Briefly, according to the rock tensile strength theory, in
the conditions where θini = 90

◦
and θini = 0

◦
, the breakdown pressure is obtained from

relations (10) and (11), respectively [8]:

PB,T = SH

(
e2 + 2e + 1

3 e2 + 2e − 1

)
− Sh

(
−e2 + 2e + 3
3 e2 + 2e − 1

)
− T

(
e2 + 2e + 1

3 e2 + 2e − 1

)
(10)

PB,T = SH

(
−e2 − 2e + 3
−3 e2 + 2e + 1

)
− Sh

(
e2 − 2e + 1

−3 e2 + 2e + 1

)
+ T

(
e2 − 2e + 1

−3 e2 + 2e + 1

)
(11)

Now, using these two relationships, we can examine Figures 11 and 12 in dimensionless
plots. Figure 13 shows the dimensionless breakdown pressure (made dimensionless by
relation (10)) for series A and B wellbores with a shape factor of 0 and 0.1 and Figure 14
shows the dimensionless breakdown pressure (made dimensionless by relation (11)) for
series C and D wellbores with a shape factor of 0.2 and 0.3. Similarly to Figures 9, 13 and 14
also show the dependence of breakdown pressure behavior on wellbore size. Figure 15
illustrates the fracture initiation length versus χ−1.
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Figure 13. Dimensionless breakdown pressure versus the minor axis of the ellipse (made dimension-
less by relation (10)) (D = 0.6).
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Figure 14. Dimensionless breakdown pressure versus the minor axis of the ellipse (made dimension-
less by relation (11)) (D = 0.6).
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Figure 15. Dimensionless fracture initiation length versus χ−1(D = 0.6).

Figures 16 and 17 show the effect of dimensionless deviatoric stress on dimensionless
breakdown pressure and dimensionless fracture initiation length, respectively. In these two
figures, the wellbore shape parameter has a constant value of e = 0.3.
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Figure 16. Dimensionless breakdown pressure versus χ (made dimensionless by relation
(11))(e = 0.3).
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Figure 17. Dimensionless fracture initiation length versus χ−1 (e = 0.3).

4. Results for Breakout Wellbores

In this section, using the mixed criterion, we determine the breakdown pressure and
fracture initiation position for the breakout wellbores. We had previously obtained the final
breakout area for different deviatoric stresses and different rock characteristics using the
finite-element numerical method and based on an episodic failure algorithm [41], which
is summarized in Figure 18. In the breakout wellbores shown in this figure, the breakout
width (θB) is between 45

◦
and 80

◦
, and for each breakout width, different breakout depths( rB

a
)

from 1.25 to 1.80 have been considered, where a = 0.10 m. For all these models, the
breakdown pressure and fracture initiation position are obtained and compared with the
values obtained for the circular wellbore. Below are the results.
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4.1. The Effect of Breakout Depth on Breakdown Pressure

The results of the analysis performed on the breakout wellbores shown in Figure 18,
are given in Figures 19 and 20. In these figures, the breakdown pressures are scaled with
the breakdown pressure for a circular wellbore with the same deviatoric stress. In these
figures, it can be seen that for all the models presented in Figure 18, and different values
of dimensionless deviatoric stresses, PB,Mixed

(PB,Mixed)circle
< 1; this indicates that the breakdown

pressure in the breakout wellbore is lower than the breakdown pressure in the circular
wellbore with the same deviatoric in situ stress.
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Figure 19. Scaled breakdown pressure, θini = 0
◦
.
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Figure 20. Scaled breakdown pressure, θini = 90
◦
.

