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1. Introduction

Everyday life has caused consumers to feel genuine concern about the origin of the
products they consume. For this reason, green technologies are required in industrial
processing to ensure the development of high-quality products. Supercritical technology is
a green methodology that includes multiple types of high-pressure processes that employ
substances in conditions next to or above the critical point [1–3].

Supercritical technology has emerged as an environmentally friendly and efficient
alternative for use in the preparation of multiple varieties of matrix for the extraction [4–6],
fractionation [7,8], and purification of molecules [9]; the transformation of molecules via
chemical reactions [10]; particle formation [11]; impregnation [12]; drying [13]; and steril-
ization [14]. In this Special Issue, fifteen outstanding manuscripts covering novel insights
into the theory and practice of supercritical fluid-based processes are published. For
more information on this Special Issue, readers are strongly encouraged to visit the web-
site: https://www.mdpi.com/journal/processes/special_issues/Supercritical_Technology
(accessed on 6 April 2024).

2. Review Manuscripts

The thermodynamic background [15] of the gas–lattice model and its potential to
describe processes at a supercritical state was reviewed by Tovbin [16]. Supercritical
fluids possess applications as refrigerant fluids. The optimization of heat transfer using
supercritical fluids has been studied via the use of the gas–lattice approach [17,18].

The use of supercritical technology to valorize corn byproducts was reviewed by
Santana and Meireles [19], who proposed the use of a novel process according to the
biorefinery approach [20–23]. The proposed biorefining method consisted of integrating
traditional dry-grinding, performed in an industrial setting, with the supercritical carbon
dioxide (SC-CO2)-based extraction of corn-dried distiller’s grains with solubles (DDGS) to
obtain an oil that was rich in the carotenoids known as lutein and zeaxanthin. This was
followed by the use of pressurized liquid to extract phenolic acids from the semi-defatted
corn DDGS, and by the concentration of the extract into precipitated particles.

3. Research Manuscript: Particle Formation Techniques

Particle formation using supercritical technology offers advantages like the control of
particle size and morphology, high encapsulation efficiency, and the low degradation of
molecules [11,24,25]. In this Issue, Tirado and coworkers [26] modelled the supercritical
fluid extraction of emulsions process (SFEE) of a ternary CO2/ethyl acetate/water system in
order to design equipment that could meet industrial requirements regarding the permitted
quantities of residual organic materials in the leaving streams. In SFEE, SC-CO2 is used
to extract the organic phase from an organic phase/water (O/W) emulsion in which the
target molecule and its coating material have been previously solubilized. After solvent
removal, both compounds precipitate, generating particles that are suspended in the water
phase with the aid of a surfactant [27].
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4. Research Manuscript: Chemical Reactions

Supercritical transesterification is attractive in comparison with conventional transes-
terification as a method with which to produce biodiesel since it requires little time and no
catalyst [28]. In this Issue, García-Morales and coworkers [29] investigated the potential of
alcohols at supercritical state in terms of the transformation of waste beef tallow into fatty
acid alkyl esters or biodiesel. We found conversion rates higher than 90% at 335–390 ◦C for
supercritical iso-butanol and at 360 ◦C for supercritical ethanol.

5. Research Manuscript: Sterilization of Foods

The sterilization of bacteria with SC-CO2 emerged as a method because of the mild
temperatures used in comparison to conventional techniques [30,31]. In this Issue, Dacal-
Gutiérrez and coworkers [32] observed that the inactivation of Clostridium spores in low-
moisture honey is not effective when using SC-CO2 at temperatures lower than 70 ◦C, but
that the use of carbon dioxide, modified with cinnamon essential oil, significantly reduced
the presence of spores at 60 ◦C.

6. Research Manuscripts: Removal of Undesirable Compounds

Chiu and coworkers [33] observed that SC-CO2 has good biocompatibility in the
decellularization of porcine hide for the reconstruction of an abdominal wall that had been
injured by hernia. The decellularization of tissues with SC-CO2 is a pretreatment protocol
that is used to remove undesirable tissue and molecules (protein and lipids) for biomedical
applications [34].

Náthia-Neves and coworkers [35] studied the extraction of colorants from unripe
genipap defatted with SC-CO2. SC-CO2 extraction worked as a pretreatment, ensuring the
plant material was suitable for the subsequent ultrasound-assisted extraction of genipin
and geniposide with water and ethanol mixtures [36].

