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Abstract: Research on trajectory tracking control for climbing welding robots holds significant
importance in the field of automated welding. However, existing trajectory tracking methods suffer
from issues such as jitter and slow speed. In this paper, an improved sliding mode control strategy
is proposed based on the self-designed wall-climbing welding mobile manipulator. Firstly, a new
adaptive sliding mode control strategy is proposed for the mobile platform based on the kinematic
model. By introducing a new approach law, the controller is designed when the distance between the
center of mass is unknown. Secondly, regarding the manipulator, we analyze simplified dynamic
equations, extract uncertain components, and utilize a CNN for compensation. This compensation
strategy is integrated into the sliding mode control law, achieving precise control over the manipulator
and effectively resolving issues like slow tracking speeds, large errors, and chattering. The stability
of the robot control system is proved by the Lyapunov function. Through simulation analysis and
experimental validation, the proposed control method is confirmed to be feasible and superior.

Keywords: mobile manipulator; sliding mode control; trajectory tracking

1. Introduction

As one of the most widely used industrial robots, the climbing wall welding ma-
nipulator is an indispensable component in the automated welding operations of large-
scale engineering structures, large storage tanks, ships, offshore platforms, large-diameter
pipelines, and other equipment [1,2]. The harsh working environment, low efficiency, and
unstable welding quality highlight the crucial significance and substantial economic value
of designing efficient welding manipulators [3,4].

Researchers have conducted extensive studies on the structural design of robots [5–8].
Nagano et al. [9] designed a wheel-legged hybrid robot featuring four legs, each equipped
with two shock absorbers and two joints, with wheels acting as feet. While the robot demon-
strates adaptability to various types of rough and uneven ground, challenges arise when
transitioning to the hull plate, particularly regarding the installation and stability of the
adsorption device. Gui et al. [10] proposed a novel intelligent wall-climbing welding robot
system for large steel structure manufacturing. The manipulator comprises a crosshead
slipper and a swing device. While it can meet the working requirements, its flexibility is
not sufficient. The climbing wall welding mobile manipulator is the most advanced type
of welding robot, composed of one or more manipulator arms with operational capabil-
ities and a mobile platform providing movement capabilities [11–13]. The sliding mode
control (SMC), as a method for controlling nonlinear systems, is successful primarily due
to its robustness against structured and unstructured uncertainties, as well as its ease of
implementation [14]. However, the irreconcilable contradiction between chattering and
tracking errors has constrained its development [15].
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The speed of the mobile platform studied in this paper is relatively slow in the process
of motion, and the method of the kinematics model can meet the control requirements.
Variable structure sliding mode control based on the kinematic model has advantages such
as simple control structure and easy implementation, but it has disadvantages such as
time delay and constant switch closing in actual use, which is prone to high-frequency
buffeting [16]. The control method based on the approach law can enhance the dynamic
performance of the system by adjusting the parameters of the approach law and reducing
buffeting. Wang et al. [17] propose a sliding mode control method based on the adap-
tive reaching law to maintain the good speed control performance of permanent magnet
synchronous motors under internal and external disturbances. Sharaf et al. [18] designed
a two-step controller for the DC microgrid using the deep neural network and sliding mode
control method based on the exponential reaching law. The proposed control method uses
the exponential reaching law to eliminate the chattering phenomenon and provide a fast
arrival time.

Due to the nonlinear, strongly coupled, and uncertain characteristics of manipulators,
the precise control of manipulators has been a challenging and focal point in the field of
control [19]. Some recent studies have used the model-based NN-based SMC approach in
robot control [20–23]. Duan et al. [24] proposed a neural network terminal SMC method
that combines a fast non-singular terminal sliding mode control, radial basis function
neural network, and improved sliding mode particle swarm optimization, which effec-
tively improves the trajectory tracking accuracy of the manipulator under the influence
of uncertain factors. Liu et al. [25] proposed a sliding mode control scheme of neural
networks based on iterative learning, which, for the first time, incorporated the concept of
iterative learning into the sliding mode control method of neural networks. The uncertainty
and disturbance are compensated by the complementary neural network and iterative
learning, and the motion performance of repetitive tasks is improved [26]. The use of
CNN for the precise compensation of uncertain components in the manipulator model can
mitigate the chattering drawbacks associated with traditional sliding mode control [27].
Due to the presence of operations such as convolution, these networks exhibit stronger
learning capabilities compared to traditional radial basis function (RBF) neural network
models [28]. This leads to a further improvement in tracking accuracy and the avoidance
of delay estimation based on empirical data learning control laws.