In breakout wellbores, for 0 ≤ D < 0.9, fracture initiation occurs along the minimum
in situ stress or at the breakout tip (θini = 0◦); this state is different from the state that
occurs in circular wellbores, in circular wellbores, the initiation of hydraulic fracture is
always along the maximum in situ stress. For 0.9 ≤ D < 2.5, fracture initiation is aligned
with the maximum in situ stress (θini = 90◦), like the circular wellbores. In other words,
when 0 ≤ D < 0.9, the effect of wellbore elongation is greater than the effect of stress
anisotropy in determining the fracture initiation position; in this case, the fluid pressure
on the breakout surfaces reduces the tangential stress at the breakout tip, and this causes
the fracture initiation to occur at this location. But when 0.9 ≤ D < 2.5, the hoop stress
reduction along the maximum in situ stress due to the anisotropy of the field stress is more
than the hoop stress reduction at the breakout tip due to the fluid pressure on the breakout
surface, and in this condition, the fracture initiates aligned with the maximum in situ stress.

For 0 ≤ D < 0.9 and 0.9 < D ≤ 2.5, the breakdown pressure decreases as the breakout
depth increases (Figures 19 and 20). But for D = 0.9 the variation in the breakdown
pressure with the breakout depth is very small (Figure 20).

4.2. The Effect of Breakout Width on Breakdown Pressure

Figures 21 and 22 show the scaled breakdown pressure versus breakout width. For
0 ≤ D < 0.9, the breakdown pressure increases slightly as the breakout width increases
(Figure 21). For 1.2 ≤ D ≤ 2.5, as the breakout width increases, the breakdown pressure
decreases slightly (Figure 22).
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Figure 21. Scaled breakdown pressure versus breakout width, θini = 0◦.
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Figure 22. Scaled breakdown pressure versus breakout width, θini = 90◦.

4.3. The Effect of Deviatoric In Situ Stress on Breakdown Pressure

Figures 23 and 24 show the scaled breakdown pressure versus the dimensionless
deviatoric stress for breakout widths of θB = 55

◦
and θB = 60

◦
, respectively. Breakdown

pressure scaling is not performed uniformly for all models, because circular wellbores under
different deviatoric stresses have different breakdown pressures. In these two figures, it
can be seen that with the increase in the dimensionless deviatoric stress up to 0.9, the
breakdown pressure increases, and in this range, the fracture initiation is aligned with
the minimum horizontal in situ stress

(
θini = 0

◦)
; then after that, with the increase in the

deviatoric stress from 0.9 to 2.5, the breakdown pressure declines with the increase in
the deviatoric stress, and in this range, the fracture initiates aligned with the maximum
horizontal in situ stress

(
θini = 90

◦)
.
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Figure 24. Scaled breakdown pressure versus D
(
θB = 60

◦)
.

In the dimensionless deviatoric stress D = 0.9, the breakdown pressure obtained from
the mixed criterion for the breakout wellbore is almost identical to the breakdown pressure
in the circular wellbore with the same deviatoric stress, and the breakdown pressure
obtained for different depth and width of breakout have insignificant differences with each
other. At this point, the fracture initiation position changes from θini = 0

◦
to θini = 90

◦
. In

other words, at this point, the fracture initiation position that was controlled by wellbore
elongation due to breakout, is released, and becomes dominated by deviatoric stress. But
why for D < 0.9, the breakdown pressure increases and for D > 0.9, it decreases? For
D < 0.9, the initiation of the fracture is along θini = 0

◦
, i.e., the region of the breakout tip.

As the deviatoric stress increases, the positive tangential stress increases in this area, which
means that more wellbore pressure is required to initiate tensile fracture in this area. But for
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D ≥ 0.9, the initiation of fracture is along θini = 90
◦
, with the increase in deviatoric stress,

the positive tangential stress decreases in this region, and this means that less wellbore
pressure is needed to initiate fracture in this region.

