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Abstract: In order to overcome the difficulty of parameter tuning caused by the large lag and time-
varying nonlinearity of the tank for lysozyme fermentation, a temperature control method based on
LRWOA-LSTM-PID is proposed in this paper. Firstly, according to the intrinsic mechanism of the
fermenter, a temperature mechanism model based on a dynamic equation is designed, which can
better reflect the temperature changes in the fermenter. Secondly, a Proportional Integral Derivative
(PID) parameter tuning method based on a Long-Short Term Memory Network (LSTM) is proposed,
which takes advantage of the ability of LSTM to learn time sequence information and obtains the
variation trend between error sequences under continuous time sampling, thereby adjusting network
weights more reasonably and accelerating PID parameter tuning. Finally, a Whale Optimization
Algorithm (WOA) based on the Lévy flight and random walk strategy (LRWOA) is proposed for
the initialization of LSTM parameters; this algorithm has excellent optimization capabilities and
overcomes the problem of LSTM falling into local optimal solutions prematurely during param-
eter randomization. The results show that the method proposed in this paper can achieve rapid
tuning of PID parameters, thereby improving the convergence speed of the system and reducing
system overshoot.

Keywords: PID controller; fermentation process; mechanism model; whale optimization algorithm;
Lévy flight strategy; random walk strategy

1. Introduction

Lysozyme is a hydrolytic enzyme that possesses the function of decomposing microbial
cell walls. It functions in bactericidal, anti-inflammatory, antiviral, hemostatic, and tissue
regeneration acceleration [1]. As a non-toxic natural antimicrobial agent, lysozyme plays a
vital role in biotechnology, food industry and pharmaceutical formulations. Currently, the
main method for large-scale industrial production of lysozyme is through the fermentation
of genetically modified microorganisms [2].

The process of lysozyme production has strict requirements for temperature con-
trol [3–5]. During the process, due to the lag issue in the refrigerant cooling method of
the fermenter system, using traditional control algorithms to control the temperature will
cause a large overshoot, which cannot be recovered in a short time. The temperature error
will affect the quality of lysozyme. Therefore, researchers have tried many different control
algorithms to improve the precision and stability of temperature control.

Among them, the PID control algorithm has been widely used in temperature control.
It has been applied in various fields such as controlling the temperature of aircraft cabins,
the temperature control areas of 3D bioprinting devices and the environmental temperature
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in military equipment development and production [6–9]. Satisfactory results have been
obtained in PID temperature control.

Tuning the PID gain quickly and precisely is necessary to make it work in the con-
trol system. The traditional parameter tuning method is the Ziegler–Nichols tuning
method [10–12], which adjusts the PID parameters based on the open-loop dynamic char-
acteristics of the control system. This method is simple and operable, but it often produces
a large overshoot and oscillates back and forth with the response of the controlled system.
With the development of technology, some new parameter tuning methods continue to
emerge. The Fuzzy PID control algorithm uses fuzzy logic to optimize and tune PID param-
eters in real time according to certain fuzzy rules [13–16]. However, this method relies on
operators’ experience to establish fuzzy rules, making it unsuitable for systems that require
frequent changes in conditions. The PID parameter tuning method based on the Particle
Swarm Optimization (PSO) algorithm [17–20] combines bird foraging behavior, group orga-
nization, and optimization mechanisms to better optimize system performance, but it can
fall into local optima and premature convergence. The PID parameter tuning method based
on the Genetic Algorithm (GA), through a compilation mechanism [21–25], avoids the
PID parameter optimization from falling into local optimal solutions. Although the afore-
mentioned meta-heuristic algorithms have strong adaptability and high efficiency [26–29],
their nature of work is still based on iteration, and they are usually based on one-time
parameter optimization. When the system model changes, it is necessary to re-optimize the
parameters. The ability to control temperature in real-time is poor. How to improve the
dynamic characteristics and adaptability of the control system has gradually become an
urgent engineering problem to be solved.

Artificial Neural Networks (ANN) [30–33] have advantages such as good fault toler-
ance, high non-linearity, unique associative memory function, and excellent adaptability.
They can adaptively handle non-linear dynamic information and perform complex log-
ical operations, and have been widely used in PID parameter tuning. The BP neural
network can be used to optimize PID controller parameters [34]. It has been utilized to
control camera stabilizers, achieving the precise control of the stable position of the camera.
The Dynamic Neural Network (DNN) can be used to tune the gain of the PID controller
online [35], which is applied to control pneumatic artificial muscles. This improves the
speed and performance of the control process, and features a dynamically self-organizing
structure. In [36], a Radial Basis Function (RBF) neural network is used to identify the
information of a floating system, and adjust controller parameters in real time. This method
exhibits good control effects when dealing with external disturbances and internal pa-
rameter changes in maglev systems. The Recurrent Neural Network (RNN) can be used
to adapt the PID controller [37], which controls a single degree of freedom pendulum to
track the desired reference position with a rapid response and minimal tracking error. This
provides excellent position tracking results and robustness to changes in system parameters.
In [38], the Diagonal Recurrent Neural Network (DRNN) is used to optimize PID controller
parameters. In a multi-point mooring system, the network learns the dynamic changes
in the mooring system, minimizing square positioning error, which enhances recognition
ability and interference resistance. In order to further improve the optimization ability of
neural networks, the PSO algorithm is used to optimize the initial values of the BP neural
network, and then optimize the control parameters of PID to achieve the precise control of
liquid fertilizer flow rate [39]. The Grey Wolf Optimization algorithm is used to optimize
the initial parameters of fuzzy neural networks; then, the fuzzy neural network with the
optimal parameters is used to adjust the PID parameters to achieve the smoothness and
stability of vehicle control [40]. Although the aforementioned neural networks can quickly
tune PID parameters and improve the system’s dynamic characteristics and adaptability,
they have not effectively utilized target information, historical parameter information,
and historical control information. Moreover, the backpropagation algorithm in neural
networks has poor global optimization capability and is prone to falling into local optima,
limiting the application of neural networks in PID controllers.
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To improve the shortcomings of traditional neural network methods in optimizing
PID controller parameters, a temperature control method of lysozyme fermentation based
on the LRWOA-LSTM-PID method is proposed in this paper. The method first establishes
a fermenter temperature mechanism model described using dynamic equations. Then, it
utilizes the ability of LSTM to learn time sequence information to capture the trend of error
sequences under continuous time sampling. Finally, it initializes LSTM parameters based
on the LRWOA algorithm to enhance the stability of the initial parameters of the LSTM,
thus endowing the controller with an excellent temperature control capability.

The contributions of the method proposed in this paper are as follows:

(1) A temperature mechanism model based on a dynamic equation is designed, which
can better reflect the temperature changes in the fermenter.

(2) A Whale Optimization Algorithm based on the Lévy flight and random walk strategy
is proposed. By introducing Levy flight and random walk strategies into the Whale
Optimization Algorithm, the global and local optimization abilities of the algorithm
are improved. It overcomes the problem of the original algorithm falling into local
extrema prematurely when dealing with complex issues.