The objective of this study is to design a novel climbing wall welding mobile ma-
nipulator and provide a more precise control method for the robot. The main tasks and
contributions of this paper are outlined as follows:

1. Designing a novel robot structure featuring a hybrid wheel-leg mobile platform,
a non-contact variable magnetic adhesion mechanism, and a more flexible 5-DOF ma-
nipulator. This configuration endows the robot with enhanced operational capabilities,
meeting the requirements of a wide range of tasks.

2. A novel adaptive SMC strategy based on the kinematic model is proposed for the
mobile platform. By introducing a novel reaching law, the controller is designed
considering the unknown distance from the center of mass, and the stability is proved
by the Lyapunov function.

3. Introducing a control method for the trajectory tracking of the manipulator using
a combination of a neural network and SMC. Initially, the dynamic model of the
manipulator is analyzed, and the uncertain components are extracted. Subsequently,
a CNN is designed to compensate for these uncertainties. The compensation terms
are then incorporated into the SMC, enabling improved trajectory tracking through
the refined SMC approach.

The remaining structure of this paper is outlined as follows: Section 2 introduces the
overall structure of the robot; Section 3 designs the sliding mode controller for the mobile
platform, and the robot arm, respectively; Section 4 verifies that the robot can basically
achieve the functional requirements through simulation analysis and experiments; Section 5
introduces the conclusion.
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2. Robot Design
2.1. Design Requirements

The designed wall-climbing welding mobile manipulator in this paper finds its pri-
mary application in the welding, testing, and maintenance of extensive ship surfaces or
other large non-structural equipment. Through field investigations and analysis, we identi-
fied that the operating environment exhibits characteristics such as a large area, substantial
curvature, and harsh conditions. Several considerations, encompassing robot structural
design, operational requirements, and other specifications, need to be addressed, covering
the following aspects:

(1) Reliable load capacity. Due to the need to carry complex welding equipment for
welding operations, to ensure flexible operation on different curvature walls, the robot
needs to have sufficient load capacity while overcoming its own gravity.

(2) Smooth obstacle-crossing ability. There are many obstacles on the working surface,
such as sinews, welds, and grooves, and the robot needs to adapt to the environment
and cross the inevitable obstacles in the process of movement.

(3) Good control performance. In the process of operation, the robot needs to achieve
wall climbing, obstacle crossing, movement or turning, and other functions and
needs to realize welding operations through the robot arm. It is necessary to de-
sign a reliable control method while meeting the requirements of robot movement
flexibility and safety.

In accordance with the analysis of the issues and design requirements, the primary
technical parameters of the wall-climbing welding mobile manipulator are presented in
Table 1 below.

Table 1. Main technical parameters.

Design Index Value/Type

Power type Electric drive
Adsorption mechanism Permanent non-contact magnet

Obstacle crossing mechanism Electric lifting platform
Welding actuator 5-DOF manipulator
Body size/(mm) 780 × 300 × 450

Machine weight/(kg) 80
Maximum moving speed/(mm/min) 1800

Load capacity/(N) 200
Size of obstacles to cross/(mm) 90×90

Welding process K-TIG

2.2. Mechanical Structure and Working Principle

Combining examples of wheeled-leg hybrid robots operating on the ground, we
propose a rational and efficient climbing wall welding mobile manipulator. The prototype
is illustrated in Figure 1.