4.4. The Effect of Wellbore Size on Breakdown Pressure

In this section, to study the effect of wellbore diameter (size effect), a series of breakout
wellbores that have the same breakout depth and width, according to Figure 25, are
considered. For this series of wellbores, the breakout depth and width are equal to rB

a = 1.35
and θB = 70

◦
, respectively. The series of wellbores shown in Figure 25, although they

have the same breakout depth and width, have different diameters. Here, the breakdown
pressure gained from the mixed criterion makes dimensionless by the breakdown pressure
gained from the tensile strength theory. However, due to the geometrical complexity of
the cross-section of the breakout wellbores, a closed-form relationship for breakdown
pressure based on the tensile strength criterion cannot be obtained. Therefore, using the
finite-element numerical method by applying the condition σθ = T on the wellbore wall,
the breakdown pressure is obtained for each model. The breakdown pressure gained
from the tensile stress theory and using the numerical method, for a certain field stress,
is constant and independent of the size. The result is given in Figure 26. Figure 26
shows the dimensionless breakdown pressure versus the dimensionless wellbore radius.
This figure is for four different deviatoric stresses and it can be seen that for D = 0 and
D = 0.6, the fracture initiation is aligned with the minimum in situ stress

(
θini = 0

◦)
; and

for D = 1.2 and D = 1.9, the fracture initiation is aligned with the maximum in situ stress(
θini = 90

◦)
. Once again, we can see the effect of wellbore size in this figure; this means

that for large wellbore radii, the tensile fracture mechanism is under the control of the rock
tensile strength criterion, and for small wellbore radii, it is fracture toughness criterion that
dominates the failure mechanism. Figure 27 shows the dimensionless fracture initiation
length versus χ−1.
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Figure 25. Cross section of breakout wellbores with the same breakout depth and width but different
diameters, a: a = 0.2 m, b: a = 0.1 m, c: a = 0.05 m, d: a = 0.02 m, e: a = 0.006 m, f: a = 0.001 m.
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Figure 27. Dimensionless fracture initiation length versus χ−1

5. Discussion

The main goal of this research was to study the effect of wellbore cross-sectional area
elongation on breakdown pressure and fracture initiation position; however, the effect of
wellbore size on breakdown pressure was also investigated using the mixed criteria. The
numerical studies carried out in this article showed that the elongation of the wellbore cross-
section increases the surface of the wall under the pressure of the wellbore, and this affects
the hydraulic fracture breakdown behavior and fracture initiation position. In an elliptical
wellbore, depending on the value of deviatoric stress and the value of eccentricity of the
wellbore, the breakdown pressure can be higher or lower than the breakdown pressure of
the wellbore with zero eccentricity (circular wellbore). But in the breakout wellbores, the
breakdown pressure is lower than the breakdown pressure in the circular wellbore under
the same in situ stress; however, in breakout wellbores, the position of fracture initiation is
under the control of deviatoric stress and wellbore geometry. The results obtained in this
article are very important in the field, where it is supposed to estimate the in situ stress
based on the breakdown pressure or in the design of the hydraulic fracture path. But the
preference of using the mixed criterion over the tensile strength criterion in determining the
breakdown pressure is that the mixed criterion showed that the breakdown pressure is also
affected by the size of the wellbore. So, in summary, eccentricity in elliptical wellbores and
breakout dimensions in breakout wellbores, in situ deviatoric stress value and wellbore
size affect the behavior of hydraulic fracture breakdown pressure. In the next section, the
results are presented separately.
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6. Conclusions

In this research, using a two-dimensional numerical model based on the finite-element
method, an attempt was made to determine the hydraulic fracture breakdown pressure
and fracture initiation site in ellipsoidal and breakout wellbores using the mixed criteria.

The analyses performed on elliptical wellbores led to the following results:

• For each deviatoric stress, there is a critical shape factor. If the wellbore shape factor is
less than the critical shape factor, the breakdown pressure increases with the increase
in the shape factor; for this case, the fracture initiation site is aligned with the major
principal stress (like circular wellbores) or minor diameter of the ellipse. If the wellbore
shape factor is greater than the critical shape factor, the breakdown pressure will
decrease as the shape factor increases, and in this situation, the fracture initiation site
is aligned with the minor principal stress or major diameter of the wellbore, unlike the
circular wellbores.

• According to Equation (6), the critical eccentricity is in control of the deviatoric stress
and the rock tensile strength, it increases by increasing the deviatoric stress or decreas-
ing the tensile strength of the rock.