(3) A PID parameter tuning method based on LSTM is proposed. This method has the
ability to learn time sequences information and capture the trend of error sequences
under continuous time sampling, so the network weight can be adjusted more reason-
ably. As a result, it achieves the rapid tuning of the PID parameters Kp, Ki, and Kd.

(4) An LSTM parameter initialization method based on the LRWOA algorithm is pro-
posed. The method takes advantage of the excellent optimization capability of the
LRWOA algorithm, overcoming the problem of traditional random parameter initial-
ization methods falling into local optimum solutions prematurely, thereby enhancing
the stability of the initial parameters of the LSTM neural network.

The remainder of this paper is organized as follows: Section 2 introduces the modeling
of the lysozyme fermenter temperature system. Section 3 introduces the improved LRWOA
algorithm. Section 4 describes the overall network structure and the LRWOA-LSTM-PID
algorithm. Section 5 analyzes the experimental results and draws conclusions. Finally, the
conclusion is given in Section 6.

2. Modeling of Fermenter Temperature

An appropriate mathematical model can accurately describe the dynamic relation-
ship between input and output variables over time, playing a crucial role in lysozyme
fermentation temperature control.

Fermenter Temperature Mathematical Model

The lysozyme fermenter is shown in Figure 1a. The lysozyme fermenter is a non-
adiabatic continuously stirred liquid-phase reaction vessel, as shown in Figure 1b.

According to the internal mechanism of the fermenter, the mathematical model of the
lysozyme reaction vessel was established using mechanism modeling method in this paper.

(1) Chemical reaction rate equation

The chemical reaction inside the fermenter is an irreversible exothermic reaction
A

k0→ B, and the concentration of yeast CA and temperature T are essentially uniformly
distributed inside the fermenter. From this, rA for the chemical reaction rate equation of A
can be obtained:

rA =
dCA
dt

= −k0cAe−
E

RT (1)

In the equation, A represents the seed of the microorganism; B is lysozyme; E is the
activation energy of the reaction (J/mol); k0 is the reaction frequency factor; R is the gas
constant; CA is the concentration of reactant A (mol/m3).
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Figure 1. (a) Real lysozyme fermenter. (b) Non-adiabatic continuous reaction vessel. 
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Figure 1. (a) Real lysozyme fermenter. (b) Non-adiabatic continuous reaction vessel.

(2) Material balance equation

The changing rate of cumulant of materials in the fermenter should equal the amount
of material entering the fermenter minus the amount leaving, plus or minus the amount con-
sumed or produced using the chemical reaction of the yeast. Given that the stirrer in the fer-
menter can mix the yeast thoroughly, we can assume complete mixing within the fermenter,
making the density, temperature, and yeast molecular concentration equal everywhere.

For the fermenter, the overall material balance equation is:

d(ρV)

dt
= ρ0F0 − ρF (2)

In (2), F0 is the volume flow of yeast (m3/s); ρ0 is the yeast density (kg/m3); F is
the volume flow of fermentation products (m3/s); ρ is the fermentation product density
(kg/m3); V represents the effective volume of fermenter (m3).

The material balance equation for reactant A is as follows:

dVCA

dt
= F0CA0 − FCA + VrA (3)

In (3), CA0 is the concentration of reactant in yeast (mol/m3); FCA stands for the
volumetric flow rate of reactant A (m3/s); VrA is the volume of reactant A (m3).

(3) The heat balance equation

From the heat balance relationship, we know:

dHR
dt

= Q1 − Q2 ± Q3 ± Q4 (4)

In (4), HR represents the accumulated heat within the fermenter (J); Q1 is the heat
brought into the fermenter by the material per unit time (J/s); Q2 is the heat taken away by
the material leaving the fermenter per unit time (J/s); Q3 refers to the heat effect brought
about by the chemical reaction per unit time (J/s)—if it is an endothermic reaction, the
minus sign is taken before Q3, if it is exothermic, the plus sign is taken; Q4 is the heat
exchanged between the fermenter and the environment per unit time (J/s). If heat is
dissipated, the minus sign is taken before Q4, if heat is absorbed from the environment, the
plus sign is taken. If the fermenter is adiabatic, Q4 is zero.

Assuming that the temperature of the cooling liquid in the interlayer is consistent with
its outlet temperature Tco, ignoring the thermal melt of the inner wall, and assuming that
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the specific heat capacity of the feed and the effluent always remain consistent, the heat
balance equation can be derived as follows:

dVρCPT
dt

= F0ρ0CPTf − CPFPT + Ke Ae(Tco − T)− (∆H)VrA (5)

In the (5), Tf is the feed temperature during yeast fermentation (K); CP is the average
specific heat capacity of the feed and effluent in the fermentation process (J/(kg·K)); F is
the average volumetric flow rate of materials entering and exiting the fermenter (m3/s);
∆H is the reaction heat per unit time (J/s); Ke is the total heat transfer coefficient between
the fermenter wall and the material inside the tank (W/(m²·K)); Ae is the heat transfer area
(m²); Tco is the outlet temperature of the condensate (K).

The heat balance equation for the condensate in the fermenter jacket can also be
obtained as follows:

dVcρcCpc

dt
= FcρcCpc(Tci − Tco) + Ke Ae(T − Tco) (6)

In the (6), Cpc represents the average specific heat capacity of the condensate (J/(kg·K));
Vc is the volume of the condensate in the jacket (m3); ρc represents the density of the
condensate (kg/m3); Fc is the volume flow rate of the condensate (m3/s); Tci is the inlet
temperature of the condensate (K).

As the volumes in the fermenter and jacket remain constant and the density of the
inflowing and outflowing materials is identical, (1) indicates that F = F0. Substituting
Equations (1) and (2) into Equations (3), (5) and (6) yields:

dcA
dt

=
F
V
(cA0−cA)− k0cAe−

E
RT (7)

dT
dt

=
F
V

(
Tf − T

)
+

∆H
ρCP

cAk0e−
E

RT +
Ke Ae

VρCP
(Tco − T) (8)

dTco

dt
=

Fc

Vc
(Tci − Tco) +

Ke Ae

VcρcCPc
(T − Tco) (9)

The mathematical Equations (7)–(9) established above are nonlinear dynamic equa-
tions. To use existing control theory to analyze the dynamic characteristics of the fermenter
under small disturbances, the mathematical equations need to be linearized. The state vari-
able of the fermenter temperature system is denoted by {cA T Tco}, and the input variable,
denoted by

{
F cA0 Tf Fc Tci

}
, consists of control variables and external disturbances from

the actual fermentation process.
The steady-state values of the state and input variables of the fermenter temperature

system are
{

cA T Tco F cA0 Tf Fc Tci

}
and the corresponding changes in the input variables

are
{

∆cA ∆T ∆Tco ∆F ∆cA0 ∆Tf ∆Fc ∆Tci

}
. By using differential operations, a linearized

model can be obtained. According to (7), the equation is:

d∆cA
dt

=
F
V
(∆cA0 − ∆cA) +

(
cA0

V
− cA

V

)
∆F − KT∆cA − KTcA

E

RT2 ∆T (10)

In (10), KT = K0e−
E

RT ; K0 is the total heat transfer coefficient, (W/(m2·K)); E is the
activation energy (J/mol); R is the molar gas constant, ((Pa·m3)/(mol·K)); T is the ther-
modynamic temperature (K); ∆ represents changes; the superscript indicates the vector of
each variable.

