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Abstract: A thorough integral formulation describing the second harmonic generation under tightly
focused linearly and radially polarized beams for an arbitrary distribution of the nonlinear suscepti-
bility over the surface of isotropic media was presented. We numerically simulated effects caused by
the straight edge of the nonlinear region. In particular, we demonstrated that the second harmonic
radiation in the normal direction, which is forbidden in common cases of highly symmetrical non-
linear surfaces, is allowed in the presence of the edge. This is provided by χ(2)

xzx-component of the
second-order susceptibility.
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1. Introduction

Nonlinear optical phenomena have been studied for more than half a century after the
discovery of the second harmonic generation (SHG) [1]. Since then, considerable interest
has been attracted to the nonlinear properties of micro- [2] and nanosized metal [3] and
dielectric [4] structures including surfaces of solids, which provide SHG even in the case of
isotropic materials [5]. The latter is due to breaking their central symmetry at interfaces, while
bulk isotropy nullifies the second-order nonlinear susceptibility of χ(2) in an approximation of
only dipolar nonlinear interactions [6]. Thus, second-order nonlinear optical phenomena are
surface-specific for isotropic and centrosymmetric materials (if generally weak non-local bulk
contributions that involve high-order multipole interactions are neglected). Because of this,
they became a powerful tool for probing and sensing surfaces [7–10].

The most evident way to increase the second harmonic (SH) output is to use optical
fields of high intensity. For small objects, this is possible in the regime of tight focusing of
the fundamental radiation, when the size of a light spot is about the radiation wavelength.
Besides, the nonlinear interaction can be additionally enhanced using resonant properties
of nonlinear objects [11–13]. Nontrivially, polarized fundamental beams provide noticeably
tighter focusing than trivially polarized ones [14]. Also, they enable highly localized mea-
surements of nonlinearity, particularly, to analyze separately surface and bulk nonlinear
responses [6]. Moreover, tightly focused radially polarized beams have a significant longi-
tudinal component of the electric field near the focal plane. This allows the fundamental
wave to interact particularly with χ(2)

zzz component of the tensor of the second order
susceptibility, dominating in many structures based on isotropic materials [15,16], even for
normal (z-) incidence, which is not possible in conventional SHG schemes [17].

In recent decades, radially polarized beams became a powerful tool for analyzing
the nonlinearity of micro- and nanoscaled objects. Particularly, studies of Mie-resonant
nanoparticles [18] and metal nanostructures [19,20] were reported. Also, radial polariza-
tion was used for the analysis of spatially resolved SHG by centrosymmetric glasses [6]
and nonlinear films [21]. Both semi-analytical [22] and fully-numerical [23] models of
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SHG, by a material with Td-symmetry under radially polarized excitation, were reported,
as well as a model of SHG by a centrosymmetric sphere under tightly focused linearly
polarized excitation [24].

In our recent study [25] we theoretically described SHG by axially symmetric, C4v-
and C6v-symmetric media, which have the same structure of χ(2) tensor. Both surface and
bulk responses were considered in [25], and analytical equations describing SH radiation
patterns (RP) were derived. Using the model developed, we compared SHG by surface
and bulk of axially symmetric media under both linearly and radially polarized excitations.
Particularly, it has been shown that the bulk nonlinearity distributed within a few microns
of depth (e.g., in the case of micron-thick nonlinear films or poled glasses [26]) demonstrates
little difference from the purely surface one.

In the present study, we extend that model to the case of an arbitrary distribution of
χ(2) over the lateral (xy) plane. This allowed us to analyze the effect of the straight edge of
the nonlinear region on the SH radiation and to declare it as a tool for additional control
over the radiation. The latter can be provided by patterned films [27] or glasses poled with
a profiled electrode [28,29]. We considered only χ(2)

zzz and χ(2)
xzx components. The former

is presumably dominant and therefore is the most practically interesting one for poled
glasses [16] and surfaces of isotropic/centrosymmetric materials [15,30,31]. The χ(2)

xzx
component, as we show here, provides SH radiation in the normal direction, a unique
phenomenon in studies of SHG in highly symmetrical media.

2. Theory

We consider a light beam tightly focused on the nonlinear surface-interface between
two media with indices n1 and n2. The light propagates along the z-axis while the interface
is normal to z. Here we follow the approach used in similar works [22,23,32] and in our
paper [25]. The approach consists of the following subsequent steps. First, the distribution
of the electric field of the fundamental light wave near the focal plane is to be calculated via
Richards and Wolf’s integral formulation, which represents a superposition of plane waves
propagating within the aperture angle of the lens [33,34]. Next, via nonlinear constitutive
equations, which connect second-order polarization with quadradic combinations of com-
ponents of the fundamental electric field, we calculate the distribution of the second-order
polarization for given non-zero components of the nonlinear susceptibility χ(2). Finally, us-
ing the standard expression for dipole radiation in the far-field zone, we describe the RP of
the second harmonic generated by the calculated distribution of the nonlinear polarization.