The mechanical structure and working principles are outlined as follows:
1. The robot’s legs consist of three electric lifting platforms installed on the abdomen,

fixed beneath the top universal mounting plate. When the robot encounters unavoidable
obstacles, the legs sequentially lift the structure of the wheels to overcome the obstacles, as
depicted in Figure 2, (a–c) is the obstacle crossing process of the front wheel, (d–f) is the
obstacle crossing process of the middle wheel, and (g–i) is the obstacle crossing process of
the rear wheel. The robot can traverse obstacles up to a maximum height of 90 mm.
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Figure 2. Robot obstacle crossing diagram.

2. The wheel structure comprises six wheels, individually controlled by inner brush-
less DC servo motors. Connected to the top universal plate through elastic telescopic
columns, the wheel structure can adapt to certain curved surfaces. The robot lacks a steer-
ing mechanism and achieves steering through differential wheel speed, as illustrated in
Figure 3.
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3. Magnets are installed beneath the motors to ensure the robot’s wall-climbing
capability. Additionally, they can move up and down with the lifting of the legs, allowing
for the adjustment of the magnetic force.

4. A laser radar and binocular camera are positioned at the front of the robot, enabling
obstacle detection and environmental observation. Additional sensors are internally placed
in the robot based on operational requirements.

5. Drivers, relays, control circuit boards, and other components are securely mounted
on the universal mounting plate, significantly saving space.

6. The 5-DOF manipulator is installed on the exterior of the mobile platform shell.
The first degree of freedom employs a rotary joint, while the second, third, and fourth
degrees of freedom utilize pitch joints. The fifth degree of freedom adopts a rotary joint.
This configuration effectively enhances the flexibility of trajectory planning within the local
workspace for welding tasks. A COMS camera and K-TIG welding gun are mounted on
a self-made clamping mechanism, facilitating efficient welding operations.

3. Controller Design of the Robot

The wall-climbing welding mobile robot studied in this paper is a complex redundant
system composed of a moving platform and robot arm. The establishment of its kinematic
mathematical model is the basis of its research and control [29,30].

3.1. Kinematics Analysis of Mobile Platform

Due to the unique nature of the working environment, the robot is not equipped with
a steering mechanism. Instead, steering is achieved through the differential motion of
the left and right-side wheels. During the steering process, the mobile platform rotates
around a point on the axis of the middle two wheels, with only these middle wheels rolling.
The front and rear four wheels experience both lateral and radial sliding while rolling. To
simplify the analysis, the front and rear wheel pairs were equivalently modeled as passive
caster wheels. The differential motion is achieved through the middle two wheels, leading
to a simplified two-wheel differential model, as illustrated in Figure 4. Based on this, the
kinematic model of the robot is established.
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XOY is the geodetic coordinate system, XcCYc is the local coordinate system with the
robot itself as the reference frame, θc representing the angle between the forward Xc axis
and the forward X axis, that is, the yaw angle. The distance between the left and right
wheels of the mobile platform is set as 2b, and the radius of the wheels is set as r; d is the
distance between the center of mass of the robot. Let the actual linear velocity and angular
velocity of the mobile platform be v and ω, respectively, C is the geometric center of the
robot, the pose coordinate in the XOY coordinate system is (xc, yc, θc), and the actual pose
of the mobile platform is expressed as follows: q = [xc, yc, θc]

T.
In an ideal state, wheeled mobile robots are subject to the following non-holonomic

constraints [31]:
.
yc cos θc −

.
xc sin θc − d

.
θc = 0 (1)

The robot can obtain the following kinematic model under the non-holonomic
constraint (1):

.
q =


.
xc.
yc.
θc

 =

cos θc −d sin θc
sin θc d cos θc

0 1

[vc
ωc

]
(2)

Given the expected linear velocity vd, the expected angular velocity wd, the expected
pose coordinate (xd, yd, θd)

T, and the error pose Pe = [xe, ye, θe]
T, the following kinematic

model can be obtained:

Pe =

xe
ye
θe

 =

 cos θc sin θc 0
− sin θc cos θc 0

0 0 1

xd − xc
yd − yc
θd − θc

 (3)

By combining (2) and (3), the following error equation of the robot can be obtained:
.
xe = ωcye + νd cos θe − νc − dωd sin θe.
ye = −ωcxe + νd sin θe + dωd cos θe − dωc.
θe = ωd − ωc

(4)

The trajectory tracking control problem studied in this paper can be described as
follows: design a suitable speed controller v and ω so that the tracking error of the wheeled
mobile robot under the action of the controller can asymptotically converge for any given
initial value, that is, the modulus of the error matrix [xe, ye, θe]

T converges to zero, then
lim
t→∞

∥[xe, ye, θe]
T∥ = 0.

