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Abstract: In this paper, we derive the well-defined solutions to a θ-dimensional system of difference
equations. We show that, the well-defined solutions to that system are represented in terms of
Fibonacci and Lucas sequences. Moreover, we study the global stability of the solutions to that
system. Finally, we give some numerical examples which confirm our theoretical results.

Keywords: Lucas numbers; Fibonacci numbers; system of difference equations; global stability

1. Introduction

Difference equations and systems of difference equations are of great importance in
the field of mathematics as well as in other sciences. The applications of the difference
equations appear as discrete mathematical models of many phenomena such as in biology,
economics, ecology, control theory, physics, engineering, population dynamics and so
forth [1–6]. This is the reason why, recently, many scientists have devoted their work to
the study of the theory of difference equations, the boundedness, the periodicity and the
global asymptotic stability of their solutions [7–31].

In the following, we will use the following notations: N for the set of natural numbers,
and Nν for the set {n ∈ Z : n ≥ ν}. Recently, there has been a growing interest in the
study of finding closed-form solutions of difference equations and systems of difference
equations. Some of the forms of solutions of these equations are representable via well-
known integer sequences such as Fibonacci numbers (see, for example [26,32]), Horadam
numbers (see, for example, [30,31]), Lucas numbers (see, for example [25,27,33]), Pell
numbers and Padovan numbers (see, for example [34–36]), But in this paper, we present
the solution in the form of Lucas sequences.

In [32], the authors represented the general solution of the following difference equation

xn+1 =
1

1 + xn
, n ∈ N0, (1)

in terms of the initial value x0 and the Fibonacci sequence. Namely, it was proved by induc-
tion that every well-defined solution of Equation (1) can be written in the following form

xn =
Fn + Fn−1x0

Fn+1 + Fnx0
, n ∈ N0,

where {Fn}∞
n=0 is Fibonacci sequence. They also proved that, every well-defined solution

of the equation

xn+1 =
1

−1 + xn
, n ∈ N0, (2)

Math. Comput. Appl. 2024, 29, 28. https://doi.org/10.3390/mca29020028 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca29020028
https://doi.org/10.3390/mca29020028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-4768-8442
https://orcid.org/0000-0002-5898-2786
https://orcid.org/0000-0002-1858-5583
https://doi.org/10.3390/mca29020028
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca29020028?type=check_update&version=2


Math. Comput. Appl. 2024, 29, 28 2 of 16

can be written in the following form

xn =
F−n + F−(n−1)x0

F−(n+1) + F−nx0
, n ∈ N0,

where the terms of the Fibonacci sequence with negative indices are calculated by the formula

F−n = F−n+2 − F−n+1 , n ∈ N0,

with F0 = 0 and F1 = 1.
Stevic [30] represented the general solution of the following bilinear system of

difference equations

xn+1 =
α + βyn

γ + σyn
, yn+1 =

α + βxn

γ + σxn
,

in terms of the initial values x0, y0 and the generalized Fibonacci sequence.
In [26], Khelifa and Halim analyzed the general solution to the system of

difference equations

x(j)
n+1 =

Fm+2 + Fm+1x((j+1) mod (p))
n−k

Fm+3 + Fm+2x((j+1) mod (p))
n−k

,

where n, m ∈ N0, j = 1, . . . , p, and (Fn)
+∞
n=0 is Fibonacci sequence. They expressed the

solution to this system in terms of the Fibonacci sequence.
In this paper, we derive the well-defined solutions to the θ-dimensional system of

difference equations of the form

x(q)n+1 =
Lm+2 + Lm+1x((q+1) mod (θ))

n−k

Lm+3 + Lm+2x((q+1) mod (θ))
n−k

, n ∈ N0, (3)

where k ∈ N0, m ∈ Z, q = 1, · · · , θ, θ ∈ N, (Ln)
+∞
n=0 is Lucas sequence, and the initial values

x(q)−i , i = 0, . . . , k are real numbers, q = 1, . . . , θ.
Clearly, our system generalizes the equations and systems studied in [25,27,32,33].

2. Preliminaries

Fibonacci sequence [6,37] is defined by

Fn+1 = Fn + Fn−1 , n ∈ N , (4)

where F0 = 0 and F1 = 1. The solution to Equation (4) is given by the Binet formula of
Fibonacci sequence is given by

Fn =
αn − βn

α − β
,

where

α =
1 +

√
5

2
, β =

1 −
√

5
2

.

Here, α is the so-called golden number.
Lucas sequence is the sequence of integer numbers defined by the recurrence relation

Ln+1 = Ln + Ln−1 , n ∈ N , (5)

with initial conditions L0 = 2 and L1 = 1. The Binet formula for the Lucas sequence is
given by

Ln = αn + βn .
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The formula of terms with negative indices in the Lucas sequence is

L−n = (−1)nLn, n = 1, 2, · · · .

Now, we list a set of properties concerning Fibonacci and Lucas sequences that will be
used through the paper [6,37].

