
Citation: Zhao, H.; Xu, D.; Wu,

Z.; Sun, L.; Yuan, G.; Wang, Z.

High-Linear Frequency-Swept Lasers

with Data-Driven Control. Photonics

2023, 10, 1056. https://doi.org/

10.3390/photonics10091056

Received: 10 August 2023

Revised: 6 September 2023

Accepted: 15 September 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

High-Linear Frequency-Swept Lasers with Data-Driven Control
Haohao Zhao 1,2, Dachao Xu 1,2, Zihan Wu 1,2, Liang Sun 1,2, Guohui Yuan 2,* and Zhuoran Wang 2,3,*

1 School of Information and Communication Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China; 201811012023@std.uestc.edu.cn (H.Z.); 202122011913@std.uestc.edu.cn (D.X.);
202121011423@std.uestc.edu.cn (Z.W.); 202152011915@std.uestc.edu.cn (L.S.)

2 Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China,
Quzhou 324000, China

3 College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China
* Correspondence:yuanguohui@uestc.edu.cn (G.Y.); wangzhuoran@uestc.edu.cn (Z.W.)

Abstract: The frequency-swept laser (FSL) is applied widely in various sensing systems in the
scientific and industrial fields, especially in the light detection and ranging (Lidar) area. However,
the inherent nonlinearity limits its performance in application systems, especially in the broadband
frequency-swept condition. In this work, from the perspective of data-driven control, we adopt the
reinforcement learning-based broadband frequency-swept linearization method (RL-FSL) to optimize
the control policy and generate the modulation signals. The nonlinearity measurement system
and the system simulator are established. Since the powerful learning ability of the reinforcement
learning algorithm, the linearization policy is optimized off-line and the generated modulation signals
reduce the nonlinearity almost 20 times, compared to the case without control. In the long-term
operation, the regular updated modulation signals perform better than the traditional iteration results,
demonstrating the efficiency of the proposed data-driven control method in application systems.
Therefore, the RL-FSL method has the potential to be the candidate of optical system control.

Keywords: frequency-swept lasers; reinforcement learning; nonlinearity; data-driven control

1. Introduction

The frequency-swept laser (FSL) plays a significant role in various scientific and indus-
trial applications ranging from the lasing remote system [1], medical imaging [2], and the
optical communication system [3] to precision detection [4,5]. Therefore, the characteristics
of the FSL have received widespread attention in research. Taking the application of the
FSL in precision detection as an example, the swept bandwidth of the FSL is proportional
to the space resolution as it serves as the light source. Therefore, in order to achieve the
high-fidelity detection, the broadband swept frequency is highly anticipated. However, the
inherent nonlinearity of the FSL is exacerbated in this case. In applications, this distorted
relationship leads to errors when inverting the measurement results. Therefore, how to
achieve broadband linear frequency sweep is one of the research hotspots.

Currently, the research on the frequency-swept linearization can be roughly divided
into two main approaches: the active control [6–8] and the passive control [9–13]. The active
control approach is represented by the closed-loop correction approach. For example, the
phase-locked-loop-based (PLL-based) methods [8] locked the optical frequency sweep to
an external reference signal with an auxiliary branch, producing a negative feedback loop.
However, the precision of the PLL-based methods relies on high-precision optical compo-
nents. Moreover, the intense nonlinearity makes it difficult for the loop to achieve a stable
clocked state, which limits its adaptability to the broadband frequency-swept linearization.

The passive control approach also requires the auxiliary branch to obtain the reference
signal. For example, the resample method [9] utilized the reference signal as the external
clock to resample the detection signal at equal optical frequency intervals. Therefore, the
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nonlinearity in the data acquisition time interval is compensated, which is sensitive to the
mismatch between the signals. Moreover, according to the Nyquist–Shannon sampling
theorem, the maximum detection range is limited by the delayed length of the auxiliary
interferometer. To overcome these limitations, the Hilbert transform is used to compen-
sate the nonlinearity, requiring a phase unwrapping procedure to extract the nonlinear
components of the beat frequency generated from the auxiliary interferometer.