3.2. Controller Design of Mobile Platform

The mobile platform control system is a multi-input nonlinear system. The sliding
mode surface is designed by combining the backstepping control algorithm. The idea is
that when xe converges to 0 and θe converges to −arctan(νdye), then ye also converges to
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0, so just design the controller [v , ω]T can produce lim
t→∞

xe = 0 and lim
t→∞

θe = −arctan(νdye).

The switching function is given as follows:

s(Pe) =

[
s1(Pe)
s2(Pe)

]
=

[
xe

θe + arctan(νdye)

]
(5)

In practical applications, the typical reaching laws are the isokinetic reaching law,
exponential reaching law, power reaching law, and general reaching law, but they have the
disadvantages of jitter and slow convergence [32].

For the power reaching law
.
s = −k

∣∣s∣∣αsgn(s)− ks , k > 0, 0 < α < 1, when the
initial state of the system is far from the sliding mode surface, the power reaching law has
a faster-reaching speed, but when approaching the sliding mode surface, the reaching
speed slows down, resulting in too long of an arrival time, which is not conducive to the
design of the controller [33]. In reference [34,35], the existing problems of different reaching
laws are analyzed and improved methods are proposed. A new reaching law is introduced
in this paper:

.
s = −k1(a|s| − 1)

β
sgn(s)− k2|s|αsgn(s)− k3s (6)

where β =

{
b,

∣∣s∣∣< loga 2∣∣s∣∣, ∣∣s∣∣⩾ loga 2
, k1, k2, k3 > 0, a > 1, 0 < b < 1, 0 < α < 1, and the addition

of the −k1(a|s| − 1)
β
sgn(s) term in (6) makes the base number continuously derivable, and

at the same time realizes the continuity of the reaching law at s = 0, and the control system
converges asymptotically by taking different exponential parameters at s < 1 and s > 1. At
the same time, the power reaching law −k2|s|αsgn(s) and the isokinetic reaching law −k3s
make the system converge quickly by appropriately increasing the values of k2 and k3 on
the surface far away from and near the sliding mode, respectively.

Due to mechanical wear, measurement errors and other reasons, the centroid distance
d is often uncertain, and the adaptive sliding mode control algorithm is used to design
the controller.

ν = yeω + vd cos θe − d̂ωd sin θe + k1(a|s1| − 1)
β
sgn(s1) + k2|s1|αsgn(s1) + k3s1

ω =
ωd+

∂α
∂νd

.
vd+

∂α
∂ye

νd sin θe+
∂α
∂ye

ωd d̂ cos θe+k1(a|s2 |−1)
β

sgn(s2)+k2|s2|αsgn(s2)+k3s2

1+ ∂α
∂ye

xe+
∂α
∂ye

d̂

(7)

where α = −arctan(νdye), ∂α
∂νd

= − ye

1+(νdye)
2 , ∂α

∂ye
= − νd

1+(νdye)
2 ; d̂ is the estimate of d.

The parameter adaptive law can be taken as follows:

.

d̃ = γ(s1wd sin θe − s2ωd cos θe
∂α

∂ye
+ s2ωd

∂α

∂ye
) (8)

where γ is the positive gain constant and d̃ = d − d̂.
The Lyapunov function is designed as follows:

V =
1
2

s2
1 +

1
2

s2
2 +

1
2λ

d̃2 (9)

Taking the derivative of Formula (9) by combining Formulas (7) and (8) gives
the following:

.
V = s1[ωye + νd cos θe − ν − dωd sin θe] + s2

[ .
θe +

∂α
∂νd

.
νd +

∂α
∂ye

.
ye

]
+ 1

γ d̃
.

d̃

= s1

[
−k1(a|s1| − 1)