Propertiesn 1. Suppose that (Fn)
+∞
n=0 and (Ln)

+∞
n=0 are Fibonacci and Lucas sequences, and let

η, κ ∈ N. Then

1. Lη+1L(κ−1)η + Lη L(κ−1)η−1 = 5Fκη ,
2. Lη L(κ−1)η + Lη−1L(κ−1)η−1 = 5Fκη−1 ,
3. Fκ+1Lη−κ + Fκ Lη−(κ+1) = Lη ,
4. Fκ Lη+3 + Fκ−1Lη+2 = Lκ+η+2 ,
5. Lκ(η+2)−1 + Lκ(η+2)+1 = 5Fκ(η+2) ,
6. L2

κ(η+2) − Lκ(η+2)−1Lκ(η+2)+1 = 5(−1)κ(η+2) ,

7. Lκ Lη−(κ−1) + L(κ−1)Lη−κ = 5Fη ,
8. Fκ Fη−(κ−1) + Fκ−1Fη−κ = Fη ,

Propertiesn 2. Suppose that (Fn)
+∞
n=0 and (Ln)

+∞
n=0 are Fibonacci and Lucas sequences, and let

η, κ ∈ N. Then

1. 5F2κη + (−1)κ Lκ+1Lκ(2η+1) = (−1)κ Lκ Lκ(2η+1)+1 ,
2. Lκ(2η+1) − Lκ+1F2κη = Lκ F2κη−1 ,
3. Lκ(2η−1)−1 + (−1)κ Lκ+1F2κη−1 = (−1)κ Lκ F2κη ,

Theorem 3 ([26]). Let (un)n≥−θ+1 be a solution to Equation

un+1 =
Fθ(m+2) + Fθ(m+2)−1un−(θ−1)

Fθ(m+2)+1 + Fθ(m+2)un−(θ−1)
, n ∈ N0 . (6)

Then for n ∈ N0,

uθn+j =
Fθn(m+2) + Fθn(m+2)−1uj

Fθn(m+2)+1 + Fθn(m+2)uj
,

where θ, m ∈ N, j ∈ {0, 1, · · · , θ − 1}.

Proof. The proof of this theorem can be found in [26], where it is similar to Equation (17)
there.

3. Main Results

In this section, we establish the form of the solution to system (3).
Using the transformation

X(q)
n = x(q)

(k+1)n−t, n ∈ N0, (7)

where t ∈ {0, 1, . . . , k} and q ∈ {1, 2, . . . , θ}, we can write system (3) as
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X(1)
n+1 =

Lm+2 + Lm+1X(2)
n

Lm+3 + Lm+2X(2)
n

,

X(2)
n+1 =

Lm+2 + Lm+1X(3)
n

Lm+3 + Lm+2X(3)
n

,

...

X(θ)
n+1 =

Lm+2 + Lm+1X(1)
n

Lm+3 + Lm+2X(1)
n

, n ∈ N0 . (8)

3.1. Solvability of System (8)

In this section, we shall derive the solution to system (8).
If we use the second recurrence relation in system (8) in the first, we obtain

X(1)
n+1 =

F2m+4 + F2m+3X(3)
n−1

F2m+5 + F2m+4X(3)
n−1

, n ≥ 1 .

The substitution of X(3)
n−1 into X(1)

n+1 leads to

X(1)
n+1 =

L3m+6 + L3m+5X(4)
n−2

L3m+7 + L3m+6X(4)
n−2

, n ≥ 2 .

Similarly, if we replace X(4)
n−1 into X(1)

n+1, we get

X(1)
n+1 =

F4m+8 + F4m+7x(5)n−3

F4m+9 + F4m+8X(5)
n−3

, n ≥ 3 .

Proceeding in the same manner, and using Property 1, system (8) can be written in the
following form:

X(1)
n+1 =

F2p(m+2) + F2p(m+2)−1X(1)
n−(2p−1)

F2p(m+2)+1 + F2p(m+2)X
(1)
n−(2p−1)

, n ≥ 2p − 1 , (9)

when θ = 2p, and

X(1)
n+1 =

L(2p+1)(m+2) + L(2p+1)(m+2)−1X(1)
n−2p

L(2p+1)(m+2)+1 + L(2p+1)(m+2)X
(1)
n−2p

, n ≥ 2p , (10)

when θ = 2p + 1, where p ∈ N.

3.1.1. Case θ = 2p

Here, we consider the case θ = 2p. Using Theorem 3, the solution of Equation (9) can
be written as

X(1)
2pn+j =

F2pn(m+2) + F2pn(m+2)−1X(1)
j

F2pn(m+2)+1 + F2pn(m+2)X
(1)
j

, n ∈ N0,

where p ∈ N, m ∈ Z and j ∈ {0, 1, · · · , 2p}.

Theorem 4. Let
(

X(1)
n , X(2)

n , . . . , X(2p)
n

)
n≥0

be a solution to system (8). Then
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X(q)
2pn+j =

L2p(m+2)n+j(m+2) + L2p(m+2)n+j(m+2)−1X(s)
0

L2p(m+2)n+j(m+2)+1 + L2p(m+2)n+j(m+2)X
(s)
0

, j ∈ {1, 3, . . . , 2p − 1},

and

X(q)
2pn+j =

F2p(m+2)n+j(m+2) + F2p(m+2)n+j(m+2)−1X(s)
0

F2p(m+2)n+j(m+2)+1 + F2p(m+2)n+j(m+2)X
(s)
0

, j ∈ {0, 2, . . . , 2p − 2},

where n ∈ N0, s = (q + j) mod (2p) and q ∈ {1, 2, . . . , 2p}.

Proof. Let
(

X(1)
n , X(2)

n , . . . , X2p
n

)
n≥0

be a solution to system (8). Then

X(1)
2pn+j =

F2pn(m+2) + F2pn(m+2)−1X(1)
j

F2pn(m+2)+1 + F2pn(m+2)X
(1)
j

, n ∈ N0 . (11)

We consider two different situations, depending on whether j is even or odd.