Similarly, based on Equations (8) and (9), we have:
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d∆T
dt

=
F
V

(
∆Tf − ∆T

)
+

(
Tf

V
− T

V

)
∆F +

∆H
ρCP

KT∆cA +
∆H
ρCP

KTcA
E

RT2 ∆T +
Ke Ae

VρCP
(∆Tco − ∆T) (11)

d∆Tco

dt
=

Fc

Vc
(∆Tci − ∆Tco) +

(
Tci
V

− Tco

V

)
∆Fc +

Ke Ae

VcρcCPc
(∆T − ∆Tco) (12)

If we set Z = {∆cA∆T∆Tco}T and Z =
{

∆F∆cA0∆Tf ∆Fc∆Tci

}T
, we can obtain the

following standard linear state equation:

dZ
dt

= AZ + BU (13a)

A =



−
(

F
V + KT

)
− E

R−2
T

KTcA 0

KT
∆H
ρcp

KTcA
∆H
ρcp

E
R−2

T
− F

V − KAe
Vρcp

KAe
Vρcp

0 KAe
Vcρccpc

−
(

Fc
Vc

+ KAe
Vcρccpc

)


(13b)

B =


cA0
V − cA

V
F
V 0 0 0

Tf
V − T

V 0 F
V 0 0

0 0 0 Tci
Vc

− Tco
Vc

Fc
Vc

 (13c)

The temperature state equation established using the above mathematical equation
can reflect the dynamic impact of control variables and external disturbances on the output
of the fermenter temperature system. This mathematical model can be used to analyze the
stability of the fermenter temperature.

First, parameters such as the temperature, density, flow rate, volume of the lysozyme
in the fermenter, the volume of the fermenter jacket, and the volume of the condensate
must be collected; then, the heat transfer area, heat transfer coefficient, specific heat capac-
ity, condensate density, reaction activation energy, gas constant, and reaction frequency
factor based on the parameters of the fermenter and the lysozyme fermentation process
is determined. The collected parameters are then analyzed and set, and brought into
the established mathematical model to obtain the transfer function designed using the
mechanistic modeling. The equation is as follows:

G(S) =
4.6e−8.6s

8s2 + 8.9s + 2
(14)

3. Algorithm
3.1. Whale Optimization Algorithm

WOA [41] is a new swarm intelligence optimization algorithm, which contains three
parts: Encircling Prey, Bubble-net attacking and Search Predation.
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(1) Encircling Prey

Assume that in a D-dimensional space, the location of the whale individual with

the best solution in the current whale population is
→
X∗(t), and the location of any other

whale individual is
→
X(t). Then, the whale individual

→
X(t) will change its location under

the influence of the best whale individual. The calculation equations for the next location
→
X(t + 1) is as follows:

→
D =

∣∣∣∣→C ·
→
X∗(t)−

→
X(t)

∣∣∣∣ (15)

→
X(t + 1) =

→
X∗(t)−

→
A ·

→
D (16)

→
C = 2·→r (17)

→
A = 2

→
a ·→r −→

a (18)

In the calculation of
→
D, the meaning of | | is to find the absolute value; a gradually

decays from 2 to 0 as the number of iterations of the algorithm increases; r is a random
vector between [0, 1].

(2) Bubble-net attacking

Bubble-net attacking is a unique hunting method of whales. To mathematically model
the behavior of bubble-net behavior, the following two methods are designed:

a. Contraction enveloping mechanism: This method is roughly the same as enveloping
prey, the difference being that the original range of a is adjusted from 2 to 0 to a
fixed value of 1. Since a determines the range of A, the range of A changes from
the original [−a, a] to now [−1, 1]. At this time, the new position of the whale
individual can appear at any position between the original position and the optimal
solution position.

b. Spiral updating position: This method first calculates the distance between the whale
individual located at (X,Y) and the prey located at (X*,Y*). Then, a spiral equation
is established between the two positions, thereby simulating the spiral movement
pattern of the whale population. The equation is as follows:

→
X(t + 1) =

→
X∗(t) +

→
D

′
·ebl ·cos(2πl) (19)

→
D

′
=

∣∣∣∣→X∗(t)−
→
X(t)

∣∣∣∣ (20)

In (19), b is the constant for the shape of the logarithmic spiral; l is a random number
between −1 and 1. At this time, the whale will move around the prey in a spiral path
within the previous circular area.

To simulate the synchronized behavior of whales, we assume that the probabilities of
choosing the contraction enveloping mechanism and the spiral updating position are equal.
This makes it convenient to update the position of the whales during the optimization
process. The mathematical model is as follows:

→
X(t + 1) =


→
X∗ −

→
A·

→
D i f p < 0.5

→
X∗(t) +

→
D

′
·ebl ·cos(2πl) i f p ≥ 0.5

(21)

(3) Search Predation

In the mathematical model of the contraction enveloping predation behavior, the
range of A1 is limited to [−1, 1]. If the range of A1 is not within [−1, 1], any whale in
the current swarm may not approach the currently optimal whale individual, but instead
randomly select one individual from the current whale swarm to approach. Although
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search predation can cause a random individual in the current whale swarm to deviate
from the target prey, it can enhance the global search ability of the whale swarm. A and
C are coefficients. In the D-dimensional space, the position of a random individual in the

current whale swarm is
→
Xrand. The mathematical model of search predation behavior can

be described using the following equation:

→
D =

∣∣∣∣→C ·
→
Xrand −

→
X
∣∣∣∣ (22)

→
X(t + 1) =

→
Xrand −

→
A·

→
D (23)

3.2. LRWOA Algorithm

The WOA tends to prematurely fall into local optimums when solving complex
optimization problems. To solve this issue, this paper proposes a WOA based on Lévy
flight and random walk strategies. The Lévy flight strategy is introduced to make individual
whales exist widely in the search range and improve the global optimization ability of the
algorithm. The random walk strategy is introduced to make individual whales search for
the best value in a relatively concentrated range and improves the local optimization ability
of the algorithm.

3.2.1. Lévy Flight Strategy

The Lévy flight [42] refers to a random walk where the probability distribution of the
step length follows a heavy-tail distribution, which can maximize the search efficiency
in uncertain environments. When the spatial dimension of the Lévy flight’s random
movement is higher than one dimension, the step length distribution shows isotropy. The
Lévy flight strategy exhibits excellent global search capability due to its high probability of
performing a small area search and a low probability of long-distance flight. The position
update equation in the Lévy flight strategy is as follows:

xnew
k (t) = xk(t) + l ⊕ levy(λ) (24)

where levy(λ) is the step length of the Lévy distribution, which satisfies levy ∼ u = t−λ,
1< λ ≤ 3; ⊕ denotes element-wise multiplication; l represents the control step factor,
l = 0.01(xk(t)− xb); xb is the optimal solution obtained after t iterations; xk(t) is the k-th
solution of the t-th generation.

