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Abstract: To improve the imaging speed of ghost imaging and ensure the accuracy of the images, an
adaptive ghost imaging scheme based on 2D-Haar wavelets has been proposed. This scheme is capa-
ble of significantly retaining image information even under under-sampling conditions. By comparing
the differences in light intensity distribution and sampling characteristics between Hadamard and
2D-Haar wavelet illumination patterns, we discovered that the lateral and longitudinal information
detected by the high-frequency 2D-Haar wavelet measurement basis could be used to predictively
adjust the diagonal measurement basis, thereby reducing the number of measurements required.
Simulation and experimental results indicate that this scheme can still achieve high-quality imaging
results with about a 25% reduction in the number of measurements. This approach provides a new
perspective for enhancing the efficiency of computational ghost imaging.

Keywords: computational ghost imaging; imaging efficiency; 2D-Haar wavelet

1. Introduction

Computational ghost imaging(CGI) [1] has garnered widespread attention due to its
simple construction and innovative image reconstruction techniques. In a CGI system,
a series of pre-set illumination patterns are used as reference signals and projected onto the
object under observation. The light beams reflected from the object’s surface are captured by
a bucket detector. Subsequently, the image information can be reconstructed by correlating
these bucket signals with the reference signals. Ghost imaging is characterized by its
non-locality and strong anti-interference capabilities, offering broad application prospects
in fields such as medical imaging [2–4], remote sensing [5,6], and defense [7–9].

However, achieving high efficiency and a high signal-to-noise ratio in image recon-
struction remains a challenge in the field of ghost imaging. For an image containing
N pixels, ghost imaging requires at least N samples to recover the image, which is the
measurement’s Nyquist limit. Notably, ghost imaging using random speckle patterns
often requires more samples than N. Therefore, for high-resolution imaging, the need
for a large number of samples leads to lower imaging speeds, which becomes a limiting
factor in the application of ghost imaging. In 2006, Candès et al. introduced the theory of
Compressive Sensing (CS). In 2009, Katz et al. successfully integrated CS theory with Ghost
Imaging technology, significantly reducing the number of samples required for CGI [10].
Subsequently, numerous studies have proposed various models and algorithms within the
framework of CS to enhance the efficiency of CGI [11–14]. The core idea of CS is that a
sparse or compressible signal can be almost perfectly recovered through a small number of
non-adaptive linear measurements, surpassing the limitations of the traditional Nyquist
sampling theorem. However, the essence of CS lies in solving a series of convex optimiza-
tion problems iteratively, a process that consumes considerable computational resources
and time. Additionally, this method has specific requirements for the characteristics of the
sparse basis. These factors jointly affect the imaging speed and stability of ghost imaging.
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Measurement based on orthogonal transformation matrices is another effective method
to enhance imaging efficiency [15]. It employs correlation algorithms and matrix inver-
sion algorithms, requiring less from hardware performance, thus enabling fast and stable
imaging. Common orthogonal speckle-based ghost imaging techniques include discrete
Fourier ghost imaging [16,17], discrete cosine ghost imaging [18–20], Hadamard CGI
(HCGI) [21,22], and wavelet transform ghost imaging [23–26]. Among these, the Hadamard
transform is notable for its simplicity in constructing the observation matrix and can easily
project speckle patterns on high-speed spatial light modulators. This type of speckle has a
strong intensity, thereby enhancing the robustness of the imaging. However, the Hadamard
transform method requires the number of measurements to be equal to the number of
pixels in the image for a perfect reconstruction, making compressed sampling unachievable.
Some studies have reduced the number of samples by changing the arrangement of the
Hadamard measurement basis. For example, Walsh-Hadamard CGI (WHCGI) [27] involves
rearranging each row of the Hadamard matrix in order of increasing frequency of “1” and
“−1” transitions. This approach treats the two-dimensional image as a one-dimensional
signal, allowing the image’s information to be extracted progressively by frequency. Other
approaches, such as the “cake-cutting” ordering for Hadamard CGI [28] and the “Russian
doll” ordering for Hadamard CGI (RDHCGI) [29], reorder based on the coherence between
each illumination speckle pattern and the two-dimensional image under test. These strate-
gies allow the measurement process to stop as soon as the reconstructed image meets
observational requirements, thereby reducing the number of sampling instances. However,
while reducing the number of samples, these methods may also lead to a significant loss
of detailed information in the reconstructed images. Therefore, how to reconstruct rich
detailed information under under-sampling conditions remains the focus of our work.