The approach was described in detail elsewhere [25]. Here we provide the most
necessary expressions and specify features originating from the distribution of optical
nonlinearity over the interface.

The cartesian components of the electric field of the second harmonic wave in the
far-field zone can be calculated as follows (see the scheme in Figure 1a):

E2ω
x =

+∞∫
0

rdr
2π∫
0

dϕ
[
sin θr cos ϕr

(
P2ω

x sin θr cos ϕr + P2ω
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)
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x

]
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Px
2ω, Py

2ω, and Pz
2ω, here, are cartesian components of the induced second-order polar-

ization, θr and ϕr are angles that define the direction of radiation, ϕ and r are cylindrical
coordinates in the focal plane. Note, compared to the expressions presented in [25], in
Equations (1)–(3) we omitted the constant factor –eiK|R|·(2ω)2/c2|R| (ω is the fundamen-
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tal frequency, K is the SH wavenumber) and the integration over z, since here we limit
our consideration only with the interface (surface) nonlinearity. In this study we consider
a highly symmetrical nonlinear surface with the following non-zero components of χ(2):
χ(2)

zzz, χ(2)
zxx, χ(2)

xzx. As we mentioned in the Introduction, axially symmetric, C4v- and
C6v-materials and surfaces of isotropic and centrosymmetric materials have this structure
of χ(2). Thus, the corresponding nonlinear constitutive equations in the case of radially
polarized incoming fundamental wave are:

P2ω
z = χ

(2)
zzzE2

z + χ
(2)
zxxE2

r . (4)

P2ω
y = χ

(2)
xzxEzEr sin ϕ. (5)

P2ω
x = χ

(2)
xzxEzEr cos ϕ. (6)

For linear (x-) polarization these are:

P2ω
z = χ

(2)
zzzE2

z + χ
(2)
zxxE2

x. (7)

P2ω
x = χ

(2)
xzxEzEx. (8)
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Figure 1. (a) Scheme of the problem; color map represents a typical |P2ω|-distribution; D varies in 

our calculations; negative D corresponds to the beam center falling over the edge; the arrows indi-

cate direction of excitation. Distributions of r- (b) and z-components (c) of E-field of the radially 

Figure 1. (a) Scheme of the problem; color map represents a typical |P2ω|-distribution; D varies
in our calculations; negative D corresponds to the beam center falling over the edge; the arrows
indicate direction of excitation. Distributions of r- (b) and z-components (c) of E-field of the radially
polarized fundamental wave and x- (d) and z-components (e) of E-field of the linearly (x-) polarized
fundamental wave in the focal plane; the arrows schematically indicate polarization.

Expressions for distributions of the components of fundamental field (Ez, Er for radial
polarization, and Ez, Ex for linear polarization) are provided in Refs. [25,33,34]. The main
difference with Ref. [25] is that here not only fundamental field has a certain distribution
over the focal plane, but also an arbitrary distribution of surface nonlinear susceptibility χ(2)

is assumed. Further, we consider a straight edge of the nonlinear region. The scheme of the
system under consideration is presented in Figure 1a. Distance D between the center of the
focused fundamental beam and the edge of the nonlinear region of the surface was varied
in the calculations. Negative D corresponds to the case when the beam center falls over the
edge. The other parameters used in the calculations are: numerical aperture of the focusing
lens NA = 0.9, fundamental wavelength λ = 1064 nm, n1 = 1.0 (air), n2 = 1.51 (typical
glass), the beam is focused exactly at the surface, and an incoming fundamental wave is
Bessel-Gauss beam of the lowest order with the waist at the plane of the pupil [25,33], the
beam waist coincides with the pupil radius.
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Because of the nonuniform distribution of χ(2), the integration over ϕ in Equations (1)–(3)
does not have an analytical representation and we calculated all the integrals numerically.
The intensity of the SH wave in the far-field zone as a function of the radiation direction
defined by angles θr and ϕr is proportional to a squared modulus of E2ω-field:

I2ω(θr, ϕr) ∼
∣∣∣E2ω

x

∣∣∣2 + ∣∣∣E2ω
y

∣∣∣2 + ∣∣∣E2ω
z

∣∣∣2. (9)

Also, to account for the refraction of the SH radiation at the rear side of the sample
that is typically a flat plate (the interface n2→n1), we substituted refraction angle θ2

r for θr
and multiplied Equation (9) by the Fresnel coefficient. The details can be found in [25].