β
sgn(s1)− k2|s1|αsgn(s1)− k3s1

]
+s2[−k1(a|s2| − 1)

β
sgn(s2)− k2

∣∣∣s2|αsgn(s2)− k3s2]

+d̃(s1ωd sin θe − s2ωd cos θe
∂α
∂ye

+ s2ωd
∂α
∂ye

) ⩽ 0

(10)
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It can be concluded that d̂ is constantly adjusted with the state of the system, and
eventually d̃ converges to zero; that is, d̂ converges to d. In addition, the system is asymp-
totically stable under the action of controller (7), and the system error finally converges to
zero. According to Lyapunov’s stability theorem, the equilibrium point of the system is
asymptotically stable.

3.3. Dynamics Analysis of the Manipulator

The dynamic model of a robot manipulator can be considered as [36,37]:

M
..
q + C

.
q + G = τ + d (11)

where M(q) ∈ Rn×n denotes the mass matrix and q(t) ∈ Rn is the generalized joint
coordinate vector with n number of joints, C(q,

.
q) ∈ Rn represents the centrifugal and

Coriolis forces vector, G(q) ∈ Rn is the vector of gravitational forces/torques, τ(t) ∈ Rn is
the vector of generalized torques acting at the joints, and d(t) ∈ Rn represents the external
interference vector.

The dynamic model of the system incorporates the following parameter perturbations:

∆M = M − M0, ∆C = C − C0, ∆G = G − G0 (12)

where M0, C0, G0 represent the nominal values of M, C and G, ∆M, ∆C, ∆G represent their
parameter uncertainty values. Thus, the nominal model of the n-joint manipulator can be
expressed as follows:

(M0 + ∆M)
..
q + (C0 + ∆C)

.
q + (G0 + ∆G) = τ + d (13)

3.4. Construction of the CNN

In the trajectory tracking control of the manipulator, the expected position signal is
defined as qd, and the position tracking error signal is defined as follows:

e = [e1, e2, · · · , en]
T ∈ Rn (14)

e = q − qd,
.
e =

.
q − .

qd (15)

The sliding mode function is designed as follows,

s(t) =
.
e(t) + Λe(t) (16)

where Λ represents a positive definite matrix.
The error equation of state is as follows:

..
e = F + M−1

0 τ − ..
qd (17)

where F
(
t, q,

.
q
)
= M−1

0 (q)(−C0
(
q,

.
q
) .
q − G0(q) + d(t)−

(
∆M(q)

..
q + ∆C

(
q,

.
q
) .
q + ∆G(q)

)
.

This paper introduces a CNN model based on deep learning. The model consists of
the following four main parts: the input layer, convolutional layer 1, convolutional layer 2,
and the output layer. In this network, the pooling layer is omitted due to the relatively low
dimensionality of the input layer. By applying delay estimation methods, the input matrix
for the input layer is defined as follows:

V0 =
[
(e)t, (e)t − 1, · · · (e)t − z

]
∈ Rn×z (18)

where z represents the number of delayed sampling points. The final output corresponds to
the compensation VD ∈ Rn for the uncertain part of the manipulator. As shown in Figure 5,
the model of the convolutional neural network developed in this paper is depicted. The
Batch Normalization layer (BN) is added behind the two convolution layers to alleviate
overfitting to a certain extent, reduce the disappearance of gradients, accelerate the con-



Processes 2024, 12, 881 9 of 17

vergence speed, and improve the accuracy of training. The activation function f is added
behind the BN layer, which is a nonlinear mapping of the linear change relationship of the
convolution operation, which can prevent the activation value of a certain layer from being
suppressed and prevent the gradient from disappearing.
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In convolutional layer 1, the input matrix V0 ∈ Rn×z of the CNN undergoes filtering
with M1 convolutional kernels, denoted as K1 ∈ RH11×H12 . The filtered result is then sub-
jected to the BN and f to obtain the feature map V1 ∈ RN11×N12×M1 , which is subsequently
used as the input for convolutional layer 2.