The wavelet transform has the characteristic of multi-scale analysis, which can separate
the localized features of an image and also has good decorrelation in image reconstruction.
This paper proposes an Adaptive Ghost Imaging method based on 2D-Haar wavelets
(2DHW-AGI). This method extracts different scale information of the image using 2D-Haar
wavelets, then evaluates the diagonal information of a region using the horizontal and
vertical information of that region, and selects the required diagonal measurement basis.
This achieves the purpose of reducing the number of measurements. Through numerical
simulations and experimental verification, we have demonstrated the effectiveness of this
scheme in reducing the number of samples while significantly preserving the detailed
information of the image.

2. Methodology

The schematic diagram of the traditional CGI system is illustrated in Figure 1. A series
of pre-modulated patterns are projected onto the target object, denoted as T̂(m, n), where
m and n represent the discrete spatial coordinates in the horizontal and vertical directions,
respectively. These projections are measured by a bucket detector. Each measurement base
within a pattern is represented by R̂i(m, n). The signal detected by the detector for each
projection is denoted by Bi. In essence, the signal obtained during each measurement can
be formulated as the inner product between the pattern and the object. Thus, Bi can be
articulated as follows:

Bi = ∑
m,n

R̂i(m, n)T̂(m, n), (1)

the image can be reconstructed by calculating the second-order correlation function as:

G(2)(m, n) = ∑i R̂i(m, n)⊤Bi, (2)

If the set of all measurement bases is denoted as ‘r̂’, then the second-order correlation
function can be expressed as follows:

G(2) = r̂⊤ r̂T̂. (3)



Photonics 2024, 11, 361 3 of 12

When r̂ is a measurement set modulated by an orthogonal matrix, the result of the
second-order correlation function is the image information.

Figure 1. Schematic diagram of CGI.

Given that an element of the 2D-Haar wavelet measurement base comprises “1”, “0”,
and “−1”, and considering the projector’s inability to project negative elements, it typically
becomes essential to segregate the measurement base into positive and negative patterns
for separate measurement. The detection signals Bi in the standard mode are acquired
by executing the measurement process twice. To enhance imaging efficiency, we adopt a
single-fold measurement strategy for sampling [30], as follows:

R̂i+ = R̂i + |R̂imin| Î′
Bi+ = (R̂i + |R̂imin| Î′)T̂(m, n) = Bi + |R̂imin| Î′T̂(m, n)
Bi = Bi+ − |R̂imin| Î′T̂(m, n)

(4)

where Ri+ denotes the positive pattern, Rimin denotes the smallest element in the measure-
ment basis Ri (Rimin = “−1” for the 2D-Haar wavelet measurement basis), I′ denotes an
all “1” matrix of the same size as that of the target object, and Bi+ denotes the detector
signal obtained under the positive pattern irradiation. The first measurement basis of the
2D-Haar wavelet is an all “1” matrix. So, Bi = Bi+ − B1.This allows for the acquisition of
accurate detection signals through a single measurement cycle.

The computational ghost imaging experiment can be conducted in two distinct phases.
Initially, a sequence of patterns is projected onto the object using a projector, a step referred
to as image sampling, with the patterns being measured by a bucket detector. Subsequently,
the image is derived by correlating the measured patterns with the corresponding signals
from the bucket detector, a step known as image reconstruction. The sampling phase neces-
sitates the coordinated operation of both the projector and the bucket detector, rendering it
a time-intensive process. Minimizing the number of samples during the experiment can
significantly enhance the imaging efficiency of ghost imaging.

We believe that the 2D-Haar wavelet possesses the potential to retain substantial
image information under conditions of under-sampling, a capability closely related to its
construction and sampling characteristics. The 1D-Haar basis consists of a scaling function
ϕ(x) and a wavelet function ψ(x):

ϕ(x) =

{
1, 0 ≤ x < 1

0, otherwise
(5)
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ψ(x) =


1, 0 ≤ x < 1/2

−1, 1/2 ≤ x ≤ 1

0, otherwise

(6)

Based on the 1D-Haar wavelet, we can define the scaling function ϕ(u, v) of the
2D-Haar wavelet as follows:

ϕ(x, y) = ϕ(x)ϕ(y) (7)

For a fixed scaling factor j, the set of two-dimensional scaling functions can be repre-
sented as:

Φj ≡
{

ϕj,n,m(x, y)
}

n = 0, 1, . . . , 2j − 1; m = 0, 1, . . . , 2j − 1,

where ϕj;n;m(x, y) = 2jϕ
(
2jx − n, 2jy − m

)
.