Another passive correction approach focuses on producing a pre-distorted modulation
current waveform using different iterative methods [10,12]. These approaches are capable
of generating high linear frequency-swept light and are independent of specific lasers. But,
the optimal parameters for the pre-distortion technique still depend on lasers, requiring
a substantial amount of trial-and-error to guarantee the convergence efficiency and the
linearization effect.

Both of these passive methods rely heavily on plenty of real-time data collected from
the auxiliary branch, while the implicit system characteristics in the data have not been
fully explored. The auxiliary branch increases the application system complexity as well.
Therefore, a data-driven method is necessary and has the potential to reduce system
complexity and improve experimental data efficiency.

In this work, we propose the reinforcement learning (RL) method to linearize the
broadband frequency sweep with the data-driven control method. RL is a branch of ma-
chine learning. It provides a state-of-the-art solution for the control task, formalized as
the Markov decision process (MDP) [14] in various science and industry fields, such as
autonomous driving [15], energy management [16], and traffic control [17]. Initially, the
agent has no a priori knowledge of the internal functioning or dynamics of the environment.
The control policy is optimized during the process that the agent observes states of the
environment, produces actions, and receives rewards. According to whether the state tran-
sition function and the reward function are known or not, the RL method is separated into
model-free RL and model-based RL. Model-free RL is a trial-and-error learner relying on
the direct interaction with the environment. It is efficient in capturing environmental char-
acteristics. But, the practicality is limited by the high sample complexity. On the contrary,
the model-based RL is considered as a promising planning approach to decrease the sample
complexity. The introduction of the probabilistic model extracts the uncertainty charac-
teristics and leads to the model-based RL matching model-free asymptotic performance
in challenging domains while using fewer samples. Moreover, the introduction of deep
learning makes the deep RL powerful and widely applicable in the complex control tasks.
In optics, the integration of the RL develops rapidly as in fields of adaptive optics [18],
quantum optics [19], and optical communication networks [20].

In terms of the reinforcement learning-based broadband frequency-swept linearization
(RL-FSL), the linearization task is converted to the MDP problem by defining the proper
state, action, and reward. Considering efficiency, sample complexity, and safety, we pre-
fer a model-based approach for the broadband frequency-swept linearization task. We
establish the FSL nonlinearity measurement system with the FSL and the Mach–Zehnder
interferometer (MZI) as the key components, and simulate the system with the experimen-
tal data and the random factors as the environment of RL. Based on the twin delayed deep
deterministic policy gradient (TD3) algorithm, the characteristics of the FSL are learned
and the linearization policy is optimized. The well-trained policy is employed to the ex-
perimental frequency measurement system to demonstrate the linearization efficiency of
the RL-FSL. Therefore, the proposed method accomplishes the off-line optimization of the
linearization policy by fully leveraging the valuable information from experimental data
and simplifies the application system of the FSL.

2. Methodology

The schematic of the RL is shown in Figure 1b. At each discrete temporal step t,
the agent receives the state st to perceive environmental characteristics, and delivers the
action at to modify the environment evolution based on the current control policy. After



Photonics 2023, 10, 1056 3 of 11

the environment performs the action, the reward rt is given to the agent representing the
evaluation of the quality of the state–action pair. The received reward and the next step state
st+1 are collected to optimize the control policy. The objective of the agent is to optimize
the control policy to maximize the cumulative reward. Before converting the broadband
frequency-swept linearization task to the MDP, we design the nonlinearity measurement
system and establish the system simulator as the RL environment, as shown in Figure 1a.

Agent

(Actor-Critic)

Environment

(System model)
, 

(b)

(a)

MZI
FSL

    

PD

ADC FPGA

Nonlinearity measurement system

System model

Modulation
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Experiment
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Q      )
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Figure 1. Schematics of (a) nonlinearity measurement system and system model, (b) reinforcement
learning, (c) actor-critic structure.