In convolutional layer 2, the feature map V1 ∈ RN11×N12×M1 undergoes filtering with
M2 convolutional kernels, denoted as K2 ∈ RH21×H22 . The filtered result is subjected to the
BN and f to obtain the feature map V2 ∈ RN21×N22×M2 . The feature map is then transformed
into a vector Vv ∈ RN3×1, where N3 = N21 × N22 × M2. Finally, the convolutional neural
network’s output f0 is obtained through the transformation relation VD ∈ Rn.

1. Forward propagation calculation
The output of the CNN is calculated through the forward propagation process. The

output of each convolutional layer is as follows:

V(k)
l = f (

Ml−1

∑
j=1

w(k)
l ∗ V(j)

l−1 + b(k)l ), k = 1, 2 · · · Ml , l = 1, 2 (19)

where V(k)
l represents the feature map matrix in a convolutional layer, w(k)

l denotes the

weights of the convolutional kernels in a layer, b(k)l represents the biases of the convolu-
tional kernels in a layer, l represents the number of convolutional layers, k represents the
number of feature maps in a layer, j represents the number of convolutional kernels in
a layer, Ml represents the total number of convolutional kernels in a layer, and “*” denotes
the convolution operation [38]. In this paper, the activation function f was chosen to
be the rectified linear unit (ReLU) function. At present, ReLU is the most widely used
activation function, which has a faster convergence rate and can better solve the problem
of gradient disappearance:

f (x) = max(x, 0)

f ′(x) =
{

0 if x < 0
1 if x > 0

(20)
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The output of the CNN is as follows:

VD = f0(Vv) = wv · Vv + bv (21)

where wv, bv represents the weights and biases of the output layer of the convolutional
neural network. Vv is obtained through the output V2 of convolutional layer 2.

2. Backward propagation calculation
The weight and offset of the convolutional neural network are updated by the correla-

tion calculation of the reverse loop. The loss function can be defined as follows:

L =
n

∑
i=1

mi · s · .
s, i = 1, 2, · · · , n (22)

where mi represents the mass of the i-th joint of the manipulator.
Using the gradient descent method, the updated formulas for the weights and biases

of the convolutional neural network are as follows:

w′ = w − rw · dw
b′ = b − rb · db

(23)

where w′, b′ represents the updated weights and biases, dw, db denotes the corresponding
sensitivities, and rw, rb represents the learning rate. The sensitivities can be calculated using
the backpropagation method, and the results are as follows:

dw(i,k)
v = ∂L

∂w(i,k)
v

= si · V(k)
v

dw(k)
1 = ∂L

∂w(k)
1

= V0 ∗ (sT · w(k)
v ·

M2
∑

j=1
(sign(V(j)

2 ) ∗ w(j)
2 ) · sign(V(k)

1 ))

dw(k)
2 = ∂L

∂w(k)
2

=
M1
∑

j=1
(V j

1 ∗ (sT · w(k)
v · sign(V(k)

2 )))

db(i)v = si

db(k)1 = sT · w(k)
v · sign(V(k)

1 ) ·
M2
∑

j=1
(sign(V(j)

2 ) ∗ w(j)
2 )

db(k)2 = sT · w(k)
v · sign(V(k)

2 )

(24)

We define w∗
v and b∗v as the ideal weights and biases of the output layer of the convolu-

tional neural network, and δ =
(
δ1, δ2, · · · , δn

)T as the approximation error. Consequently,
an approximation of the uncertain part of the model can be obtained:

F(t, q,
.
q) = w∗

v · vv + b∗v + δ (25)

The approximation error of the CNN is as follows:

F̃(t, q,
.
q) = F(t, q,

.
q)− VD = w̃v · vv + b̃v + δ (26)

where w̃v = w∗
v − wv and b̃v = b∗v − bv represent the weight matrix and bias matrix of the

approximation error, respectively.