• When j is odd, we have that

X(1)
j =

Lj(m+2) + Lj(m+2)−1X(1+j)
0

Lj(m+2)+1 + Lj(m+2)X
(1+j)
0

.

This implies that for j ∈ {1, 3, · · · , 2p − 1} we get

X(1)
2pn+j =

(Lj(m+2)+1 + Lj(m+2)X
(1+j)
0 )L2p(m+2)n+j(m+2)−j(m+2)

(Lj(m+2)+1 + Lj(m+2)X
(1+j)
0 )L2p(m+2)n+j(m+2)−j(m+2)+1

+(Lj(m+2) + Lj(m+2)−1X(1+j)
0 )L2p(m+2)n+j(m+2)−j(m+2)−1

+(Lj(m+2) + Lj(m+2)−1X(1+j)
0 )L2p(m+2)n+j(m+2)−j(m+2)

,

=
L2p(m+2)n+j(m+2) + L2p(m+2)n+j(m+2)−1X(1+j)

0

L2p(m+2)n+j(m+2)+1 + L2p(m+2)n+j(m+2)X
(1+j)
0

.

• Similarly, for j ∈ {0, 2, · · · , 2p − 2}, we get

X(1)
2pn+j =

F2p(m+2)n+j(m+2) + F2p(m+2)n+j(m+2)−1X(1+j)
0

F2p(m+2)n+j(m+2)+1 + F2p(m+2)n+j(m+2)X
(1+j)
0

.

Then for the solution
(

X(1)
n , X(2)

n , . . . , X(2p)
n

)
n≥0

, we can write

X(q)
2pn+j =

L2p(m+2)n+j(m+2) + L2p(m+2)n+j(m+2)−1X(s)
0

L2p(m+2)n+j(m+2)+1 + L2p(m+2)n+j(m+2)X
(s)
0

, j ∈ {1, 3, . . . , 2p − 1},

and

X(q)
2pn+j =

F2p(m+2)n+j(m+2) + F2p(m+2)n+j(m+2)−1X(s)
0

F2p(m+2)n+j(m+2)+1 + F2p(m+2)n+j(m+2)X
(s)
0

, j ∈ {0, 2, . . . , 2p − 2},

where n ∈ N0, s = (q + j) mod (2p) and q ∈ {1, 2, . . . , 2p}.
This completes the proof.
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Using the preceding arguments, we can provide the main result for the solvability of
system (3).

Theorem 5. Assume that θ = 2p and let
(

x(1)n , x(2)n , . . . , x(2p)
n

)
n≥−k

be a solution to system (3).

Then, for all q ∈ {1, 2, . . . , 2p}, the solution to system (3) is

x(q)
(k+1)(2pn+j)−t =

L2p(m+2)n+j(m+2) + L2p(m+2)n+j(m+2)−1x((q+j) mod (2p))
−t

L2p(m+2)n+j(m+2)+1 + L2p(m+2)n+j(m+2)x
((q+j) mod (2p))
−t

,

for j ∈ {1, 3, · · · , 2p − 1}, and

x(q)
(k+1)(2pn+j)−t =

F2p(m+2)n+j(m+2) + F2p(m+2)n+j(m+2)−1x((q+j) mod (2p))
−t

F2p(m+2)n+j(m+2)+1 + F2p(m+2)n+j(m+2)x
((q+j) mod (2p))
−t

,

for j ∈ {0, 2, . . . , 2p − 2}, where t ∈ {0, 1, · · · , k}.

3.1.2. Case θ = 2p + 1

Here, we consider the case θ = 2p + 1.
Using the transformation

Ψj
n = X(1)

(2p+1)n+j, n ∈ N0, (12)

where j ∈ {0, 1, 2, · · · , 2p}, we can write Equation (10) in the form

Ψj
n+1 =

L(2p+1)(m+2) + L(2p+1)(m+2)−1Ψj
n

L(2p+1)(m+2)+1 + L(2p+1)(m+2)Ψ
j
n

, n ∈ N0 , (13)

where j ∈ {0, 1, 2, · · · , 2p}.
From Appendix A, the solution to Equation (13) is given by

Ψj
2n =

F2(2p+1)(m+2)n + F2(2p+1)(m+2)n−1Ψj
0

F2(2p+1)(m+2)n+1 + F2(2p+1)(m+2)nΨj
0

, n ∈ N0,

Ψj
2n+1 =

L(2p+1)(m+2)(2n+1) + L(2p+1)(m+2)(2n+1)−1Ψj
0

L(2p+1)(m+2)(2n+1)+1 + L(2p+1)(m+2)(2n+1)Ψ
j
0

, n ∈ N0,

where j ∈ {0, 1, · · · , 2p} .
Therefore, the solution to Equation (10) is

X(1)
2(2p+1)n+j =

F2(2p+1)(m+2)n + F2(2p+1)(m+2)n−1X(1)
j

F2(2p+1)(m+2)n+1 + F2(2p+1)(m+2)nX(1)
j

,

X(1)
(2p+1)(2n+1)+j =

L(2p+1)(m+2)(2n+1) + L(2p+1)(m+2)(2n+1)−1X(1)
j

L(2p+1)(m+2)(2n+1)+1 + L(2p+1)(m+2)(2n+1)X
(1)
j

, (14)

where n ∈ N0 and j ∈ {0, 1, . . . , 2p}.