Assume the chirp frequency of the FSL is represented as:

f (t) = f0 + ki(t) + fnl(t) = f0 + F(i(t)), (1)

where f0 is the initial frequency, i(t) is the modulation current, fnl(t) is the nonlinearity
term, and F(·) represents the mapping relationship of the modulation current and the chirp
frequency. Based on the optical interference principle, the frequency of the beat signal
collected by the photodetector (PD) is represented as:

fb(t) =
d f (t)

dt
= ξ + f

′
nl(t) = F

′
(i) · i′(t), (2)

where ξ = k di(t)
dt and F

′
(i) is capable to describe the transfer characteristic of the nonlinearity

measurement system. According to Equation (2), the beat frequency reflects the nonlinear
situation. If the beat frequency is constant, the frequency sweep is linear. Conversely, the
nonlinearity exists.

Considering that the high sample complexity [21] of the agent interacts with the
experimental system directly during the control policy optimization process, we utilize
the experimental data to simulate the system characteristic. According to Equation (2), we
collect the input and output data of the system and calculate the corresponding numerical
form of F

′
(i). Simultaneously, we invite the noise term n(t) [22] to simulate the impact

of the random factors in the system. Therefore, we obtain the system simulator, i.e., the
RL environment.

fb,m(t) = G(i) · i′(t) + n(t), (3)

where G(i) is the numerical form of F
′
(i). To accomplish the broadband frequency-swept

linearization, a proper modulation current is required. Therefore, the modulation slope
of each time step t in the modulation period is controlled and defined as the action at.
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Additionally, the state and the reward are defined on the modulation current and the
beat frequency.

st = norm([i(t), fb,m(t), fb,m(t)− fb,m(t− 1)]), (4)

rt = −norm(| fb,m(t)− fb,r|), (5)

where norm(xi) = (xi − xi,min)/(xi,max − xi,min), and fb,r is the reference frequency. Con-
sequently, we implement the conversion of the broadband frequency-swept linearization
problem to the MDP. According to the principle of the RL as shown in Figure 1b, the agent
perceives the nonlinear characteristics of the environment with the received state st, and
the modulation slope at is delivered to the environment based on the current linearization
policy. After performing the modulation current, the next beat frequency is calculated
and the linearization efficiency is evaluated by the reward rt. The control policy would be
optimized during this process.

Since the action space and the state space are continuous, from a perspective of deep
RL, the actor-critic-based algorithms are well-suited. Commonly, the actor-critic structure
contains a pair of neural networks (NNs) with different optimization objectives, as shown
in Figure 1c. The actor neural network (NN) optimizes the control policy, outputting the
action according to the input state. And, the critic NN fits the state-action value function to
estimate the current policy of the actor NN. We employ the TD3 [23] algorithm to solve
the broadband frequency-swept linearization problem, which is one of the state-of-the-art
and actor-critic-based algorithms. The TD3-based agent is shown as in Figure 2. The
actor NNs of the TD3 contain the actor evaluation NN and the actor target NN. They are

parameterized as µ(s|θµ) and µ
′
(s|θµ

′
), separately. And, the critic NNs of the TD3 contain

the basic critic evaluation NN, the basic critic target NN, and their twin NNs. They are

parameterized as Qi(s, a|θQi ) and Q
′
i(s, a|θQ

′
i ), separately. The parameter i = 1, 2 represents

the label of basic critic NNs and twin critic NNs. The actor evaluation NN is designed as
four fully connected layers [3, 128, 256, 1]. The rectified linear unit (ReLU) is used as the
activation function of the input and hidden layers. And, the hyperbolic tangent function
is connected with the output layer. For the structures of the critic evaluation NNs, they
also have four fully connected layers [4, 128, 256, 1]. And, the activation functions of these
layers are ReLU.

Optimizer

Actor NNs

Actor target NN

Actor evaluation NN

Critic NNs

Optimizer

Basic critic evaluation NN

Basic critic target NN

Basic critic NNs

Optimizer

Twin critic evaluation NN

Twin critic target NN

Twin critic NNs

Minimize Target Q Value

Figure 2. The TD3-based agent. NN represents the neural network.