The Mantegna method is commonly used to obtain the step length s of the Lévy flight
strategy, as shown in (25):

s =
µ

|v|1/γ
(25)

where γ is typically 1.5; µ and ν follow a normal distribution, µ ∼ N
(

0, σ2
µ

)
, v ∼ N

(
0, σ2

v
)
,

σv = 1, defined as follows:

σµ =

{
Γ(1 + γ)sin(πγ/2)

γ·Γ
[
(γ + 1)/2·2(γ−1)/2

]}1/γ

(26)

Figure 2 shows the walking trajectory of a two-dimensional random walk and a two-
dimensional Levy flight. The difference between the two modes can be seen: the random
walk provides roughly the same size for each step, while the Levy flight performs many
small steps with the occasional large step.
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3.2.2. Random Walk Strategy

The basic idea of random walk [43] is as follows: starting from any individual in a
group, traverse the entire group. For any given individual, the probability of moving to an
adjacent individual is 1 − a, and the probability of randomly jumping to any individual
in the group is a. The a mentioned above is the probability of the jump occurring. After
each jump, the probability distribution can be obtained that reflects the probability of
each individual in the group being found. This probability distribution is then used as
an input for the next walk and the process is repeated. Under predetermined conditions,
the probability distribution tends to converge, and the stable probability distribution is
obtained after convergence.

Random walks utilize crossover and hybrid mutation to generate new solutions,
which can enhance the diversity of the group and effectively avoid falling into local optimal
solutions, thereby improving the local search ability of the target algorithm. Applying a
random walk strategy in swarm intelligence algorithms can accelerate the speed of finding
optimal solutions. The update equation for the random walk strategy is as follows:

xnew
k (t) = xk(t) + ε

(
xj(t)− xi(t)

)
(27)

where, ε is the scale factor, ε~U(0, 1); xj(t) and xi(t) are two random solutions in the
t-th generation.

3.2.3. LRWOA

While both the random walk strategy and Levy flight strategy can update individual
positions, they cannot guarantee that the fitness of the new solution is greater than the
fitness of the original solution. Therefore, we use a Greedy mechanism to ensure the
selection of the optimal solution, as shown in the following equation:

xk(t) =
{

xk(t), f it(xi
′(t)) < f it(xk(t))

x′i(t), f it
(
x′i(t)

)
> f it(xk(t))

(28)

Once the random walk strategy and Levy flight strategy have been established, the
Whale Optimization Algorithm (WOA) proceeds with its optimization process as follows:
If a randomly selected individual’s value is equal to the best, second best, or third best
individual value and is less than 0.5 − 0.5t/(φ ∗ max), the whale individual will use the
Levy flight strategy to update its position. On the other hand, if the value of a randomly
selected individual matches the best, second best, or third best individual value and is
greater than or equal to 0.5 − 0.5t/(φ ∗ max), the whale individual will choose the random
walk strategy to update its position. Otherwise, the whale individual will use the original
WOA strategy to update its position. t represents the current iteration within the process,
max denotes the maximum number of iterations, and φ refers to the exploration iteration
ratio. The algorithm flow as shown in the Algorithm LRWOA (Algorithm 1).
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Algorithm 1. LRWOA

Input: Number of whales N, maximum number of iterations max, iteration ratio φ

Output: Xα

Start:
1: Initialize the whale population Xk (k = 1, 2,...,N) in the search space.
2: Calculate the fitness values of the whale population individuals and select the best individual
Xα, the second best individual Xβ, and the third best individual Xδ.
3: Select a random individual rand and record its position.
4: while t < max
5: for k = 1 to N perform

6: Calculate the values of parameters C and A according to
→
C = 2·→r and

→
A = 2

→
a ·→r −→

a
7: if (X= =Xα||X= =Xβ||X= =Xδ) perform
8: if (rand < 0.5 − 0.5t/(φ ∗ max)) perform
9: Adjust the positions by xnew

k (t) = xk(t) + l ⊕ levy(λ).
10: else
11: Adjust the positions by xnew

k (t) = xk(t) + ε
(

xj(t)− xi(t)
)

.
12: end if

13: Select the better positions based on xk(t) =
{

xk(t), f it(xi
′(t)) < f it(xk(t))

xi
′(t), f it(xi

′(t)) > f it(xk(t))
.

14: end if
15: Update the individuals’ positions based on Equations (15) to (23).
16: end for
17: Calculate the fitness of individuals, update whale positions, and record the positions.
18: t = t + 1
19: end while

3.2.4. Results and Analysis

To evaluate the performance of the LRWOA algorithm, this study selects 15 interna-
tionally recognized benchmark functions as the basis for the experimental tests. These
benchmark functions vary in size and complexity but are all designed for minimization
problems. The benchmark functions can be classified into single-peak and multi-peak func-
tions. The single-peak functions are used to assess the algorithm’s exploitation capability,
while the multi-peak functions are used to assess the algorithm’s exploration capability.
Table 1 provides the names, search ranges, function indices, and adaptive values of the
15 benchmark functions.

Table 1. Types, names, ranges, and adaptive values of international test functions.

Function Type Index Function Name Search Range Adaptive Value

single-peak
functions

F1 Sphere Function [−100, 100] 0
F2 Schwefel’s Problem 1.2 [−100, 100] 0
F3 Schwefel’s Problem 1.2 With Noise [−32, 32] 0
F4 Schwefel’s Problem 2.21 [−5, 5] 0
F5 Schwefel’s Problem 2.22 [−10, 10] 0
F6 High Conditioned Elliptic Function [−3, 1] 0
F7 Step Function [−10, 10] 0

multi-peak
functions

F8 Schwefel Function [−500, 500] 0
F9 Rosenbrock’s Function [−10, 10] 0
F10 Quartic Function [2, 5] 0
F11 Griewank’s Function [−600, 600] 0
F12 Ackley’s Function [−32, 32] 0
F13 Rastrign’s Function [−5.12, 5.12] 0
F14 Rastrign’s Noncontinue Function [−5.12, 5.12] 0
F15 Weierstrass Function [−100, 100] 0

The LRWOA is compared with the WOA, PSO [44], Grey Wolf Optimizer (GWO) [45],
and GWO enhanced using the Lévy-flight strategy (LGWO) [46] through experiments.
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To ensure fairness and impartiality, considering the instability of the algorithms, each
algorithm experiment is run independently 10 times, and the average results are taken. In
the comparative experiments of different algorithms, the population size is set to 50, and
the dimension of the decision variables is set to 60. Figures 3–6 shows the convergence
curves of some functions, where F1 and F8 represent unimodal functions, and F10 and F14
represent multimodal functions.
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Upon comprehensively analyzing the convergence curves in Figures 3–6, it can be
observed that the LRWOA converges rapidly on both unimodal and multimodal functions,
and its convergence precision is also improved. On the unimodal functions F1 and F8, the
PSO, GWO, LGWO, and WOA all fall into local optima in the early stages of the search
process, indicating a weaker local search capability. Among these, the PSO performs less
effectively in local search capabilities than the other four and does not exhibit a strong
performance in global optimization. The LRWOA, aided by the random walk strategy,
can ensure the rapid convergence and the capability of escaping local optima, manifested
specifically in the steep declines on the convergence curves. On the multimodal functions
F10 and F14, compared to the other four algorithms, the LRWOA demonstrates a faster
drop and closer approach to the function’s adaptive values on the convergence curve graph,
while also avoiding stagnation points that are easily entrapped.