7. Research Manuscripts: Extraction of Bioactive Compounds

Supercritical technology is used for the extraction of multiple bioactive compounds,
including phenolic compounds [37], carotenoids [38], phytosterols [39], and cannabinoids [40].

Qamar and coworkers [41] employed the half-fractional factorial design to select the
best conditions for the SC-CO2 extraction of cannabis flowers and found that the optimal
conditions were 45 ◦C, 250 bar, and 180 min.

Boumghar and coworkers [42] selected the Box–Behnken experimental design to opti-
mize the supercritical fluid extraction of decarboxylated cannabis flower. The authors used
decarboxylation to pretreat the raw material in order to increase the affinity of cannabinoids
to CO2. The optimal conditions for the extraction of cannabinoids were 55 ◦C, 235 bar, 2 h,
and a CO2 flow rate of 15 g/min.

Popescu and coworkers [43] investigated the potential of oil seeds as modifier to CO2
in order to increase the recovery of carotenoids from tomato slices. After supercritical
fluid extraction, two products were obtained: a solid, oleoresin rich in lycopene, and an oil
fraction rich in other carotenes and linolenic acid.

Duong and coworkers [44] optimized the recovery of saponins from Hedera nepalensis
leaves with the use of pressurized liquid extraction. The Box–Behnken design was adopted
by the authors to select the extraction time, solvent used, and temperature. The extracts
showed antimicrobial activity by inhibiting the growth of three types of bacteria.

Santana and coworkers [45] investigated the effects of the post-acidification of pressur-
ized liquid extracts of sorghum on the concentration of phenolic compounds. The authors
observed that acidification considerably improved the concentration of 3-deoxyanthocyanidins
and cyanidin, but decreased the concentration of other phenolics, including taxifolin,
quercetin, and chlorogenic acid. Sorghum (Sorghum bicolor L.) is the fifth most-produced
cereal worldwide and is a source of diverse classes of phenolic compounds, including
tannins, benzoic- and cinnamic acids, 3-deoxyanthocyanidins, and flavonols [46,47].
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8. Research Manuscripts: Modeling, Simulation, and Economic Evaluation

Bushnaq et al. [48] proposed a three-step process in order to enhance the yield of
sugars from date palm. This was based on (1) the freeze-drying of dates, (2) supercritical
fluid extraction with CO2 modified with water, and (3) the spray-drying of a supercritical-
based extract. After simulation, the authors reported that a highest rate of sugar recovery
can be reached at a CO2–water ratio of 0.07, CO2 flow rate of 31,000 kg/h, 65 ◦C, and
308 bar. SC-CO2 extraction is useful as a pretreatment technique in the extraction of sugars,
allowing manufacturers to remove undesirable compounds of raw material [49].

Before implementing a process in the market, it is important to have knowledge of
the economic feasibility of the process. Economic evaluations consider the components
involved, the costs of processing, the final products, as well as the economic fluctuations
that affect the price of inputs [50–52]. Cruz Sánchez and coworkers [53] extracted lavender
flowers with SC-CO2 at 60 ◦C and 180 and 250 bar, simulated the process for the capacities
of 20 L, 50 L, and 100 L. They observed that the cost of manufacturing was lower at 50 and
100 L, and that the price of equipment was the item that most affected the return on equity.
The return on equity is a parameter that indicates a process’s profitability [54].

Best and coworkers [55] investigated the economic profitability of the extraction of
Mauritia flexuosa pulp using two scenarios: (a) conventional extraction and (b) conven-
tional extraction integrated with SC-CO2 extraction. They concluded that scenario (b) was
the most feasible economically, since it was enabled researchers to obtain two types of
products—namely, an oil rich in carotenoids, and an extract with high phenolic content.

9. Conclusions

The results obtained from the research published in this Special Issue support the
industrial use of supercritical technology via the application of antioxidant extracts in food,
pharmaceutical industries, and the medical sector, as well as the conversion of underused
fat into value-added fuels. Additionally, the theoretical aspects explored in this Issue,
with explorations into thermodynamics, mathematical modeling, and economic evaluation,
provide useful information for the optimization of processes and reduction of costs.

Conflicts of Interest: The author declares no conflicts of interest.
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