The loss function of the actor evaluation NN is defined as:

∇θµ J = E[∇θµ Q1(s, a|θQ1)|s = st, a = µ(st|θµ)], (6)

where θµ is the hyper-parameter of the evaluation actor NN. And, the learning rate of the
actor NNs is set to 0.001. The basic critic evaluation NN and the twin critic evaluation NN
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have different initial parameters and are trained separately. The loss functions of networks
are defined as:

L(θQi ) = E[(Qi(st, at|θQi )− yt)
2], (7)

yt = r(st, at) + γmini=1,2[Q
′
i(st+1, µ

′
(st+1|θµ

′
) + ε|θQ

′
i )], (8)

where θQi (i = 1, 2) are the hyper-parameters of the evaluation critic NNs, and ε ∼ N (0, δ).
And, the learning rate of the critic NNs is set to 0.0001. The target NNs have the same
structure with the evaluation NNs, and the parameters are update based on:

θ
′ ← kθ + (1− k)θ

′
(9)

where θ and θ
′

represent the parameters of the evaluation NNs and the target NNs, sepa-
rately, and k = 0.01 represents the update rate. The update frequency of the actor target
NN is half of the critic target NNs.

In the early training process, the actor evaluation NN generates the modulation current
according to the initial state and random policy, and the reward and the next state are
calculated by the simulator. The collected experiences are stored in the replay-buffer. Until
the capacity of the buffer reaches the batch size, the training data are sampled from the
buffer. The maximum capacity of the buffer is set to 1,300,000, and the batch size is set
to 4096. The whole training process includes 1500 periods and, in each period, the agent
interacts with the simulator 3278 times, corresponding to the controlled time steps of the
modulation current in the modulation period. And, the data in the replay-buffer is updated
continuously. To ensure the exploration–exploitation trade-off of the agent, the executed
action of the simulator contains the output of the actor NN and the exploration noise. The
variance of the noise gradually decreases with the training process. Consequently, with
the convergence of the NNs, the optimized control policy is obtained, and the modulation
current is generated during the interactions of the agent and the simulator. Since the
random term in the simulator, the generated modulation current is slightly changed in
each period. With the regular updated modulation current, it would be more flexible to the
random changes in the application system.

3. Results and Discussion

As a proof-of-concept, the nonlinearity measurement system is established to demon-
strate the feasibility of the RL-FSL as shown in Figure 3. It starts with a 1550 nm distributed
feedback laser (DFB) operating at 25 °C. The DFB FSL provides a frequency modulated
continuous wave (FMCW) signal with 1 ms periodic duration driven by an initial sawtooth
modulation current. The bandwidth of the frequency sweep is 120 GHz. The emitted
optical signal passes through the isolator and enters the semiconductor optical amplifier
(SOA). The current-frequency tuning of the laser is accompanied by a parasitic amplitude
modulation from the perspective of constructing a swept frequency laser. The amplitude
modulation can be corrected with a second feedback loop varying the injection current
of the SOA. The equalized light is fed into the MZI with a delay time τ = 5 ns and the
generated beat signal is collected by the PD. Transferred to the computer by the field
programmable gate array (FPGA), the frequency of the beat signal is extracted using the
Hilbert transition. According to the collected beat frequency and the modulation slope, the
nonlinear mapping relationship is calculated. Along with the random term, the system
simulator is built and employed as the RL environment. The following policy optimization
process is finished on the computer. The generated modulation current is transferred by
the FPGA and updated regularly to guarantee the stable linearization efficiency.
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Figure 3. The experimental platform of the nonlinearity measurement system. FSL represents the
frequency-swept laser, SOA represents the semiconductor optical amplifier, MZI represents the
Mach–Zehnder interferometer, PD represents the photodetector, and FPGA represents the field
programmable gate array.

To evaluate the performance of the data-driven control, we compare it with the classical
methods, and calculate the root mean square of the residual nonlinearity (RMSRN) as the
metric according to the bandwidth of the beat signal [13].

δ fb = 2(1 + 2πτ fnl,rms) fm, (10)

where fm is the modulation frequency. In addition, to further analyze the impact of the
nonlinearity to the actual application, we make the frequency modulated continuous wave
light detection and ranging (FMCW LiDAR) as an example and calculate the theoretical
space resolution (TSR).