Theorem 6. Let
(

X(1)
n , X(2)

n , . . . , X(2p+1)
n

)
n≥0

be a solution to system (8). Then for all

j ∈ {0, 2, . . . , 2p},
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X(q)
2(2p+1)n+j =

F2(2p+1)(m+2)n+j(m+2) + F2(2p+1)(m+2)n+j(m+2)−1X(s)
0

F2(2p+1)(m+2)n+j(m+2)+1 + F2(2p+1)(m+2)n+j(m+2)X
(s)
0

,

X(q)
(2p+1)(2n+1)+j =

L(2p+1)(m+2)(2n+1)+j(m+2) + L(2p+1)(m+2)(2n+1)+j(m+2)−1X(s)
0

L(2p+1)(m+2)(2n+1)+j(m+2)+1 + L(2p+1)(m+2)(2n+1)+j(m+2)X
(s)
0

,

and for j ∈ {1, 3, . . . , 2p − 1},

X(q)
2(2p+1)n+j =

L2(2p+1)(m+2)n+(j+1)(m+2) + L2(2p+1)(m+2)n+(j+1)(m+2)−1X(s)
0

L2(2p+1)(m+2)n+(j+1)(m+2)+1 + L2(2p+1)(m+2)n+(j+1)(m+2)X
(s)
0

,

X(q)
(2p+1)(2n+1)+j =

F(2p+1)(m+2)(2n+1)+(j+1)(m+2) + F(2p+1)(m+2)(2n+1)+(j+1)(m+2)−1X(s)
0

F(2p+1)(m+2)(2n+1)+(j+1)(m+2)+1 + F(2p+1)(m+2)(2n+1)+(j+1)(m+2)X
(s)
0

,

where n ∈ N0, s = (q + j) mod (2p + 1) and q ∈ {1, 2, . . . , 2p + 1}.

Proof. Let
(

X(1)
n , X(2)

n , . . . , X(2p+1)
n

)
n≥0

be a solution to system (8). We consider two differ-

ent situations, depending on whether j is even or odd.

• When j is even, we have X(1)
j =

Fj(m+2) + Fj(m+2)−1X(1+j)
0

Fj(m+2)+1 + Fj(m+2)X
(1+j)
0

. This implies that

X(1)
2(2p+1)n+j =

F2(2p+1)(m+2)n + F2(2p+1)(m+2)n−1X(1)
j

F2(2p+1)(m+2)n+1 + F2(2p+1)(m+2)nX(1)
j

,

=

F2(2p+1)(m+2)n + F2(2p+1)(m+2)n−1

 Fj(m+2) + Fj(m+2)−1X(1+j)
0

Fj(m+2)+1 + Fj(m+2)X
(1+j)
0


F2(2p+1)(m+2)n+1 + F2(2p+1)(m+2)n

 Fj(m+2) + Fj(m+2)−1X(1+j)
0

Fj(m+2)+1 + Fj(m+2)X
(1+j)
0

 ,

=
F2(2p+1)(m+2)n+j(m+2) + F2(2p+1)(m+2)n+j(m+2)−1X(1+j)

0

F2(2p+1)(m+2)n+j(m+2)+1 + F2(2p+1)(m+2)n+j(m+2)x
(1+j)
0

.

Similarly,

X(1)
(2p+1)(2n+1)+j =

L(2p+1)(m+2)(2n+1) + L(2p+1)(m+2)(2n+1)−1

 Fj(m+2) + Fj(m+2)−1X(j+1)
0

Fj(m+2)+1 + Fj(m+2)X
(j+1)
0


L(2p+1)(m+2)(2n+1)+1 + L(2p+1)(m+2)(2n+1)

 Fj(m+2) + Fj(m+2)−1X(j+1)
0

Fj(m+2)+1 + Fj(m+2)X
(j+1)
0

 ,

=
L(2p+1)(m+2)(2n+1)+j(m+2) + L(2p+1)(m+2)(2n+1)+j(m+2)−1X(1+j)

0

L(2p+1)(m+2)(2n+1)+j(m+2)+1 + L(2p+1)(m+2)(2n+1)+j(m+2)X
(1+j)
0

.

• When j is odd, we have X(1)
j =

Fj(m+2) + Fj(m+2)−1X(j)
1

Fj(m+2)+1 + Fj(m+2)X
(j)
1

. This implies that
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X(1)
2(2p+1)n+j =

F2(2p+1)(m+2)n + F2(2p+1)(m+2)n−1

 Fj(m+2) + Fj(m+2)−1X(j)
1

Fj(m+2)+1 + Fj(m+2)X
(j)
1


F2(2p+1)(m+2)n+1 + F2(2p+1)(m+2)n

 Fj(m+2) + Fj(m+2)−1X(j)
1

Fj(m+2)+1 + Fj(m+2)X
(j)
1

 ,

=
F2(2p+1)(m+2)n+j(m+2) + F2(2p+1)(m+2)n+j(m+2)−1X(j)

1

F2(2p+1)(m+2)n+j(m+2)+1 + F2(2p+1)(m+2)n+j(m+2)X
(j)
1

,

and

X(1)
(2p+1)(2n+1)+j =

L(2p+1)(m+2)(2n+1) + L(2p+1)(m+2)(2n+1)−1

 Fj(m+2) + Fj(m+2)−1X(j)
1

Fj(m+2)+1 + Fj(m+2)X
(j)
1


L(2p+1)(m+2)(2n+1)+1 + L(2p+1)(m+2)(2n+1)

 Fj(m+2) + Fj(m+2)−1X(j)
1

Fj(m+2)+1 + Fj(m+2)X
(j)
1

 ,

=
Lθ(m+2)(2n+1)+j(m+2) + L(2p+1)(m+2)(2n+1)+j(m+2)−1X(j)

1

L(2p+1)(m+2)(2n+1)+j(m+2)+1 + L(2p+1)(m+2)(2n+1)+j(m+2)X
(j)
1

.