This indicates that the LRWOA has better global exploration capabilities with the
assistance of the Lévy flight strategy. The above analysis indicates that, compared with
the other four algorithms, the LRWOA excels in comprehensive performance, efficiently
solving various problems.

4. LRWOA-LSTM-PID Controller

This section sequentially introduces the PID controller, the LSTM-PID controller model,
and the LSTM-PID controller based on the LRWOA.

Figure 7 illustrates the overall structure diagram of the control system, which contains
four modules: the LRWOA module, the LSTM module, the PID controller module, and the
fermenter temperature system module. The LRWOA provides optimized initial parameters
for the LSTM, thereby reducing the possibility of the network falling into local optima
to some extent. The LSTM online tunes parameters for the PID controller, strengthening
the connection between control information and thus accelerating the temperature control
speed and stability; the PID controller still plays a leading role in the control process. It
controls the actuator by outputting control quantities, thereby controlling the fermenter
temperature system. The model of the fermenter temperature system in this paper is shown
in (14).
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4.1. PID Controller

The control law for the PID controller as shown in (29). In (29): t represents the sample
number, u(t) is the computed output value at the t-th sampling instant, and e(t) is the
deviation value input at the t-th sampling instant. The working principle of PID is to
perform proportional calculation, differential calculation, and integral calculation on the
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difference value e(t), and add these three calculation results to obtain the control quantity
u(t) of the PID controller.

u(t) = Kp ∗ e(t) + Ki

t

∑
j=0

e(j) + Kd[e(t)− e(t − 1)] (29)

After determining the expression of u(t), using u(t)− u(t − 1) can obtain the incre-
ment of the control quantity. The resulting mathematical expression is as follows:

∆u(t) =
(
kp + ki + kd

)
e(t)−

(
kp + 2kd

)
e(t − 1) + kde(t − 2) (30)

In (30), kp, ki, and kd are the proportional coefficient, integral coefficient, and derivative
coefficient, respectively; ∆u(t) is the difference between the controller output at time t
and the previous moment; e(t) is the difference between the target value of lysozyme
fermentation temperature r(t) at time t and the output value of the fermenter temperature
model y(t).

4.2. LSTM-PID Controller

Control systems designed using neural network methods have stronger real-time
performance, robustness, and adaptability. However, the BP-PID controller designed using
the BP does not effectively utilize target information, previous parameter information,
previous control information, etc. Additionally, the global optimization capability of the
backpropagation learning algorithm is relatively poor, making it easy to fall into local
optima, which fails to achieve good control effects and limits the application of neural
networks in PID controllers.

To solve these issues, a PID controller based on the LSTM is designed. An ordinary
RNN simply stacks past information, which can easily lead to problems with gradient
explosion and gradient vanishing during training. In contrast, an LSTM can control the
transmission state through a gating system, remembering information that needs to be
stored long-term and ignoring less relevant information. The structure of the LSTM-PID
controller designed in this paper is shown in Figure 8. The inputs to the LSTM are set as the
target value of the current time point for lysozyme fermentation temperature, the output
value of the current time point for the lysozyme fermentation temperature model, and the
error values of these two factors for the three time points before and after; the output of the
neural network is set as the three parameter values of the PID controller, kp, ki, and kd.
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The structure diagram of the LSTM-PID controller is shown in Figure 9, where:

→
x =


h(t − 1)
c(t − 1)
x(t)

(31)
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h(t − 1) represents the output value of the network at the previous moment; c(t − 1)
denotes the memory unit at the previous moment. x(t) is the current input as a one-
dimensional vector. 

x1(t) = r(t)
x2(t) = y(t)
x3(t) = e(t)
x4(t) = e(t − 1)
x5(t) = e(t − 2)

(32)

where r(t) is the target temperature value for lysozyme fermentation; y(t) is the output
temperature value of the fermenter system; e(t) is the difference between r(t) and y(t) at
time t.
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4.2.1. The Forward Propagation of LSTM

Neural network training is divided into forward propagation and backpropagation.
Forward propagation starts from the input layer and continuously calculates the results
obtained using each layer of the neural network and the output results through the ac-
tivation function, finally obtaining the output process. The forward propagation of the
LSTM involves the computation of output h and cell state c. The gate system inputs a
vector and outputs a value between 0 and 1, allowing useful information flow to pass and
blocking useless information flow. Assuming that the weight vector and bias of the gate
are represented by W and b respectively, then the gate can be represented by (33):

g
(→

x
)
= σ

(
W

→
x + b

)
(33)

where, σ is the sigmoid function σ(z) = 1
1+e−z .

The use of gates involves element-wise multiplication of the output vector by the
vector to be controlled. Given that the output of the gate is a real vector between 0 and
1, when the gate output is 1, any vector multiplied by it will not change, meaning all
information can pass through; when the output is 0, any vector multiplied by it will result
in a zero vector, meaning no data can be passed through. As the value range of the sigmoid
function is (0, 1), the state of the gate is always half-open and half-closed. The input
gate and forget gate in the gating system can be represented by Equations (34) and (35),
respectively.

i(t) = σ(Wi·[h(t − 1), x(t)] + bi) (34)

f (t) = σ
(

W f ·[h(t − 1), x(t)] + b f

)
(35)

where, Wi is the weight matrix of the input gate, [h(t − 1), x(t)] represents concatenating
two vectors into a longer vector, bi is the bias term of the input gate, W f is the weight matrix
of the forget gate, and b f is the bias term of the forget gate.
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The current time input cell state
∼
c (t) is calculated from the previous moment’s output

and the current moment’s input, as shown in (36).

∼
c (t) = tanh(Wc·[h(t − 1), x(t)] + bc) (36)

In the (36), Wc is the weight matrix of the cell state, and bc is the bias term of the cell
state. The current time cell state c(t) can be obtained by multiplying the forget gate f (t)
and the cell state c(t − 1) of the last moment element by element, then multiplying the
input gate i(t) and the cell state

∼
c (t) of the current moment input element by element, and

finally adding the two results, the equation is as follows:

c(t) = f (t) ∗ c(t − 1) + i(t) ∗ ∼
c (t) (37)

In the (37), the symbol * indicates that the variables are multiplied element by element.
It can be seen that the new cell state c(t) is obtained by combining the memory

∼
c (t) of the

current moment of the LSTM and the memory c(t − 1) of the previous moment. Due to the
control of the input gate and the forget gate, it can prevent unimportant information from
entering the memory and can save previous information. Finally, the output gate is used
to control the influence of the LSTM on the current moment output, and the output gate
equation is as follows:

o(t) = σ(Wo·[h(t − 1), x(t)] + bo) (38)

In (38), Wo is the weight matrix of the output gate, and bo is the bias term of the output
gate. The final output of the LSTM is determined using the cell state and the output gate.
The output is shown in (39). In this paper, the output h(t) of the LSTM neural network is
the three parameters of PID: kp, ki, and kd.

h1(t) = o1(t) ∗ tanh[c1(t)] = kp
h2(t) = o2(t) ∗ tanh[c2(t)] = ki
h3(t) = o3(t) ∗ tanh[c3(t)] = kd

(39)

4.2.2. The Backpropagation of the LSTM

The loss function is obtained based on the results of forward propagation and input
into the backpropagation process to train the neural network. In this section, the back-
propagation algorithm used to train the LSTM mainly consists of the following three steps:
First, compute the output values of all neurons in the network, namely the five vectors i(t),
f (t), o(t), c(t), and h(t) Then, calculate the error values of all neurons in the network in
reverse; the backpropagation of the error of the LSTM includes two directions, namely the
propagation to the previous layer and the propagation along the time direction. Finally,
calculate the gradients of each weight according to the relevant error values.