(8)

Unlike the 1D-Haar wavelet, the 2D-Haar wavelet has three mother wavelets, namely,
the diagonal (D) mother wavelet, vertical (V) mother wavelet, and horizontal (H) mother
wavelet. The frequency behavior of these three wavelet filters is such that they can capture
the corner, vertical, and horizontal details of an image with a particular dilation. The three
wavelets that give these details of images can be expressed as:

ψH(x, y) = ϕ(x)ψ(y),
ψV(x, y) = ψ(x)ϕ(y),
ψD(x, y) = ψ(x)ψ(y).

(9)

Given that there are three mother wavelets at each scaling level, let 1 ≤ k ≤ 3. Hence, the set
of 2D-Haar mother wavelets can be represented as:

Ψj ≡
{

ψk
j,n,m(x, y), k = 1, 2, 3

}
n = 0, 1, . . . , 2j − 1; m = 0, 1, . . . , 2j − 1,

where ψk
j,n,m(x, y) = 2jψk(2jx − n, 2jy − m

)
.

(10)

A certain basis vector of the 2D-Haar wavelet can be expressed as ψj(s), where j denotes
the scaling level whose maximum value depends on the total number of elements N
(j ∈ [0, log2

√
N − 1]), and s denotes the three mother wavelets (s = H, V, D).

In the ghost imaging experiment utilizing 2D-Haar wavelets, the Haar wavelet ma-
trix is initially constructed as per Equation (9). For illustrative purposes, we examine a
16 × 16 Haar wavelet matrix, as depicted in Figure 2a. The matrix rows are sequentially
arranged by incrementing the scaling factor j, following the order of the three mother
wavelets—horizontal, vertical, and diagonal—within the same scaling level. Subsequently,
each row is isolated and transformed into an illumination pattern, with the pattern’s con-
figuration illustrated in Figure 2b, showcasing illumination patterns modulated by the
2D-Haar wavelet matrix. As the scaling level escalates, the physical dimensions of each
illumination pattern diminish, enhancing the resolution of the resultant image. Figure 2c
presents the Hadamard illumination patterns.

As illustrated in Figure 3, upon comparing the two types of illumination patterns, it is
observed that the illumination area of the 2D-Haar wavelets gradually decreases, making
many measurements redundant during the sampling process. In contrast, the illumination
area of each Hadamard speckle corresponds to the entire object under observation. Hence,
each detector signal contains information within the range covered by the illumination pat-
tern. Therefore, reducing the number of sampling measurements will result in a significant
loss of information about the target object.
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Figure 2. (a) 2D-Haar wavelet matrix of size 16 × 16, (b) Illumination patterns modulated by a
2D-Haar wavelet matrix, and (c) Hadamard illumination patterns.

Figure 3. Schematic illustration of the sampling characteristics of Hadamard and 2D-Haar wavelet
illumination patterns.

The H, V, and D mother wavelets are designed to detect the horizontal, vertical,
and diagonal directions, functioning as three high-frequency filters, respectively. They
filter out low-frequency information while retaining high-frequency details. This principle
underlies the implementation of the 2DHW-AGI scheme. In Figure 4, we analyze several
cases where wavelet measurement bases irradiate an image and explain the 2DHW-AGI
scheme’s principle by calculating the change in the signal caused by the bucket detector
(indicated by the colored portion in the figure). Since the grayscale values in (a) are
uniform, the convolution result using the high-frequency filter is zero, leading to a very
small detector measurement value in the experiment. In (b), the grayscale values on the left
and right sides differ, containing horizontal information. Here, only the H-series wavelets
can generate a strong detection signal to extract this horizontal information. Similarly,
only the V-series wavelets can detect the vertical information in (c). However, for the edge
information as illustrated in (d), all three mother wavelets can produce strong detection
signals. Therefore, in experiments, we first use the H- and V-series wavelets to measure
the object. If both H- and V-series wavelets produce strong detection signals at a certain
location, it indicates the presence of diagonal information. If only the H-series or V-series
wavelet generates a strong signal at a specific location, it suggests the absence of diagonal
information. Consequently, we can exclude the D-series wavelet measurement bases, thus
reducing the sample count. The pattern observed can be attributed to the composition of
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the three types of mother wavelet illumination speckle elements shown in Figure 4. Taking
the H-series illumination speckle as an example, it is composed of “1” on the left half and
“−1” on the right half. Therefore, in the process of extracting information, it effectively
divides the illumination area into left and right parts and calculates the difference between
these two parts. The greater the difference, the larger the wavelet coefficient will be. In the
case of edge and corner information shown in Figure 4d, where there are differences both
left to right and top to bottom, it would be detected by both H-series and V-series wavelets.
This method of detection leverages the inherent differences across the illuminated regions
to extract and amplify relevant information, thereby facilitating the identification and
reconstruction of image features with high fidelity.