By the same way, for j ∈ {1, 3, 5, · · · , 2p − 1}, we have X(j)
1 =

Lm+2 + Lm+1X(j+1)
0

Lm+3 + Lm+2X(j+1)
0

.

Then

X(1)
2(2p+1)n+j =

L2(2p+1)(m+2)n+(j+1)(m+2) + L2(2p+1)(m+2)n+(j+1)(m+2)−1X(1+j)
0

L2(2p+1)(m+2)n+(j+1)(m+2)+1 + L2(2p+1)(m+2)n+(j+1)(m+2)X
(1+j)
0

,

X(1)
(2p+1)(2n+1)+j =

F(2p+1)(m+2)(2n+1)+(j+1)(m+2) + F(2p+1)(m+2)(2n+1)+(j+1)(m+2)−1X(1+j)
0

F(2p+1)(m+2)(2n+1)+(j+1)(m+2)+1 + F(2p+1)(m+2)(2n+1)+(j+1)(m+2)X
(1+j)
0

.

Now, using the fact that

X(q)
n+1 =

Lm+2 + Lm+1X((q+1) mod (2p+1))
n

Lm+3 + Lm+2X((q+1) mod (2p+1))
n

, q ∈ {1, 2, ..., 2p + 1} ,

and after some calculations, we obtain for j ∈ {0, 2, . . . , 2p},

X(q)
2(2p+1)n+j =

F2(2p+1)(m+2)n+j(m+2) + F2(2p+1)(m+2)n+j(m+2)−1X(s)
0

F2(2p+1)(m+2)n+j(m+2)+1 + F2(2p+1)(m+2)n+j(m+2)X
(s)
0

,

X(q)
(2p+1)(2n+1)+j =

L(2p+1)a(m+2)(2n+1)+j(m+2) + L(2p+1)(m+2)(2n+1)+j(m+2)−1X(s)
0

L(2p+1)(m+2)(2n+1)+j(m+2)+1 + L(2p+1)(m+2)(2n+1)+j(m+2)x
(s)
0

,

and for j ∈ {1, 3, . . . , 2p − 1},

X(q)
2(2p+1)n+j =

L2(2p+1)(m+2)n+(j+1)(m+2) + L2(2p+1)(m+2)n+(j+1)(m+2)−1X(s)
0

L2(2p+1)(m+2)n+(j+1)(m+2)+1 + L2(2p+1)(m+2)n+(j+1)(m+2)X
(s)
0

,

X(q)
(2p+1)(2n+1)+j =

F(2p+1)(m+2)(2n+1)+(j+1)(m+2) + F(2p+1)(m+2)(2n+1)+(j+1)(m+2)−1X(s)
0

F(2p+1)(m+2)(2n+1)+(j+1)(m+2)+1 + F(2p+1)(m+2)(2n+1)+(j+1)(m+2)X
(s)
0

,

where n ∈ N0, s = (q + j) mod (2p + 1) and q ∈ {1, 2, . . . , 2p + 1}.
This completes the proof.
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From all the above arguments, we can state the following theorem:

Theorem 7. Assume that θ = 2p + 1 and let
(

x(1)n , x(2)n , . . . , x(2p+1)
n

)
n≥−k

be a solution to

system (3). Then for all n ∈ N0, the solution to system (3) is

x(q)
(k+1)(2(2p+1)n+j)−t =

F2(2p+1)(m+2)n+j(m+2) + F2(2p+1)(m+2)n+j(m+2)−1x(s)−t

F2(2p+1)(m+2)n+j(m+2)+1 + F2(2p+1)(m+2)n+j(m+2)x
(s)
−t

,

x(q)
(k+1)((2p+1)(2n+1)+j)−t =

L(2p+1)(m+2)(2n+1)+j(m+2) + L(2p+1)(m+2)(2n+1)+j(m+2)−1x(s)−t

L(2p+1)(m+2)(2n+1)+j(m+2)+1 + L(2p+1)(m+2)(2n+1)+j(m+2)x
(s)
−t

,

for all j ∈ {0, 2, . . . , 2p}, and

x(q)
(k+1)(2(2p+1)n+j)−t =

L2(2p+1)(m+2)n+(j+1)(m+2) + L2(2p+1)(m+2)n+(j+1)(m+2)−1x(s)−t

L2(2p+1)(m+2)n+(j+1)(m+2)+1 + L2(2p+1)(m+2)n+(j+1)(m+2)x
(s)
−t

,

x(q)
(k+1)((2p+1)(2n+1)+j)−t =

F(2p+1)(m+2)(2n+1)+(j+1)(m+2) + F(2p+1)(m+2)(2n+1)+(j+1)(m+2)−1x(s)−t

F(2p+1)(m+2)(2n+1)+(j+1)(m+2)+1 + F(2p+1)(m+2)(2n+1)+(j+1)(m+2)x
(s)
−t

,

for all j ∈ {1, 3, . . . , 2p − 1}, where s = (q + j) mod (2p + 1), t ∈ {0, 1, · · · , k} and
q ∈ {1, 2, . . . , 2p + 1}.

Remark 7. The well-defined solutions to the θ-dimensional system of difference Equation (3) when
θ = 2p are given by Theorem 5, and when θ = 2p + 1 are given by Theorem 7.