The error of the LSTM is backpropagated over time, which is a common method for
training recursive neural networks. The central idea of this method is to constantly find
suitable values along the negative gradient direction of the parameters to be optimized
until the model converges. Before performing backpropagation, the error δ(t) at time t is
defined as follows:

δ(t) =
∂E

∂h(t)
(40)

To propagate the error back in time, it is necessary to calculate the error δ(t − 1) at
time t − 1. This can be achieved using (40):

δT(t − 1) =
∂E

∂h(t − 1)
=

∂E
∂h(t)

· ∂h(t)
∂h(t − 1)

= δT(t)
∂h(t)

∂h(t − 1)
(41)
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By expanding (41) and utilizing the total derivative formula along with
Equations (37) and (39), we can derive the formula for error propagation to any time k:

δT(k) =
t−1

∏
j=k

δT
o (j)Woh + δT

f (j)W f h + δT
i (j)Wih + δT

∼
c
(j)Wch (42)

In (42), δ∗(t) represents the error at moment j for * (* stands for the input gate, output
gate, forget gate, and cell state), and Wα,β represents the weight between α and β.

In the backpropagation of error terms in the LSTM, it is assumed that the current layer
is the lth layer. The error term of the l − 1st layer is defined as the derivative of the error
function with respect to the weighted input of the l − 1st layer, which is:

δl−1
t =

∂E
netl−1

t
(43)

When calculating the gradients of each weight, for the weight gradients of Woh, W f h,
Wih, and Wch, they are actually the sum of the gradients at each moment. Therefore, it is
first necessary to find out their gradients at the moment t, and then calculate their final
gradients. The error terms δo, δ f , δi and δ∼

c
have been obtained in the previous (42), so the

gradient values at the moment t can be obtained as follows:

∂E
∂W f h,t

= ∂E
∂net f ,t

· ∂net f ,t
∂W f h,t

= δ f ,thT
t−1

∂E
∂Woh,t

= ∂E
∂neto,t

· ∂neto,t
∂Woh,t

= δo,thT
t−1

∂E
∂Wih,t

= ∂E
∂neti,t

· ∂neti,t
∂Wih,t

= δi,thT
t−1

∂E
∂Wch,t

= ∂E
∂net∼

c ,t
·

∂net∼
c ,t

∂W∼
c h,t

= δ∼
c ,t

hT
t−1

(44)

By summing up the gradients at each moment, the final gradients can be obtained:

∂E
∂Woh

=
t

∑
j=1

δo,jhT
j−1

∂E
∂W f h

=
t

∑
j=1

δ f ,jhT
j−1

∂E
∂Wih

=
t

∑
j=1

δi,jhT
j−1

∂E
∂Wch

=
t

∑
j=1

δ∼
c ,j

hT
j−1

(45)

The following can be obtained based on the corresponding error terms:

∂E
∂Wij

=
∂E

∂net
· ∂net
∂Wij

(46)

In (46), Wij represents the weight of the ith neuron in the hidden layer and the jth
neuron in the output layer; net is the input to the output layer.

However, after setting the output of the neural network as the three parameters of the
controller, since the desired PID controller target parameters are uncertain, the external
environment cannot provide clear target values for the neural network to learn. Therefore,
this paper redesigns the backpropagation algorithm of the LSTM in combination with
the formula of the PID controller and sets the difference between the temperature to be
controlled in the fermenter and the actual temperature in the fermenter as the new error
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value of the neural network. As shown in (47), a new factor is integrated when solving,
which is:

∂E
∂Wij

=
∂E
∂y

· ∂y
∂∆u

·∂∆u
∂h

· ∂h
∂net

· ∂net
∂Wij

(47)

In (47), E is the mean square error function; y is the actual measured value of the
system; ∆u is the output of the controller; h is the output of the neural network; since
∂y/∂∆u is unknown, it can be approximately replaced by the sign function sgn which leads
to the inaccuracy of the calculation and can be compensated by adjusting the learning rate.

4.2.3. PID Parameter Tuning Based on LSTM

The design of the neural network includes the error calculation and the way of error
backpropagation. It leverages the LSTM to optimize the kp, ki, and kd parameters of the
PID controller.

The main process of this controller during control is as follows:
Step 1: Build the PID control algorithm and design the LSTM, combine the PID control

algorithm and the LSTM, determine the learning rate η and the inertia coefficient α of the
LSTM, and set the initial time t to 1.

Step 2: By setting the target temperature r(t) and the actual temperature y(t) calculated
using the mathematical model, the error e(t) at this moment is obtained. The calculation
formula of e(t) is e(t) = r(t)− y(t).

Step 3: Take r(t), y(t), e(t), e(t − 1), e(t − 2) as the inputs of the LSTM, and set the
initial values r(0), y(0), e(0), e(−1), e(−2) to 0.

Step 4: Set the output of the LSTM as the three adjustable parameters of the PID
controller.

Step 5: Calculate the output u(t) of the PID controller:{
u(t) = u(t − 1) + ∆u(t)

∆u(t) = kp(e(t)− e(t − 1)) + kie(t) + kd(e(t)− 2e(t − 1) + e(t − 2))
(48)

Step 6: Set the difference e(t) between y(t) and r(t) as the error of the LSTM, carry out
the learning of the LSTM, adjust the weight parameters of the neural network online, and
realize the adaptive adjustment of the controller parameters.

Step 7: When e(t) is less than the set threshold, stop adjusting the controller parameters,
determine the final controller parameters and input them into the PID controller to obtain
the control parameters, otherwise let t = t + 1 and return to step 2.

4.3. LSTM-PID Controller Based on LRWOA Algorithm

Although the PID controller based on the LSTM has improved the shortcomings of
the classical PID controller, there are still some shortcomings in the training process of the
LSTM. For example, when using the backpropagation algorithm to optimize the neural
network during training, there is a certain probability that the control system will diverge
and not converge. In response to this situation, this article introduces inertia terms into
the backpropagation algorithm to alleviate the oscillation problem. In addition, because
the initial parameter values of the neural network are initialized in a randomized manner
during training, this may cause the neural network to fall into a local optimal solution,
resulting in poor results. If suitable parameters can be found for the neural network in the
early stages of neural network training, the above problems can be effectively improved.
Using the excellent optimization ability of the LRWOA algorithm can find more appropriate
parameters in the early stages of neural network training, which can reduce the divergence
and non-convergence problems of neural network training.