Figure 4. Schematic diagram of 2D-Haar wavelet-based detection information principle. (a) denotes
background information, (b) denotes horizontal information, (c) denotes vertical information,
(d) denotes marginal information, and (e) denotes diagonal information.

It should be noted that (e) represents a special case where neither the H- nor V-series
wavelet measurement bases yield a significant detector signal at this position, while the
D-series wavelet measurement bases might affect the image quality in practical imaging.
This scenario is uncommon in grayscale images and typically occurs only if the black and
white boundaries of the measurement base and the object under observation perfectly align.
Moreover, as long as the pattern in (e) does not consist of a high-frequency (alternating
black and white pattern composed of four-pixel points), it can be detected. Conversely,
if the image contains the highest frequency, only the four-pixel points of imaging will
involve an error, which does not significantly impact the image quality.

Building on the properties of 2D-Haar wavelets discussed previously, we introduce
the 2DHW-AGI scheme. The 2DHW-AGI approach is a direct imaging method that does
not incorporate a plethora of complex algorithms into the image reconstruction process.
By reducing the number of samples, we streamline the image reconstruction process
without adding to its complexity, ensuring that the number of samples matches the number
of image reconstructions.

3. Simulation Results and Analysis

To verify the feasibility of the 2DHW-AGI scheme, we selected “Cameraman” as
the test object and performed numerical simulations following the experimental steps
outlined in Figure 5. Considering the original image as a reference, this study selected
the Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) as
evaluation metrics. PSNR is a widely used standard to measure the difference between
the reconstructed image and the original, offering a numerical reflection of the loss in
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image quality. On the other hand, SSIM is a metric for assessing the fidelity of image
structure. It more precisely measures the visual effects of an image by simulating the
human eye’s sensitivity to changes in image structure. The combination of these two metrics
allows for a comprehensive evaluation of the quality of image reconstruction from various
dimensions [31]. We compared the two Hadamard illumination pattern based fast imaging
schemes, WHCGI and RDHCGI, with the 2DHW-AGI scheme. In addition, given that
the 2DHW-AGI scheme relies on the 2D-Haar wavelet measurement-based CGI (2D-Haar
CGI), we juxtaposed its imaging results with those of the 2D-Haar CGI scheme under full
sampling conditions to underscore the 2DHW-AGI scheme’s imaging quality. We define the
number of samples by NS and the number of reconstructions by NR. The WHCGI, RDHCGI,
and 2D-Haar CGI schemes allow for direct setting of the sampling rate. In contrast,
the 2DHW-AGI scheme requires initial basic measurements using H-series and V-series
wavelets, with these basic measurements accounting for one-third of the total sampling
instances. In our simulation experiments, we did not account for the impact of noise.
However, after wavelet transformation, images tend to contain a large amount of redundant
information that has a negligible effect on the imaging results. We have chosen to use 5%
of the absolute value of the largest wavelet coefficients at each scale level as a threshold
for selection. This method takes into account the differences in frequency components and
allows for targeted selection and rejection of information at different scale levels, ultimately
reducing the number of samples required. Therefore, the sampling rate for the 2DHW-AGI
scheme should exceed 66.7%, with the actual rate determined by the threshold value.

Figure 5. Experimental procedure.