3.5. Controller Design of the Manipulator

In this paper, a sliding mode controller based on CNN is designed. Figure 6 shows the
structure of the control system. The input of the SMC and CNN is the position tracking
error signal e and the speed tracking error signal

.
e, and the output is the control moment τ
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of the manipulator, which contains the compensation term VD of the convolutional neural
network. The design control rate is as follows:

τ(t) = −M0(VD − ..
qd + βs + η

s
∥ s ∥ + Λ

.
e) (27)

where η is the switching switch and η ⩾∥ δ ∥ +ρ, β, ρ is a constant greater than zero.
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Lyapunov’s function is defined as follows:

V =
1
2

sTs +
1
2

rw ∑
i,k

(w̃(i,k)
v )

2
+

1
2

rb b̃T
v b̃v (28)

The derivative of (28) can be taken, bringing the argument in to obtain the following:

.
V ⩽ −ρ∥s∥ − β∥s∥2 ⩽ 0 (29)

As time approaches infinity, the Formula (29) gradually converges to zero, and the
sliding surface approaches the origin. At the same time, the trajectory tracking error and
speed tracking error of the robot arm tend to be zero, and the control system is stable.

4. Simulation Analysis and Experiment
4.1. Simulation Analysis of Mobile Platform

To verify the accurate behavior of the proposed control method, simulation exper-
iments are carried out in this section. The parameters of the ideal motion trajectory of
the mobile platform are as follows: vd = 1.5, wd = 1, γ = 0.1, d = 0.025, d̂ = 0.06. The
initial pose is (xc, yc, θc) = (1, 1, π

3 ), and the expected trajectory is xd = cos(t), yd = sin(t),
θd = t. In order to verify that the newly designed sliding mode controller can effectively
solve the problems of slow tracking speed, large errors, and the flutter of the robot, this
section adopts the research method of comparative analysis, respectively, using the sliding
mode controller based on the new reaching law and the traditional sliding mode controller
without reaching the law to control the robot, and compares and analyzes the experimental
results. The error of the new controller is (xe, ye, θe), and the error of the linear velocity and
angular velocity is ve and ωe. The error of the traditional controller is (xu, yu, θu), and the
error of the linear velocity and angular velocity is vu and ωu. The system parameters refer
to Table 2, and the simulation results are shown in Figures 7–10.

Table 2. New approach rate parameter.

Parameter k1 k2 k3 α a b

v 1 0.8 9 1.5 1.7 0.5
ω 1.1 0.8 9 0.9 1.6 0.5
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As can be seen from Figure 7, the new reaching law proposed in this paper makes the
robot’s motion in direction X, Y, θ converge within 2 s with a small error, and the closed-
loop system tends to be stable immediately. As can be seen from Figure 8, d̂ can converge
from 0.06 m to 0.025 m within 1 s. Therefore, the system can still quickly adjust the pose
error under the action of the adaptive law when the robot’s centroid distance is unknown.
As can be seen from Figure 9, the convergence of v and ω of the robot can be completed
within 1 s. As can be seen from Figure 10, the robot system enters a stable state and has
good trajectory tracking performance. Through comprehensive comparative analysis, it
can be concluded that the new controller has superior performance and effectively solves
the problems of slow robot tracking speed, large errors, and chattering.

4.2. Mobile Platform Trajectory Tracking Experiment

The trajectory tracking test for the mobile platform is conducted to evaluate its per-
formance. This involves navigating the robot along a predefined trajectory to assess its
ability to accurately follow the preset path. To better observe the robot’s motion process, we
removed the manipulator section and the outer shell of the robot. The length of the preset
path (1) is 700 mm, the preset path (2) is 1200 mm, and the robot speed is 700 mm/min.
The movement of the robot is depicted in Figure 11.
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During the motion process, users only need to set the preset path and choose the
robot’s operating speed on the upper computer. The robot then automatically completes
trajectory tracking, and it also controls the speed automatically during turns to ensure
smooth operation. As shown in Figure 11, the robot essentially meets the functional
requirements. The experimental results show that the robot using the new SMC method
takes 68.84 s to complete the tracking of the preset path (1), 29.12 s to complete the turning
movement, and 102.85 s to complete the tracking of the preset path (2). The time of the
robot using the traditional SMC method is 73.56 s, 31.42 s, and 118.39 s, respectively.
After analysis, the time of the new SMC method to complete the preset path (1) tracking,
turning movement, and preset path (2) tracking is reduced by 12.37%, 7.32%, and 13.13%,
respectively, which effectively solves the problems of slow tracking speed, large errors, and
the flutter of the mobile platform.
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4.3. Simulation Analysis of Manipulator