Using the LRWOA algorithm to solve the problem of initial weights in LSTM has
the following two key points: First, the dimension values of the whales in the LRWOA
algorithm should be equal to the number of connection weights in the LSTM. Each position
of the whale in the LRWOA is set to an initial weight in the neural network. Second, the
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fitness function in the LRWOA algorithm needs to be replaced with the mean square error
function in the LSTM.

Figure 10 provides an explanation in a two-dimensional space for (16). The position
(X, Y) of the whale individual can be updated according to the position (X*, Y*) of the whale
individual currently obtaining the best solution. By adjusting the values of A and C, the
whale individual can be updated to different positions around the current best solution.
The possible update positions in three-dimensional space are shown in Figure 11.
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current best solution).

By defining a vector r, the individual can be updated to any position around the
best solution in Figure 11, therefore, (16) can simulate the behavior of surrounding prey.
The above knowledge can also be applied to the n-dimensional search space. Whale
individuals will move around the currently obtained best solution in the n-dimensional
space. Therefore, when applied to the optimization of initial parameters of LSTM, it is
necessary to set the Whale Optimization Algorithm as a four-dimensional search space,
corresponding to Wi, W f , Wc and Wo of the LSTM network, respectively.

The workflow of the optimized controller is as follows:
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Step 1: Firstly, determine the topology of the LSTM to find out the number of parame-
ters in each layer of the network and the number of network hyperparameters;

Step 2: Set the dimension of the LRWOA algorithm to the number of parameters in
step 1 and randomly initialize the position of the whale population;

Step 3: Use the error between the target value and the output value as the fitness
function. According to the fitness function, judge whether the current position of the whale
meets the conditions. If it meets the conditions, output the best position of the whale
individual in the whale population and jump to step 7, otherwise, jump to step 4;

Step 4: Calculate the objective function value of the whale population;
Step 5: Update the positions of all whale individuals in the whale population;
Step 6: Update the objective function value of the whale population;
Step 7: Use the obtained output result as the optimal initial parameter of the neu-

ral network;
Step 8: Set the target temperature r(t) and obtain the actual temperature y(t) through

measurement sampling to obtain the current error e(t). The calculation equation of e(t) is
e(t) = r(t)− y(t);

Step 9: Use r(t), y(t), e(t), e(t − 1), e(t − 2) as the input of the LSTM neural network;
Step 10: Set the output of the LSTM as the three adjustable parameters of the PID

controller;
Step 11: Calculate the output of the PID controller, set the difference e(t) between y(t)

and r(t) as the error of the LSTM, conduct LSTM learning, adjust the weight parameters
of the neural network online, and realize the self-adaptive adjustment of the controller
parameters;

Step 12: When e(t) is less than the set threshold, stop adjusting the controller parame-
ters, determine the final controller parameters, and obtain the control parameters into the
PID controller, otherwise, let t = t + 1 and return to step 8.

5. Experiment
5.1. Parameter Description

According to the parameters of the lysozyme fermentation process provided by the
project cooperation unit, the relationship between temperature and lysozyme activity is
shown in Figure 12. As can be seen from Figure 12, the yield of lysozyme shows a trend of
first increasing and then decreasing with temperature. This is because the lysozyme is not
active enough at low temperatures, while higher temperatures will cause the enzyme to lose
activity. From the figure, it can be seen that the enzyme activity reaches the highest point
when the temperature is 33 ◦C. Therefore, the best temperature in the process of lysozyme
fermentation is set as 33 ◦C. The subsequent experiments will use this temperature as the
control target of the control system.
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Figure 12. Temperature and lysozyme yield relationship diagram.

The input data of the control system are different from the dataset of traditional neural
networks. The input of the neural network in this paper is a time series sequence. The
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specific input is as follows: the output sequence of the control system at the current moment,
the system target value, and the error sequence of the two in the previous three moments.

In [6,34], PID and BP-PID have been widely applied in the industry and are the two
most representative controllers. In [17–22,39], heuristic algorithms are used to optimize
the initial parameters of the BP neural network, among which PSO-BP-PID is the most
representative. In [37], the method of using the RNN is employed to optimize the PID
parameters, which demonstrates excellent position tracking results and robustness against
variations in system parameters.

For this purpose, we chose PID [6], BP-PID [34], PSO-BP-PID [39] and RNN-BP-
PID [37] as the comparison methods for the experiment.

The control system in this paper is the temperature control system of the fermenter,
and its system function is shown in (14) in Chapter 2. The parameters analyzed in the
comparative experiment are explained in Figure 13.
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Figure 13. PID experiment parameter explanation diagram.

In Figure 13, Mp represents the overshoot generated by the system; Ts represents the
system’s settling time; Td represents the system’s delay time; Tr represents the system’s rise
time; Tp represents the system’s peak time; Err represents the system’s error value.

5.2. Experimental Results and Analysis

Comparative experiments were conducted on the five controllers, and Figure 14
shows the control performance of the classic PID controller, BP-PID controller, PSO-BP-PID
controller, RNN-BP-PID controller, and LSTM-PID controller. Rin represents the target
temperature. These controllers can complete the control of the fermenter temperature in
a short time; the control duration can be kept within 1 s and the overshoot size can be
controlled within 2 ◦C. Among them, the classic PID controller, BP-PID, and PSO-BP-PID
controllers have very similar responses, showing an upward and downward fluctuation
and gradually stabilizing trend, while the RNN-BP-PID and LSTM-PID controllers stabilize
slowly after continuously rising to the target temperature.

In terms of the Td parameter, the five controllers are basically consistent, thanks to the
excellent performance of the PID controller itself. In terms of the Tr and Tp parameters,
PID, BP-PID, and PSO-BP-PID show an increasing relationship in sequence, while RNN-
BP-PID and LSTM-PID do not produce overshoot due to the addition of recurrent neural
network, so that their rising time, peak time and stable time are consistent. In terms of the
Ts parameter, it can be observed that LSTM-PID performs best, reaching stability at 0.61 s.
The control duration of the classic PID controller is significantly longer than the other four
controllers, gradually stabilizing around 1 s. This is because the parameters of the classic
PID are fixed and cannot change with the environment. The performances of the other
three controllers are comparable, stabilizing the target temperature almost at the same
time. In terms of the Mp parameter, controllers with the recurrent neural network perform
better than other controllers. Specifically, classic PID, BP-PID, and PSO-BP-PID all have
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an overshoot, which are 1.62 ◦C, 0.79 ◦C, and 0.1 ◦C, respectively. However, the recurrent
neural network, thanks to its stronger fitting ability and unique associative memory ability,
therefore has no overshoot in RNN-BP-PID and LSTM-PID in this system.
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Table 2 shows the specific parameters of the five controllers during the control process.
It can be seen that LSTM-PID and RNN-BP-PID have the most outstanding performance
in terms of overshoot, with no overshoot observed. In terms of settling time, LSTM-PID
performs best, reducing by 42.5% compared to the traditional PID, 17.6% compared to
BP-PID, 15.3% compared to PSO-BP-PID, and 20.8% compared to RNN-BP-PID. However,
in terms of rise time and peak time, since LSTM-PID does not produce overshoot, both of
these times are equivalent to the settling time, so they have no comparative significance.
From the above analysis, it is clear that LSTM-PID has the best performance.