The simulation results are shown in Figure 6, the original image was 128 × 128 pixels,
which means for a measurement basis based on orthogonality, the total number of sam-
plings reached 16,384. Due to the 2DHW-AGI scheme’s requirement for foundational
measurements using both horizontal and vertical wavelet bases, we chose to compare
sampling rates of 67%, 75%, 85%, and 95%. At a 67% sampling rate, both the WHCGI and
RDHCGI schemes could reconstruct most of the image information, but due to insufficient
measurements, significant distortions occurred at the image edges. The imaging clarity
under the 2DHW-AGI scheme at a 67% sampling rate was not satisfactory because this
scheme necessitates 66.7% of the sampling rate for basic measurements. This implies that
only an additional 0.3% of diagonal measurement bases are involved in the sampling and
reconstruction of the image. Consequently, the reconstructed image lacks crucial diagonal
information, which significantly impacts the quality of the image. However, when the
sampling rate exceeds 75%, most of the important diagonal information is reconstructed,
which leads to an improvement in image quality. In contrast, the quality improvements in
the WHCGI and RDHCGI schemes were more uniform. To highlight the great preservation
of detailed information and compare the subtle differences in the reconstructed images, we
magnified parts of the images. At a 95% sampling rate, all three schemes had high SSIM
values, but significant visual differences were still present upon magnifying the images.
The WHCGI scheme still showed noticeable edge distortions. The RDHCGI scheme, by ad-
justing the order of the measurement bases to prioritize those more closely aligned with the
target information, reduced distortion intensity but still exhibited slight distortions. No-
tably, the creases in the character’s black clothing conveyed a sense of three-dimensionality,
representing some of the more detailed content in the images. The WHCGI and RDHCGI
schemes did not significantly reconstruct these details, marking the most distinct difference
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between the three schemes. At a 75% sampling rate, the 2DHW-AGI imaging scheme was
capable of reconstructing detailed information, but the quality was lower due to the lack
of diagonal information. Magnifying the elbow area of the character in the 95% sampling
rate reconstruction clearly shows that the 2DHW-AGI imaging scheme could reconstruct
information almost identical to the original image.

Figure 6. Comparison of imaging results of three schemes, 2DHW-AGI, WHCGI, and RDHCGI,
and comparison of SSIM at different sampling rates.

In Figure 7, two graphs illustrate the relationship between SSIM and PSNR with the
sampling rate. The results reveal that the differences in the reconstruction outcomes of
the three schemes are reflected in the trends of SSIM and PSNR, both of which show a
high degree of consistency. As the sampling rate gradually increases, the quality of the
reconstructed images also increases. The improvements in image quality are relatively
steady for both RDHCGI and WHCGI schemes, with the RDHCGI scheme outperforming
the WHCGI scheme. For the 2DHW-AGI scheme, after reaching a 67% sampling rate,
the image quality rapidly improves, stabilizing at around 78% and resulting in higher
reconstructed image quality. This is consistent with the visual effects shown in Figure 6
and our analytical results. However, the specific sampling rate at which image quality
stabilizes is determined by the amount of edge and corner information in the image being
tested. Additionally, beyond a certain sampling rate, the image quality reconstructed by
the 2DHW-AGI scheme surpasses that of the other two schemes. We believe this is because
the 2D-Haar wavelet basis has a higher de-correlation effect, meaning the measurement
bases that are filtered out have a minimal impact on the overall image quality. Although the
RDHCGI and WHCGI schemes filter out some illumination patterns that do not match well
with the target object, every Hadamard measurement basis affects the imaging of every
area of the entire picture, thus having a more significant impact on image quality. Visually,
this is manifested as distortions around the edges of the reconstructed objects.

Additionally, we selected “roses” and the more detail-rich “mandrill” as target im-
ages, applying the same comparative method mentioned above. The results, as shown
in Figure 8, are consistent with those discussed earlier, demonstrating a clear advantage
of the 2DHW-AGI scheme over the WHCGI and RDHCGI schemes after a 75% sampling
rate. Moreover, we discovered that the 2DHW-AGI scheme could reconstruct high-quality
images of objects with simpler backgrounds at a 70% sampling rate. For objects with richer
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details, it was also capable of reconstructing images very close to the original at around a
75% sampling rate.

Figure 7. “Cameraman” compares SSIM and PSNR at different sample rates using 2DHW-AGI,
WHCGI and RDHCGI schemes.

Figure 8. Comparison of SSIM and PSNR of “roses” and “mandrill” using 2DHW-AGI, WHCGI, and
RDHCGI schemes at different sampling rates.