3. Results and Discussion

3.1. χ(2)
zzz-Component

In Figure 2, we present the results from the calculations for the radially polarized
incoming fundamental wave in the case of a single non-zero χ(2)

zzz-component of the
second-order susceptibility. The upper panel of Figure 2 demonstrates the radial distribu-
tion of |Pz

2ω|. The maximum value of the distribution is in the center of the beam which
correlates with the features of the fundamental field distribution, particularly, with Ez (see
Figure 1c). Thus, Pz

2ω is primarily distributed in the central bright spot with a radius of
~300 nm at the half-maximum level. According to the distribution of the fundamental
E-field components presented in Figure 1b,c, the radius of the fundamental spot is about
300–400 nm. There is also an obscure outer ring in the distribution of Pz

2ω , but its intensity
does not exceed a few percent of the maximal (central) one. In the middle panel of Figure 2,
we show the D-dependencies of the maximal intensity of the SH radiation in the xz- and
yz-planes. For D exceeding 1 µm, the SH radiation is azimuthally symmetric and the RP
represents an empty cone (see inset 1 in the lower row of Figure 2), which is close to the
RP of the infinite nonlinear surface [25]—further, we refer to this case as to “no edge case”.
For D, in the range of ~1 to ~0.5 µm, the part of the outer obscure ring of Pz

2ω distribution
falls over the edge. This causes a little asymmetry between the radiation in the xz- and
yz-planes: intensity in the yz-plane slightly rises, whereas in xz-drops. Thus, small lobes
in the yz-plane become evident in RP (see inset 2 in the lower row of Figure 2). Further
decrease of D causes a significant fraction of the distribution of Pz

2ω (particularly, central
bright spot) to fall over the edge. This consequently results in a high asymmetry of the
radiation—the SH mostly radiates at the xz-plane and the RP becomes two-lobed (see
insets 3 and 4 in the lower row of Figure 2). It is interesting that for D ~0–0.3 µm the
magnitude of these lobes even exceeds the magnitude of the RP for “no edge case” shaped
as a symmetrical cone. Thus, the effect of the edge of the nonlinear region can increase the
SH radiation in a given direction, though, total SH output expectedly drops.

The results of a similar calculation for the linear (x-) polarization of the incoming
fundamental wave are presented in Figure 3. In the upper panel of Figure 3, we demonstrate
the distribution of |Pz

2ω|. Contrary to the radially polarized excitation, the distribution has
a minimum in the center. Because of this, a noticeable decrease in the SH intensity occurs for
higher values of D (about 0.5 µm), for which the maximum of |Pz

2ω| mainly falls over the
edge. For D = 0 µm (center of the beam is exactly at the edge) maximum of the intensity in
the xz-plane, which is the dominant plane of the SH radiation, exhibits about a 4-fold drop,
relative to the maximal intensity in “no edge case”. This is expectable, since the SH mostly
radiates into two lobes, and we effectively “cut off” half of the nonlinear polarization.
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Figure 2. (Upper row): radial distribution of the nonlinear polarization (|Pz
2ω|) at the surface

possessing χ(2)
zzz-component of second-order susceptibility and excited by a radially polarized beam;

inset: 2D-map of the polarization. (Middle row): maxima of the intensity of the SH radiation in xz-
(solid curve) and yz-planes (dashed curve) vs. distance between the beam center and the edge of the
nonlinear region (D); the axis and D are designated in the inset; negative D corresponds to the beam
center falling over the edge. (Lower row): second harmonic radiation patterns for D = 1.5 µm (1),
D = 0.6 µm (2), D = 0.3 µm (3), D = 0.0 µm (4); contours: maximal SH intensity vs. azimuthal direction.

Interesting to note that for linearly polarized excitation the edge does not greatly
change the shape of RP. The two-lobed RP with small side leaflets keeps being two-lobed
even in the presence of the edge (see lower panel of Figure 3). This is because the edge does
not greatly change the symmetry of the problem: excitation has the dedicated direction
(direction of the polarization), and the surface has the preferred direction (direction normal
to the edge). For the radially polarized excitation, this change is more drastic (see the
lower panel in Figure 2) because the excitation and the surface have different symmetries
(cylindrical vs. one with the dedicated lateral direction). Interesting to note that the SH RPs
for radial and linear polarized excitations, when the effect of the edge is strong (e.g., for
D = 0 µm), have a similar two-lobed shape. However, radially polarized light has a more
pronounced longitudinal (z-) component of the electric field than the linear one. Estimations
made in [25] showed a more than 2-fold difference. This results in about an 8-fold difference
of total (integrated over all radiation angles) the SH intensity for χ(2)