• The mixed model strongly represents the impact of wellbore size on the breakdown
pressure behavior. The analyses performed on elliptical wellbores with the same shape
factor but different size show that in large wellbores, the tensile fracture mechanism
and breakdown pressure are dominated by the rock tensile strength criterion, but in
small wellbores, the fracture mechanism is dominated by fracture toughness.

The main results obtained in the case of breakout boreholes:

• The main finding of the section of breakout wellbores is that it was observed that for a
given in situ stress, the breakdown pressure in the breakout wellbore is always lower
than that of the circular wellbore. As shown in the following results, wellbore elongation
has a significant effect on both breakdown pressure and failure initiation position.

• Where 0 ≤ D < 0.9, fracture initiation is aligned with the minor in situ stress or
breakout tip, and the ratio of breakdown pressure in the breakout wellbore to the
breakdown pressure of the circular wellbore is between 0.47 and 1, depending on the
deviatoric stress and the width and depth of the breakout zone. In this case, with the
rise of the dimensionless deviatoric stress, the breakdown pressure increases.

• Where 0.9 ≤ D ≤ 2.5, the initiation of fracture is aligned with the maximum in situ
stress, while, the ratio of the breakdown pressure of the breakout wellbore to the
breakdown pressure in the circular wellbore is between 1 and 0.04, depending on the
deviatoric stress and the width and depth of the breakout zone. In this case, with the
rise of the dimensionless deviatoric stress, the breakdown pressure declines.

• As the breakout depth increases, the breakdown pressure declines.
• The effect of wellbore size in breakout wellbores with the same breakout depth and

width but different diameters was investigated and it was seen that similar to elliptical
wellbores, the breakdown pressure in large-diameter wellbores is dominated by the
tensile strength theory, while the breakdown pressure in small wellbores is dominated
by the fracture toughness criterion.
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Appendix A Numerical Model Verification

To investigate the accuracy of the KI obtained from the numerical model, we consider
a state where Sh = 1 MPa, SH = 3 MPa and Pw = 8 MPa. We compare the KI obtained from
the numerical model with the analytical solution provided by Rummel [42]. According to
the principle of superposition, the stress intensity factor for the complex loading illustrated
in Figure A1 is obtained as follows:

KI(SH , Sh, Pw) = KI(SH) + KI(Sh) + KI(Pw) (A1)

where KI is the stress intensity factor, SH and Sh are the maximum and minimum in situ
stresses, respectively, and Pw is the wellbore pressure. The components of relation (A1) are
obtained from the following relations:

KI(SH) = −2SH
√

a
(

β2 − 1
πβ7

)1/2

(A2)

KI(Sh) = Sh
√

a

(πβ)1/2
(

1 − 2
π

sin−1 1
β

)
+ 2
(

β2 + 1
)((β2 − 1

)
πβ7

)1/2
 (A3)

KI(Pw) = Pw
√

a
[

1.3
β − 1

1 + β3/2 + 7.8
sin[(β − 1)/2]

2β5/2 − 1.7

]
(A4)

where β = 1 + 𝓁/a. Figure A2 confirms the validity of the numerical model by compar-
ing the KI obtained from the numerical model with the KI obtained from the analytical
relationship given above.
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Figure A1. Configuration of circular wellbore with two symmetrical cracks along maximum in
situ stress.

In another part of numerical model verification, we make a comparison between the
circumferential stress around the wellbore gained from the FEM with the circumferential stress
gained from the Kirsch’s analytical relations. For the circular wellbore shown in Figure A1,
the circumferential stress around the wellbore is obtained from Equation (A5) [43]:

σθ =

(
SH + Sh

2

) (
1 +

( a
r

)2
)
+

(
SH − Sh

2

) (
1 + 3

( a
r

)4
)

cos 2θ − Pw

( a
r

)2
(A5)

The comparison of the stresses obtained from the numerical model with the stresses
obtained from the analytical relationship for two different directions is given in Figure A3.
Again, good agreement between the two models is observed.
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