δd =
c

2δ f · fm
δ fb, (11)

where c is the speed of light, and δ f represents the bandwidth of the frequency sweep.
The spectrum analysis of the beat signals with different control methods are shown in

Figures 4–7. The initial modulation current is a linear sawtooth signal. Since the nonlinearity
of the FSL, the frequency of the beat signal is time-variant as the short-time fast Fourier
transformation (STFFT) result shown in Figure 4. Meanwhile, with the control policies,
the corresponding beat frequency (Figures 5 and 6) is much closer to a constant, especially
in our case. According to Equation (2), it means a much smaller RMSRN verifying the
effectiveness of our RL-FSL. With the power spectrum analysis shown in Figure 7, it is
obvious that, compared to the case without control, the frequency components contained
in the beat signals are reduced and the proposed RL-FSL is better than the iteration method.
The bandwidth of the beat signal with the control of our RL-FSL method is 5.6 kHz, which
is an order of magnitude improvement compared to 59.2 kHz without linearization. And,
the bandwidth based on the iteration method is 19.8 kHz. Considering the Equation (10),
we can approximate the corresponding RMSRN as 57.3 MHz, 910.3 MHz, and 283.3 MHz,
respectively, which represents a significant improvement of the linearity by using our
data-driven method. Since the aim of the RL-FSL is to learn long-term reward-maximum
behavior, with the proper design of state, action, and reward, the linearization task is
converted to the MDP and achieves the control policy suitable to the whole sweep period,
where the nonlinearity is extremely variable with time. However, the performance of the
iteration method is not good enough in this broadband frequency-swept linearization task.
Because of the inherent randomness of the system and the little concern of the influence
among different time steps, it is quite difficult to obtain a stable control policy with the
iteration method, which would affect the performance of linearization accordingly. Since
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the principle of the nonlinearity measurement system is similar to the FMCW LiDAR
system, we use the beat signal collected in the nonlinearity measurement system as the
distance detection result to evaluate the effect of linearization on ranging precision. Based
on Equation (11), the best achievable resolution of our method is 0.0072 ml much better
than the results without linearization (0.0759 m) and with the iteration method (0.0254 m).
Therefore, our proposed RL-FSL would be powerful in the FMCW LiDAR and other
application systems.
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Figure 4. Short-time fast Fourier transformation result of the beat signal without control algorithm.
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Figure 5. Short-time fast Fourier transformation result of the beat signal with iteration
control algorithm.
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Figure 6. Short-time fast Fourier transformation result of the beat signal with RL-FSL
control algorithm.
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Figure 7. Power spectra of the beat signals with and without control algorithms.

To achieve a stable resolution, it is necessary to monitor the long-term performance of
the control methods. As shown in Figure 8, the experimental system operates continuously
for over 2 h and the modulation current is updated every 5 min. It is evident that the
RMSRN of the beat frequency is larger and highly volatile with the iteration control. It
turns out that the iteration process does not make the method robust to the noise of the
system, or even worse. On the contrary, the curve of the RMSRN shows small fluctuations
over time without degradation, indicating a stable work condition and control efficiency
of the RL-FSL methods. Therefore, the established simulator performs good descriptions
of the system characteristics and the off-line well-trained control policy performs well in
long-term operation, demonstrating the potential of generating the linear frequency-swept
signal in the application systems of the FSL without the aid of extra components like the
iteration method.
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Figure 8. Long-term performance of the iteration method and the RL-FSL method.

However, since the random term in the system model cannot fully capture the ran-
domness, the linearization performance of the well-trained policy would be influenced if
the environment condition changes extremely. In this condition, the system model requires
further optimization and the control policy also needs to be re-optimized case-by-case.
A few extra training periods are required to fine-tune the agent on the basis of the well-
train policy. We would continue to investigate this developing field to generalize our RL
algorithm on the variable environments.