Table 2. Controller comparison table at 33 ◦C. Bold represents the best result.

CONTROLLER PID BP-PID PSO-BP-PID RNN-BP-PID LSTM-PID

Rise time (s) 0.48 0.46 0.47 0.77 0.61
Settling time (s) 1.06 0.74 0.72 0.77 0.61
Overshoot (◦C) 1.62 0.79 0.10 0.00 0.00
Peak (◦C) 34.62 33.79 33.10 33.00 33.00
Peak time (s) 0.53 0.50 0.48 0.77 0.61
Kp 4.08 9.91 2.51 14.82 10.01
Ki 0.87 1.92 1.72 1.8 2.09
Kd 12.00 9.46 10.03 10.4 10.06
Error 0 0 0 0 0

To verify the effectiveness and optimization ability of the LRWOA algorithm, a compar-
ative experiment was carried out between the LSTM-PID controller based on the LRWOA
algorithm and the PID controller based on the LSTM. The results are shown in Figure 15.

From Figure 15, it can be seen that, compared to LSTM-PID, LRWOA-LSTM-PID can
reach the target temperature more quickly during the control process. Overall, LRWOA-
LSTM-PID shows stable improvements in rise time, peak time, and settling time compared
to LSTM-PID. Specifically, in terms of rise time, peak time, and settling time, the controller
designed in this section benefits from the inclusion of the strong optimization ability of the
LRWOA algorithm, which can quickly find suitable initial parameter values for the LSTM,
thus reducing by 9.8% compared to the LSTM-PID controller. In terms of overshoot, both
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LRWOA-LSTM-PID and LSTM-PID benefit from the cyclic neural information feedback
mechanism, so both show excellent performance and do not produce overshoot in this
system. In terms of controller parameters, both LRWOA-LSTM-PID and LSTM-PID can
quickly find a reasonable parameter combination for the PID controller, enabling it to
respond quickly to the control system. The specific parameters of the results are shown
in Table 3.

Processes 2024, 12, 866 22 of 25 
 

 

both of these times are equivalent to the settling time, so they have no comparative signif-

icance. From the above analysis, it is clear that LSTM-PID has the best performance. 

Table 2. Controller comparison table at 33 °C. Bold represents the best result. 

CONTROLLER PID BP-PID PSO-BP-PID RNN-BP-PID LSTM-PID 

Rise time (s) 0.48 0.46 0.47 0.77 0.61 

Settling time (s) 1.06 0.74 0.72 0.77 0.61 

Overshoot (°C) 1.62 0.79 0.10 0.00 0.00 

Peak (°C) 34.62 33.79 33.10 33.00 33.00 

Peak time (s) 0.53 0.50 0.48 0.77 0.61 

Kp 4.08 9.91 2.51 14.82 10.01 

Ki 0.87 1.92 1.72 1.8 2.09 

Kd 12.00 9.46 10.03 10.4 10.06 

Error 0 0 0 0 0 

To verify the effectiveness and optimization ability of the LRWOA algorithm, a com-

parative experiment was carried out between the LSTM-PID controller based on the 

LRWOA algorithm and the PID controller based on the LSTM. The results are shown in 

Figure 15. 

 

Figure 15. Comparison result diagram of LRWOA-LSTM-PID and LSTM-PID. 

From Figure 15, it can be seen that, compared to LSTM-PID, LRWOA-LSTM-PID can 

reach the target temperature more quickly during the control process. Overall, LRWOA-

LSTM-PID shows stable improvements in rise time, peak time, and settling time compared 

to LSTM-PID. Specifically, in terms of rise time, peak time, and settling time, the controller 

designed in this section benefits from the inclusion of the strong optimization ability of 

the LRWOA algorithm, which can quickly find suitable initial parameter values for the 

LSTM, thus reducing by 9.8% compared to the LSTM-PID controller. In terms of over-

shoot, both LRWOA-LSTM-PID and LSTM-PID benefit from the cyclic neural information 

feedback mechanism, so both show excellent performance and do not produce overshoot 

in this system. In terms of controller parameters, both LRWOA-LSTM-PID and LSTM-PID 

can quickly find a reasonable parameter combination for the PID controller, enabling it to 

respond quickly to the control system. The specific parameters of the results are shown in 

Table 3. 

Table 3. Comparison result of LRWOA-LSTM-PID and LSTM-PID. Bold represents the best result. 

CONTROLLER LSTM-PID LRWOA-LSTM-PID 

Rise time (s) 0.61 0.55 

Settling time (s) 0.61 0.55 

Overshoot (%) 0.00 0.00 

                      

   

  

    

  

    

  

    

  
 
  
 
 
 

                  

   

    

    

  

  
  
  
  

   

        

              

Figure 15. Comparison result diagram of LRWOA-LSTM-PID and LSTM-PID.

Table 3. Comparison result of LRWOA-LSTM-PID and LSTM-PID. Bold represents the best result.

CONTROLLER LSTM-PID LRWOA-LSTM-PID

Rise time (s) 0.61 0.55
Settling time (s) 0.61 0.55
Overshoot (%) 0.00 0.00
Peak (◦C) 33.00 33.00
Peak time (s) 0.61 0.55
Kp 10.01 12.02
Ki 2.09 3.04
Kd 10.06 11.20
Error 0 0

In summary, the LRWOA-LSTM-PID controller has good performance, can achieve
the rapid tuning of PID parameters, improves the convergence speed of the system, and
reduces the overshoot of the system, which can meet the strict temperature control re-
quirements in the lysozyme fermentation process, providing a guarantee for high-quality
lysozyme production.

6. Conclusions

The paper designs a fermenter temperature mechanism model based on a dynamic
equation description, which can reflect the temperature changes in the fermenter well. A
method for PID parameter tuning based on LSTM is proposed, which can more reasonably
adjust the network weights, speeding up the tuning of PID parameters. A Whale Opti-
mization Algorithm (WOA) based on Levy flight and the random walk strategy (LRWOA)
is proposed for the initialization of LSTM parameters, enhancing the global and local
optimization capabilities of the neural network parameters. On this basis, a method of
temperature control for lysosomal fermentation based on LRWOA-LSTM-PID is proposed.
Experimental results show that the method proposed in this paper can achieve the rapid
tuning of PID parameters Kp, Ki, and Kd, thus improving the convergence speed of the
system and reducing the overshoot of the system.
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Considering the further optimization of the proposed algorithm, the following future
research is planned: (1) The verification of the LRWOA-LSTM-PID model on a hardware
platform, and an attempt to implement this method in a real environment; (2) the enhance-
ment of the real-time capabilities of LRWOA-LSTM-PID through offline parameter tuning;
(3) the proposal of better controllers for a more accurate control of parameters such as
dissolved oxygen in the lysosomal fermentation process.
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