zzz-component. Thus,
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for D = 0 µm, the magnitude of the SH radiation under a radially polarized excitation is
tens of times higher than for a linear one (see middle panels in Figures 2 and 3).
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Figure 3. (Upper row): radial distribution of the nonlinear polarization (|Pz
2ω|) at the surface

possessing χ(2)
zzz-component of the second order susceptibility and excited by a linearly x-polarized

beam; inset: 2D-map of the polarization. (Middle row): maxima of the intensity of the SH radiation
in xz- (solid curve) and yz-planes (dashed curve) vs. distance between the beam center and the
edge of the nonlinear region (D); the axis and D are designated in the inset; negative D corresponds
to the beam center falling over the edge. (Lower row): second harmonic radiation patterns for
D = 1.5 µm (1), D = 0.3 µm (2), D = 0.2 µm (3), D = 0.0 µm (4); contours: maximal SH intensity vs.
azimuthal direction.

3.2. χ(2)
xzx-Component and Normal Radiation

We carried out the same analysis for χ(2)
xzx-component of the second-order susceptibil-

ity. This component is responsible for the in-plane component of the nonlinear polarization
P2ω. Therefore, it could provide normal radiation. However, in the case of an infinite
nonlinear surface, there is no normal radiation because of the symmetry [25]. Though,
when the edge breaks the symmetry of the surface, non-zero radiation in the normal di-
rection should occur. Basically, in “no edge case” there is a highly symmetrical lateral
distribution of P2ω , and radiation in the normal direction is nullified because of destructive
interference. In the presence of the edge, though, the condition of destructive interference
in the normal direction breaks and corresponding radiation occurs. These reasonings for
radially polarized excitation are illustrated in Figure 4. For the linearly polarized excitation,
the situation is qualitatively similar.
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Figure 4. Illustration of the appearance of normal radiation due to the effect of the edge.

In Figure 5, we show the results of calculations for radial polarization of the incoming
fundamental wave. The upper panel of Figure 5 demonstrates the radial distribution
of |Pr

2ω|. The distribution has the shape of two concentric rings, the inner one being
about 5-times brighter than the outer one. In the middle panel of Figure 5, we present
dependencies of the maximal intensity of the SH radiation in the xz- and yz-planes and the
intensity in the normal direction on D. The dependencies of maximal intensities in the two
planes are qualitatively similar to the ones demonstrated in Figure 2. Their certain features
are related to the features of the |Pr

2ω|-distribution. Here, we omit a detailed description
of the dependencies, since it is similar to that in the section regarding χ(2)

zzz-component.
Only note that for D = 0 µm the maximal SH intensity in the xz-plane is about a quarter of
the value for “no edge case”. This is contrary to the case of χ(2)

zzz-component, where for
D = 0 µm the maximal intensity even slightly exceeds the one for “no edge case”.

The most interesting point here is that the edge provides non-zero radiation in the
normal direction. In the corresponding dependence represented as a dotted line in the
middle panel of Figure 5, we observe two peaks of normal radiation. One (I) is at ~0.6 µm—
at this distance the outer ring of |Pr

2ω|-distribution falls over the edge. The other (II) is
exactly at D = 0 µm, when half of the |Pr

2ω|-distribution is over the edge. However,
corresponding intensities are about 0.03 and 0.08 of the maximal intensity in “no edge
case”. This normal radiation, albeit insignificant, is highly desired since measurements
when both exciting and emitting beams are normal to a sample surface can greatly simplify
the experiments.

Also, we propose a structure with additional radial confinement of nonlinearity that
the “cut off” outer ring of |Pr

2ω|-distribution (see inset 4* in Figure 5, where the corre-
sponding semicircular nonlinear region is drawn). This confinement together with the edge
at D = 0 µm provides the relative magnitude of the radiation in the normal direction about
~0.3 which is ~4-times higher than the normal radiation without the radial confinement and
only 3-times weaker than the maximal intensity. The RP in this case is noticeably elongated
in the normal direction (z-) and side lobes are barely seen.