4. Experimental Results and Analysis

To assess the practical effectiveness of our research approach, we conducted exper-
iments using two distinct targets: a metal plate with a pentagram cutout at its center
and a resolution board with more detailed information. The imaging area was set to
64 × 64 pixels, leading to a total of 4096 sampling instances. In the experimental setup,
the XGIMI-XE11F model projector was utilized to project the illumination patterns, and a
PDA100A2 photodetector from Thorlabs was employed for detection. For the 2DHW-AGI
scheme, to more evenly process the image thresholds, the threshold was set to 20% of the
average measured wavelet coefficients, resulting in actual sampling rates of 69.4% for the
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“pentagram” and 70.8% for the “resolution board”. Consequently, the sampling rates for the
WHCGI and RDHCGI schemes were adjusted to 70% to facilitate a comparative analysis of
the reconstructed images.

In the reconstruction results of the resolution board, to more distinctly observe the dif-
ferences in noise and contrast, we set the image color to “Parula” mode. The experimental
results were closely aligned with the numerical simulation outcomes. The WHCGI and
RDHCGI schemes exhibited more pronounced distortion and noise due to insufficient mea-
surements, leading to blurred images and low contrast. The advantages of the 2DHW-AGI
scheme were more apparent; at the same sampling rate, the impacts of noise in Figure 9c,g
were not significant, and the contrast was higher. Compared to the 2D-Haar CGI scheme
under full sampling conditions, the image quality reconstructed by the 2DHW-AGI scheme
under undersampling conditions was superior. This can be attributed to the filtering capa-
bilities of the 2D-Haar wavelets, which eliminate some of the redundancy. Consequently,
the influence of noise during measurement is reduced, enhancing the contrast and clarity
of the reconstructed image.

Figure 9. Comparison of “Pentagram” and “Resolution board” reconstructed images using WHCGI,
RDHCGI, 2DHW-AGI, and 2D-Haar CGI schemes. (a,e) are the imaging effects of the WHCGI
scheme at a sampling rate of 70%. (b,f) are the imaging effects of the RDHCGI scheme at a sampling
rate of 70%. (c,g) are the imaging effects of the 2DHW-AGI scheme at a sampling rate of about 70%.
(d,h) are the imaging effects of the 2D-Haar CGI scheme at a sampling rate of 100%.

5. Discussion

From our experimental results, it is evident that the 2DHW-AGI scheme significantly re-
tains image information under under-sampling conditions, marking its greatest advantage
over other methods. However, the imaging process is inevitably affected by environmental
noise, so the ’lossless’ aspect we discuss is theoretical, preserving more information than ac-
tual. In the previous section, we compared it with orthogonal speckle-based ghost imaging
schemes, not with the latest deep learning-based ghost imaging (DLGI) approaches. We be-
lieve that 2DHW-AGI and DLGI are not directly comparable. On the one hand, 2DHW-AGI
is universally applicable across various scenes, focusing on accurately capturing scene
information and improving imaging speed without compromising information accuracy.
On the other hand, DLGI prioritizes imaging speed, often at the expense of detailed image
information. Therefore, these two approaches differ significantly in their application scenar-
ios. Moreover, in terms of sampling rate, 2DHW-AGI does not show a significant advantage
over current deep learning-based computational ghost imaging methods, and may even
lag behind. However, we do not view DLGI’s efficiency as unattainable for 2DHW-AGI.
A mere comparison of sampling rates is not rigorous. The efficiency of most DLGI schemes
is constrained by various factors such as the quality and quantity of training datasets,
neural network architecture, and computational resources. Thus, implementing DLGI in a
random scenario necessitates considering the time cost of preliminary preparation, scene
complexity, and hardware computational capacity.
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A regrettable aspect of 2DHW-AGI we acknowledge is the lack of an appropriate
threshold for different frequency measurement bases during high-pixel target object imag-
ing, which could have refined the measurement bases from the previous scaling level.
Hence, an important future task is to conduct further data fitting for the detection signals
corresponding to each group of high-frequency measurement bases to identify a more
suitable threshold.

6. Conclusions

In this study, we introduce a novel approach aimed at reducing the sample count
required for CGI through the application of the 2D-Haar wavelet transform. The Haar
wavelet, characterized by its ability to locally scan a target object sequentially at each scaling
level, facilitates the prediction of D-series wavelet sequences with enhanced accuracy
by leveraging both H-series and V-series wavelets. This capability enables a significant
reduction in the required number of samples. Our experimental findings indicate that
the 2DHW-AGI scheme is capable of reconstructing high-quality images with 25% fewer
samples than traditionally necessary. This approach holds considerable potential for
augmenting the efficiency of ghost imaging techniques, serving as a valuable reference for
future research in the field.
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