To facilitate this study, by simplifying the manipulator, the second joint and the third
joint were formed into a double-joint manipulator, and the simplified dynamic model of
the manipulator was obtained as follows:

M
..
q + C

.
q + G = τ + d

M(q) =
[

H1 + H2 + 2H3 cos q3 H2 + H3 cos q3
H2 + H3 cos q3 H2

]
C
(
q,

.
q
)
=

[
H3

.
q3 sin q3 H3

( .
q2 −

.
q3
)

sin q3
H3

.
q2 sin q3 0

]
G(q) =

[
−H4g cos q2 − H5g cos(q2 + q3)

−H5g cos(q2 + q3)

] (30)

where H1 = (m2 + m3)a2
2, H2 = m3a2

3, H3 = m3a2a3, H4 = (m2 + m3)a2, and H5 = m3a3.
The external interference amount is d(t) =

[
0.1 sin(t); 0.1 sin(t)

]
, the expected trajectory of

the two joints is qd =
[
cos(t); sin(t)

]
, and the initial state is q0 =

[
1; 0; 1; 0

]
. The relevant

parameters of the manipulator are m2 = 2.5 kg, m3 = 4 kg, a2 = 0.23 m, a3 = 0.27 m,
g = 9.8 m/s, and t = 10 s. Table 3 shows the relevant parameters of CNN. The simulation
results are shown in Figures 12–14.

Table 3. Related parameters of convolutional neural network.

z H11 H12 H21 H22 M1 M2 rw rb

5 2 2 1 4 5 5 5 5
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quired angles. Furthermore, the establishment time for states 2q , 3q , 2q  and 3q  is fi-
nite, signifying that the system reaches a stable state within a reasonable time. This 
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The initial weights w and biases b of the CNN are initialized with random values
within the range of [−1, 1]. The controller’s performance can be evaluated by analyzing
the states q2, q3,
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.
q3. Figure 12 displays the position and velocity tracking curves

for joint 2 and joint 3 of the manipulators. The control method proposed in this paper
enables the manipulator’s two joints to approach the desired trajectory in the time of 0.5 s,
indicating that the controller effectively guides the manipulator to track the required angles.
Furthermore, the establishment time for states q2, q3,

.
q2 and

.
q3 is finite, signifying that

the system reaches a stable state within a reasonable time. This demonstrates the rapid
convergence characteristic of the proposed controller.

In Figure 13, the corresponding error signals for the two states are depicted. The error
signal represents the difference between the desired trajectory and the actual measured
values of the system states. The error signals converge to zero, indicating that the proposed
controller successfully minimizes the difference between the desired trajectory and the
system states. This affirms the controller’s ability to accurately track the required trajecto-
ries, ensuring precise and reliable operation, thereby enhancing the system’s performance
and stability.

Figure 14 shows the control signals applied to the two joints of the manipulator after
the application of the traditional controller and the new controller, respectively. They were
designed to generate the necessary torque or force to drive both joints. As can be seen from
the figure, the control signal curve generated by the application of the new controller is
smoother, greatly reducing buffeting and accurately tracking the desired trajectory.

5. Conclusions

In this paper, a new and efficient mobile robot is designed to increase the smooth
obstacle crossing function without affecting the welding operation. By designing a new
SMC, the precise control of the robot is realized, and the problems such as slow tracking
speed, large errors and flutter are effectively solved. The stability of the mobile robot control
system is proved by the Lyapunov function. Through simulation analysis and testing, it is
concluded that the mobile platform can complete convergence within 2 s, and the tracking
error is very small. In the simplified manipulator, the variables q2, q3,

.
q2 and

.
q3 converge

within 0.5 s with errors not exceeding 0.01 m, resulting in smoother control signals and
resolving to chatter. In future work, we intend to increase the number of high-precision
sensors to achieve remote automated control.
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