4. Global Stability of the Well-Defined Solutions of System (3)

In this section, we study the global stability of the well-defined solutions to system (3).
It is easy to show that system (3) has 2θ fixed points. We shall study the stability of the
fixed point

E =
(

x(1), x(2), . . . , x(θ)
)
= (−β,−β, . . . ,−β) ,

where β =
1 −

√
5

2
.

Let us consider the functions

fq : Rk+1 ×Rk+1 × . . . ×Rk+1 −→ R ,

defined by

fq

(
u(1)

0 , . . . , u(1)
k , u(2)

0 , . . . , u(2)
k , . . . , u(θ)

0 , . . . , u(θ)
k

)
=

Lm+2 + Lm+1u((q+1) mod (θ))
k

Lm+3 + Lm+2u((q+1) mod (θ))
k

,

with q ∈ {1, 2, . . . , θ}.
The following result is a direct consequence of Theorems A3 and A4 in Appendix B.

Corollary 7. The fixed point E of system (3) is globally asymptotically stable.

5. Numerical Examples

Example 7. Consider system (3) with m = 3, k = 4 and θ = 4. i.e., the system of
difference equations

x(1)n+1 =
11 + 7x(2)n−4

18 + 11x(2)n−4

, x(2)n+1 =
11 + 7x(3)n−4

18 + 11x(3)n−4

,

x(3)n+1 =
11 + 7x(4)n−4

18 + 11x(4)n−4

, x(4)n+1 =
11 + 7x(1)n−4

18 + 11x(1)n−4

,

n ∈ N0. (15)
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Figure 1 (left) represents system (15) with initial conditions x(1)−4 = 19.9, x(1)−3 = −2, x(1)−2 = −21,

x(1)−1 = −20, x(1)0 = 0.2, x(2)−4 = −21.9, x(2)−3 = 23, x(2)−2 = 1.6, x(2)−1 = −3, x(2)−0 = 0.6, x(3)−4 = 9.9,

x(3)−3 = 2.3, x(3)−2 = 2.6, x(3)−1 = −4.3, x(3)0 = 6, x(4)−4 = −11.9, x(4)−3 = −42.3, x(4)−2 = −12.7,

x(4)−1 = 3.4 and x(4)0 = 8.6

Example 7. Consider system (3) with m = 6, k = 7 and θ = 5. i.e., the system of difference equations

x(1)n+1 =
47 + 29x(2)n−7

76 + 47x(2)n−7

, x(2)n+1 =
47 + 29x(3)n−7

76 + 47x(3)n−7

, x(3)n+1 =
47 + 29x(4)n−7

76 + 47x(4)n−7

,

x(4)n+1 =
47 + 29x(5)n−7

76 + 47x(5)n−7

, x(5)n+1 =
47 + 29x(1)n−7

76 + 47x(1)n−7

, n ∈ N0.

(16)

Figure 1 (right) represents system (16) with initial conditions x(1)−7 = 9.9, x(1)−6 = −12.0,

x(1)−5 = −11, x(1)−4 = −10, x(1)−3 = 0.2, x(1)−2 = −6.1, x(1)−1 = −10, x(1)0 = 2.2, x(2)−7 = −21.9,

x(2)−6 = 23, x(2)−5 = 1.6, x(2)−4 = −3, x(2)−3 = 0.6, x(2)−2 = −2.6, x(2)−1 = −10.3, x(2)−0 = −2.6

x(3)−7 = −9.9, x(3)−6 = 2.3, x(3)−5 = 2.6, x(3)−4 = −4.3, x(3)−3 = 6, x(3)−2 = −4.6, x(3)−1 = −4.3,

x(3)0 = −3.12, x(4)−7 = −1.9, x(4)−6 = −5.3, x(4)−5 = −2.6, x(4)−4 = 3.3, x(4)−3 = 9.6, x(4)−2 = −12.6,

x(4)−1 = 6.3, x(4)0 = 3.6, x(5)−7 = −14.19, x(5)−6 = −2.3, x(5)−5 = 2.6, x(5)−4 = −9.3, x(5)−3 = −1.6,

x(5)−2 = 11.6, x(5)−1 = 4.3 and x(5)0 = 2.6.
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Figure 1. A graph representing the global stability of system (15) (left) and system (16) (right).

6. Conclusions

In this paper, we have derived the solutions to the system of difference equations

x(q)n+1 =
Lm+2 + Lm+1x((q+1) mod (θ))

n−k

Lm+3 + Lm+2x((q+1) mod (θ))
n−k

, n ∈ N0,

where k ∈ N0, m ∈ Z, q = 1, · · · , θ, θ ∈ N, and (Ln)
+∞
n=0 is Lucas sequence.

The above-mentioned system is a more general system to some systems studied
recently. The well-defined solutions to that system are represented in terms of Fibonacci
and Lucas sequences.

Those well-defined solutions depend on whether θ is even or odd. When θ is even, we
invoked the solution of the difference equation

un+1 =
Fθ(m+2) + Fθ(m+2)−1un−(θ−1)

Fθ(m+2)+1 + Fθ(m+2)un−(θ−1)
, n ∈ N0,

that was used in [26].
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For odd values of θ, we invoked the solution of the difference equation

Ωn+1 =
Lθ(m+2) + Lθ(m+2)−1Ωn

Lθ(m+2)+1 + Lθ(m+2)Ωn
, n ∈ N0.