Finally, we list the comparison of our proposed RL-FSL with other traditional lineariza-
tion methods in Table 1. It can be found that the bandwidth we focus on is much larger
than other works. And, the TSR raises to the same magnitude, indicating the potential of
our method. The system complexity mentioned in Table 1 is related to the application sys-
tems. When the iteration method and the PLL-based method are employed to linearize the
frequency-swept laser , the elements including MZI, PD, and the analog digital converter
(ADC) are required to set up the application system. Therefore, the system complexity
increases. On the contrary, with our proposed RL-FSL, the elements are only needed in the
process of simulator establishment. Since the training process of the RL-FSL is accomplished
with the interaction of the simulator and the generated modulation current, according
to the well-trained policy, is injected to the FSL, the elements mentioned above are not
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required. Therefore, with the introduction of the data-driven method, the complexity of the
application system is under control.

Table 1. The comparison of linearization methods.

Method Laser Bandwidth
(GHz) TSR (m) System

Complexity 2

1 EO-PLL [8] DFB 60 0.005 1 Increase
2 Iteration [12] DFB 26 0.014 1 Increase
3 Iteration [13] DFB 36 0.009 1 Increase
4 Ours DFB 117 0.006 Not increase

1 The theoretical value calculated with the parameters in the reference papers according to Equations (10) and (11).
2 The complexity of the FMCW LiDAR system.

In this work, we have built the nonlinearity measurement system and collected ex-
perimental data to establish the system model. With the nonlinear mapping relationship
and the random factor concerned, the system model can be effectively utilized as the
RL environment. Furthermore, according to the objective of the linearization task and
the data characteristics, the task is converted to MDP with the proper definitions of the
state, the action, and the reward. Therefore, during the interaction process, the agent is
capable of capturing the nonlinear characteristic of the frequency-swept laser. Since the
training process is accomplished with a model, the well-trained policy can be applied to
the system directly without the iteration process and there is no need to add an auxiliary
sub-system for the beat signal measurement in frequency-swept laser application systems,
like most traditional methods do. Therefore, the control efficiency is improved and the
system complexity is reduced.

Furthermore, RL has more advantages of learning long-term reward-maximizing
behavior in high-dimensional control tasks to adapt to the dynamic environment very well.
Therefore, rather than traditional methods, such as the iteration methods and PLL-based
methods, considering the frequency difference at each time step separately, the RL agent
has a better performance of learning the nonlinear characteristics of the environment.

Moreover, the broadband frequency sweep leads to the enhanced nonlinearity and
an extreme increase in the dimensions of the state and action spaces in the environment. The
NN structure makes it possible to further mine the experimental data to reflect the system.
The proper designed actor NNs do well in optimizing the deterministic control policy. And,
the critic NNs estimate the state-action value function to evaluate the current policy.

With the well-trained policy, the modulation current is generated during the interac-
tion of the agent and the environment, and applied to the experiment system to evaluate
the linearization ability of the control policy. Due to the random terms present in the envi-
ronment, the generated modulation signals are slightly different in different modulation
periods. Therefore, our generated modulation current is flexible enough to accommodate
the random changes in the model. By updating the modulation current regularly, the
linearity of the system has a better performance faced with random changes of the system.

Therefore, the control efficiency is improved and the system complexity is reduced by
using the data-driven RL-FSL. More generally, similarly to the frequency-swept laser con-
trol, many optical phenomena in optical systems are also noise-sensitive, high-dimensional,
and nonlinear, making it challenging to use conventional control methods. Therefore, the
data-driven method has the potential to drive the development of smart photonics technologies.

4. Conclusions

In this work, we linearized the broadband FSL with an RL algorithm. The nonlinearity
of the FSL is characterized and simulated by the experimental data. And, the NNs fully
explored the hidden characteristic in the data, ensuring the data efficiency. Simultaneously,
the establishment of the nonlinearity measurement system and the off-line training made
the optimization process of the control policy decoupled from the actual application effec-
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tively alleviating the system complexity of the actual application. The RMSRN reduced by
15 times demonstrated the advantages of the data-driven method in broadband frequency-
swept linearization, compared with traditional methods. For FMCW LiDAR, it means
an order of magnitude of resolution improvement. And, it could also be implemented to
enhance the performance in a wide variety of applications, including optical fiber sensor
networks for remote sensing, spectroscopy, and so on.
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