Results for χ(2)
xzx-component and linearly polarized fundamental wave presented

in Figure 6, are qualitatively similar to the ones presented in Figure 5. Here, we omit the
detailed description and outline only the main characteristics. The major feature is that the
surface possessing χ(2)

xzx-component of the second order susceptibility excited by a linearly
x-polarized beam for D = 0 µm generates strong SH radiation in the normal direction. The
relative magnitude of the normal radiation is 0.5, which is only twice weaker than the
magnitude of the SH intensity in “no edge case”. Moreover, the radiation in the normal
direction for D = 0 µm is noticeably higher than in other directions. Thus, RP is elongated
in this direction (see inset 4 in the lower row of Figure 6). Note, for radially polarized
excitation the relative magnitude of the SH intensity in the normal direction was only ~0.08
for D = 0 µm, and weaker than the magnitude of intensity in the xz-plane.
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Figure 5. Upper row: radial profile of the distribution of nonlinear polarization (|Pr
2ω|) at the

surface possessing χ(2)
xzx-component of the second order susceptibility and excited by a radially

polarized beam; inset: 2D-map of polarization. Middle row: Maxima of the intensity of the SH
radiation in xz- (solid curve) and yz-planes (dashed curve) and intensity in the normal direction
(dotted curve) vs. distance between the beam center and the edge of the nonlinear region (D); the axis
and D are designated in the inset; negative D corresponds to the beam center falling over the edge.
Lower row: second harmonic radiation patterns for D = 1.5 µm (1), D = 0.5 µm (2), D = 0.0 µm (3),
and D = 0.0 µm (4*) with an addition radial confinement of nonlinearity (see corresponding inset 4*);
overlaying curves: cross-sections of RPs in the xz-plane.
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Figure 6. (Upper row): x-profile of distribution of nonlinear polarization (|Px
2ω|) at the surface

possessing χ(2)
xzx-component of second-order susceptibility excited by a linearly x-polarized beam;

inset: 2D-map of polarization. (Middle row): maxima of the intensity of the SH radiation in the
xz-plane (solid curve) and the intensity in the normal direction (dotted curve) vs. distance between
the beam center and the edge of the nonlinear region (D); the axis and D are designated in the inset;
negative D corresponds to the beam center falling over the edge. (Lower row): second harmonic
radiation patterns for D = 1.5 µm (1), D = 0.4 µm (2), D = 0.2 µm (3) and D = 0.0 µm (4); overlaying
curves: cross-sections of RPs in the xz-plane.

To compare the absolute values of the normal radiation for linearly and radially
polarized excitations, we normalized magnitudes of fundamental fields so that the integral
intensities of the fundamental wave were equal:∫

S

∣∣∣Erad
inc (r, ϕ)

∣∣∣2dS =
∫

S

∣∣∣Elin
inc(r, ϕ)

∣∣∣2dS. (10)

Here, Erad
inc and Elin

inc are distributions of the electric field of fundamental radially and
linearly polarized waves in the focal plane and the integration is carried out over this plane.
Thus, we obtain that the maximum SH intensity for radial polarization for the “no edge
case” is ~2.2 (in arbitrary units) and for linear polarization ~1.4 (in the same arbitrary units).
However, for normal radiation for D = 0 µm, these values are 0.18 and 0.7, respectively.
Thus, normal radiation of the SH for D = 0 µm is about 4-fold more intensive in the case
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of the linearly polarized excitation, which makes this configuration very perspective for
experiments and applications.

4. Conclusions

We presented a model of surface optical second harmonic generation under tightly
focused linearly and radially polarized beams for an arbitrary distribution of the second-
order nonlinearity over the surface. Using this model, we analyzed the influence of the
straight edge of the nonlinear surface region on the second harmonic radiation patterns.
We considered the surface of centrosymmetric media and examined the impacts of χ(2)

zzz
and χ(2)

xzx components of the surface second-order susceptibility tensor χ(2). For χ(2)
zzz-

component and radially polarized fundamental wave we demonstrated that the second
harmonic radiation pattern transforms from a symmetrical empty cone to a two-lobed
diagram as the center of the excitation beam shifts toward the edge of the nonlinear region.
The total SH intensity expectedly decreases, however, the intensity in the formed lobes
can even exceed the one generated by a surface with uniformly distributed nonlinearity,
i.e., the SH radiation becomes more directional. For a linearly polarized fundamental
wave, the SH RPs essentially have a two-lobed shape and do not change qualitatively. For
χ(2)

xzx-component and both radial and linear polarizations, the influence of the edge leads
to the SH radiation in the normal direction. This is a unique result, for the normal SH
radiation under the normal excitation is forbidden in commonly used schemes of SHG
by surfaces/films. Moreover, we demonstrated that linearly polarized excitation is more
effective for the SH radiation in the normal direction (about 4-times for the parameters
used) than the radial one. The developed model is also applicable to the SHG by surfaces
and thin layers of axially symmetric, C4v and C6v materials.
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