The solution to that equation was derived in Appendix A.
System (3) has 2θ fixed points; one of these fixed points is locally asymptotically stable.

Moreover, we proved that it is globally asymptotically stable.
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Appendix A. (Solvability of Equation (13))

Consider the difference equation

Ωn+1 =
Lθ(m+2) + Lθ(m+2)−1Ωn

Lθ(m+2)+1 + Lθ(m+2)Ωn
, n ∈ N0. (A1)

Using the change of variables

Ωn =
1

Lθ(m+2)

(
Φn − Lθ(m+2)+1

)
, n = 0, 1, · · · , (A2)

we get

Φn+1 =
L2

θ(m+2) + Lθ(m+2)−1

(
Φn − Lθ(m+2)+1

)
Φn

+ Lθ(m+2)+1

=
Φn

(
Lθ(m+2)−1 + Lθ(m+2)+1

)
+
(

L2
θ(m+2) − Lθ(m+2)−1Lθ(m+2)+1

)
Φn

, n ∈ N0.

Using the Properties 1, Equation (A1) is changed into

Φn+1 =
5Fθ(m+2)Φn + 5(−1)θ(m+2)

Φn
, n ∈ N0. (A3)

To solve Equation (A1), we introduce the following Lemma:

Lemma A1. Consider the linear difference equation

ωn+1 − 5Frωn + 5(−1)r+1ωn−1 = 0, n ∈ N0, (A4)

with initial conditions ω−1, ω0 ∈ R. Then the solution to Equation (A4) is

ωn =

( √
5

n

(−1)rLr

)(√
5ω−1Nrn + (−1)rω0Nr(n+1)

)
, (A5)

where (Fn)
+∞
n=0 is the Fibonacci sequence, (Ln)

+∞
n=0 is the Lucas sequence,

Nrn = (αrn − (−1)nβrn) , α =
1 +

√
5

2
, β =

1 −
√

5
2

,
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and

N(2p+1)n =

{ √
5Frn if n is even ,
Lrn if n is odd .

Proof. The equation

ωn+1 − 5Frωn + 5(−1)r+1ωn−1 = 0 , n ∈ N0 ,

is a homogeneous linear second order difference equation with constant coefficients, and ini-
tial conditions ω0, ω−1 ∈ R. We can obtain its solution by using the characteristic roots τ1
and τ2 of the characteristic polynomial τ2 − 5Frτ + 5(−1)r+1 = 0.

Using the identity
5F2

η = L2
η − 4(−1)η , η = 0, 1, · · · ,

we get

τ1 =
√

5

(
Lr +

√
5Fr

2

)
=

√
5αr , τ2 = −

√
5

(
Lr −

√
5Fr

2

)
= −

√
5βr .

Then
ωn = e1τn

1 + e2τn
2 .

Using the initial conditions ω0 and ω−1, and after some calculations, we get

e1 = −
√

5
(−1)r+1Lr

(
z−1 −

ω0

5
(−1)r+1τ1

)
,

e2 = −
√

5
(−1)r+1Lr

(ω0

5
(−1)r+1τ2 − ω−1

)
.

Therefore,

ωn = −
√

5
(−1)r+1Lr

(
ω−1(τ

n
1 − τn

2 )−
ω0

5
(−1)r+1

(
τn+1

1 − τn+1
2

))
= −

√
5

(−1)r+1Lr

(
ω−1(

√
5)n(αrn − (−1)nβrn) +

ω0(
√

5)n+1

(
√

5)2

× (−1)r
(

αr(n+1) − (−1)n+1βr(n+1)
))

.

By defining
Nrn := (αrn − (−1)nβrn) ,

we can write the solution to Equation (A4) as

ωn =
(
√

5)n

(−1)rLr

(
ω−1

√
5Nrn + ω0(−1)rNr(n+1)

)
.

This completes the proof.

Using Lemma A1, we get

Φn =

√
5(ω−1

√
5Nrn + ω0(−1)r Nr(n+1))

ω−1
√

5Nr(n−1) + ω0(−1)r Nrn
.

Therefore, the general solution to Equation (A3) is

Φ2n =
5F2rn + (−1)rΦ0Lr(2n+1)

Lr(2n−1) + (−1)rΦ0F2rn
, n ∈ N0, (A6)

Φ2n+1 =
5Lr(2n+1) + (−1)r5Φ0F2r(n+1)

5F2rn + (−1)rΦ0Lr(2n+1)
, n ∈ N0, (A7)
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with r = θ(m + 2).
Using Lemma A1 and Equations (A6) and (A7), we can state the following theorem:

Theorem A1. Let (Ωn)n≥0 be a solution to Equation (A1). Then for all n ∈ N0, the solution to
Equation (A1) is

Ω2n =
F2θ(m+2)n + F2θ(m+2)n−1Ω0

F2θ(m+2)n+1 + F2θ(m+2)nΩ0
,

Ω2n+1 =
Lθ(m+2)(2n+1) + Lθ(m+2)(2n+1)−1Ω0

Lθ(m+2)(2n+1)+1 + Lθ(m+2)(2n+1)Ω0
,

where (Ln)
+∞
n=0 is Lucas sequence and (Fn)

+∞
n=0 is Fibonacci sequence.

Proof. According to the change of variable (A2), using Property 2, we get for all n ∈ N0,

Ω2n =
1
Lr

(Φ2n − Lr+1)

=
1
Lr

(
(5F2rn − Lr+1Lr(2n−1)) + (−1)rΦ0(Lr(2n+1) − Lr+1F2rn)

Lr(2n−1) + (−1)rΦ0F2rn

)

=
1
Lr

(
LrLr(2n−1)−1 + (−1)rΦ0LrF2rn−1

Lr(2n−1) + (−1)rΦ0F2rn

)

=
(Lr(2n−1)−1 + (−1)rLr+1F2rn−1) + Ω0(−1)rLrF2rn−1

(Lr(2n−1) + (−1)rLr+1F2rn) + Ω0(−1)rLrF2rn

=
F2rn + Ω0F2rn−1

F2rn+1 + Ω0F2rn
.

Similarly,

Ω2n+1 =
1
Lr

(Φ2n+1 − Lr+1)

=
1
Lr

(
5(Lr(2n+1) − Lr+1F2rn) + (−1)rΦ0(5Fr(2n+2) − Lr+1Lr(2n+1))

5F2rn + (−1)rΦ0Lr(2n+1)

)

=
Lr

Lr

(
5F2rn−1 + (−1)rΦ0Lr(2n+1)−1

5F2rn + (−1)rΦ0Lr(2n+1)

)

=
(5F2rn−1 + (−1)rLr+1Lr(2n+1)−1) + Ω0(−1)rLrLr(2n+1)−1

(5F2rn + (−1)rLr+1Lr(2n+1)) + Ω0(−1)rLrLr(2n+1)

=
Lr(2n+1) + Ω0Lr(2n+1)−1

Lr(2n+1)+1 + Ω0Lr(2n+1)
.

This completes the proof.

Appendix B. (Locally Stability of System (3))

Lemma A2. Suppose that (Fn)
+∞
n=0 and (Ln)

+∞
n=0 are Fibonacci and Lucas sequences and let n, κ ∈ N.

Then
lim

n→+∞

Fn+κ

Fn
= lim

n→+∞

Ln+κ

Ln
= ακ .

Theorem A2. (Linear stability)

1. If all the eigenvalues of the Jacobian matrix A lie in the open unit disk |λ| < 1, then the fixed
point V of the linearized system is locally asymptotically stable.
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2. If at least one eigenvalue of the Jacobian matrix A have absolute value greater than one, then
the fixed point V of linearized system is unstable.

Theorem A3. The fixed point E = (−β,−β, . . . ,−β) ∈ Rθ is locally asymptotically stable.

Proof. The linearized system about the fixed point

V = (−β,−β, . . . ,−β) ∈ Rθ(k+1),

is given by
Xn+1 = AXn ,

where

Xn =
(

x(1)n , x(1)n−1, . . . , x(1)n−k, x(2)n , x(2)n−1, . . . , x(2)n−k, . . . , x(θ)n , x(θ)n−1, . . . , x(θ)n−k

)T
,

and

A =



0 0 . . . 0 0 . . . 0
(−1)m+1

α2m+4 . . . . . . 0 0 . . . 0

1 0 0 0

0 1
. . .

...

0
. . . 0 . . . . . . 0 0 . . . . . . 0 0 . . . 0

0 1 0
...

...
...

...
...

...
...

0 . . . 0 1 0
... 0

. . . 0 . . . . . . 0 0 . . .
(−1)m+1

α2m+4

...
... 0 1 0

...
...

0 . . . 0
(−1)m+1

α2m+4 0 0 . . . . . . 0

0 0 0 0
. . . 0

...
...

...
...

...
. . . 0 0

0 0 . . . 0 0 0 . . . . . . . . . 0 0 1 0



.

The characteristic polynomial is

P(λ) = det(A − λIθ(k+1)) = (−λ)θ(k+1) + (−1)k
(
(−1)m+1

α2m+4

)θ

.

Then ∣∣∣λθ(k+1)
∣∣∣ = ∣∣∣∣∣

(
(−1)m+1

α2m+4

)θ
∣∣∣∣∣ = 1

αθ(2m+4)
.

Therefore, all roots of the characteristic polynomial has modulus less than one. Using
Theorem A2, the fixed point E is locally asymptotically stable.

This completes the proof.

Theorem A4. The fixed point E of system (3) is a global attractor.

Proof. Let
(

x(1)n , x(2)n , . . . , xθ
n

)
n≥−k

be a well-defined solution to system (3).

We show that the well-defined solution
(

x(1)n , x(2)n , . . . , xθ
n

)
n≥−k

converges to the fixed

point E .
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It is suffices (using Theorems 5 and 7 together with Lemma A2) to see that for all
q ∈ {1, 2, . . . , θ} and t ∈ {0, 1, . . . , k},

lim
n→+∞

x(q)
(k+1)(θn+j)−t = lim

n→+∞

Fθn(m+2)−j(m+2) + Fθn(m+2)+j(m+2)−1xs
−t

Fθn(m+2)+j(m+2)+1 + Fθn(m+2)+j(m+2)xs
−t

= lim
n→+∞

Fθn(m+2)+j(m+2)−1

Fθn(m+2)+j(m+2)
xs
−t + 1

xs
−t +

Fθn(m+2)+j(m+2)+1

Fθn(m+2)+j(m+2)

=
1 − βxs

−t
α + xs

−t
=

2 − xs
−t +

√
5xs

−t

1 +
√

5 + 2xs
−t

lim
n→+∞

x(q)
(k+1)(θn+j)−t =

2
√

5(x2
−j + x−j − 1)− 2(x2

−j + x−j − 1)

4(x2
−j + x−j − 1)

=
−1 +

√
5

2
= −β .

This completes the proof.
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