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Abstract: We probed the impact of both the degree of disorder and nonlinearity on rogue waves
(RWs) in two-dimensional disordered lattices. Our results unveiled that an increase in the disorder
level under linear conditions heightened the probability of RW occurrence and simultaneously
contracted the “long tail”. Interestingly, with the introduction of nonlinearity, this “long tail” became
shorter compared with linear conditions. Nevertheless, in the context of disordered media, RW
occurrence probability demonstrated relative stability—a distinct deviation from its conduct within
homogeneous media.
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1. Introduction

Initially introduced by Draper in 1965 [1], rogue waves (RWs) have since garnered
ongoing research interest. RWs are generated through several mechanisms. Current linear
theoretical studies suggest that RWs primarily result from either spatial or spatio-temporal
self-focusing, which is caused by the varying group speeds of different wave components.
These phenomena often occur in dispersive or diffractive media [2,3]. Researchers in the
field of nonlinearity suggest that RWs are significantly affected by nonlinearity, which is
primarily due to the nonlinear overlay of waves. This process is facilitated by modulation
instability (MI) [4,5], i.e., a plane wave with a small perturbation can evolve into RWs. They
can also result from the collision of high-amplitude and breathing solitons [6]. In addition,
granularity and inhomogeneity are also factors affecting the generation of rogue waves in
nonlinear systems [7]. RWs have been observed in diverse fields, from oceanography [8] to
Bose–Einstein condensation [9,10], atmospheric sciences [11], plasma physics [12], nonlinear
optics [13,14], and even finance [15]. The study of RWs in optical systems began with the
2007 discovery of high-amplitude pulses in fiber-optic supercontinuum spectra by Solli [16],
akin to oceanic RWs. Subsequent research quickly explored the nonlinear characteristics of
RWs in optics, including their production in fiber-optic supercontinuum spectra [17–19] and
generation through soliton collisions [20–22]. The majority of prior studies have primarily
concentrated on temporal RWs, paying significantly less attention to spatial RWs. Recently,
research on spatial RWs has been increasing. Chen et al. [23] found that under appropriate
nonlinear conditions, the nonlinear evolution of wide Gaussian light conforms to the
RWs’ probability distribution in saturated nonlinear media. RWs have also been observed
in disordered one-dimensional (1D) photonic lattices [24]. This reveals the interesting
occurrence of Anderson localization, which is a phenomenon resulting from interference
caused by repeated electron scattering in a randomly defective potential [25]. This leads to a
transformation of the eigenmodes from extended (Bloch waves) to localized [26]. Similarly,
Schwartz et al. [27] inspected the nonlinear impact on Anderson localization experimentally.
In reference [28], it was found that localization in disordered systems limits the discrete
diffraction of light, constraining light waves transversely. Rivas et al. [24] explored how the
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disorder level could affect RW generation probability under linear conditions with a narrow
beam. It was observed that RWs vanished when the disorder level was extremely high
due to the strong local effect. Lee et al. [29] suggested that broad beams in a disordered
system might undergo a filamentation phenomenon triggered by the localization effect.
This may be akin to the MI effect in a homogeneous medium. However, under nonlinear
conditions, the experiments and statistical results of intensity events in a two-dimensional
disordered lattice with a wide beam are still unclear. Comparing these results with those in
homogeneous media could be intriguing.

In this paper, we analyze the behavior of RWs in two-dimensional disordered lattices
numerically and experimentally. A disordered environment was established in a satu-
rated nonlinear medium. A wide Gaussian beam (GB) was used to excite RWs, and the
statistical patterns of RWs were investigated and compared with the statistics of RWs in a
homogeneous medium. For numerical simulations, we utilized the nonlinear Schrödinger
equation [30] to describe the evolution and propagation of light in the nonlinear medium.

2. Experiment

Our experimental setup, depicted in Figure 1, employed two 532 nm wavelength CW
lasers. An ordinary polarized writing beam from Laser 1 was expanded into an approxi-
mately planar wave by a “Spatial Optical Filter” and L1. Then, the writing beam modulated
by a spatial light modulator (SLM) [HOLOEYE PLUTO-2] carried the desired disordered
pattern information and incidence into a 0.002% CeO2-doped SBN:61 photorefractive crys-
tal with an applied bias voltage. Due to the saturated nonlinear effect, the writing beam
generated two-dimensional disordered lattices in the crystal, which corresponded to the
optical field distribution. Figure 2a shows typical two-dimensional disordered lattices. The
lattices were periodic lattices relative to distance but with an inhomogeneous intensity
distribution. The input power of the writing beam was 120 µW. The SBN crystal had a
5 × 5 mm2 cross-sectional area and was 10 mm in length along the propagation coordinate
z. Another extraordinary polarized light beam as the probe beam was also launched into
the crystal. The probe beam from Laser 2 was expanded to a wide Gaussian beam (GB)
by the “Spatial Optical Filter” and L5, and a pinhole was used to filter out the harmonic
components of the Gaussian light, retaining only the 0th-order light. Figure 2b shows the
probe beam, approximately 450 µm in width at half maximum and around 0.5 µW in input
power. The saturation nonlinearity was controlled through the applied bias voltage along
the optical axis of the crystal. The distribution of the output light was recorded by a CCD
camera.

Figure 1. (a) A schematic of the experimental setup. L: lenses. M: mirrors. BS: beam-splitting prisms.
A: attenuator. (b) A schematic of the SBN:61 sample, with the c-axis of the crystal being indicated by
the red arrow. In the crystal, the refractive index for extraordinary polarized light (ne) was 2.28, and
the electro-optical coefficient (γ33) was 250 pm/V.
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In the experiment, the level of disorder was proportional to light-induced refractive
index modulation. In the photorefractive SBN crystal, the refractive index modulation (∆n)
is described by the equation below:

∆n =
1
2

n3
oγ13

U
d

ψw(x, y, z)
1 + |ψw(x, y, z)|2

(1)

where the refractive index for ordinary polarized light (no) is 2.31, the electro-optical
coefficient (γ13) is 45 pm/V, U is the applied bias voltage, d is the height of crystal, and
ψw(x, y, z) corresponds to the slowly varying light wave envelope of the writing beam. So,
∆n can be controlled by U when we maintain constant input power for the writing beam
and vary its disorder level by the applied voltage.

Figure 2. (a) Typical two-dimensional disordered lattices. (b) Input of wide GB probing beam.
(c) Linear and (d) nonlinear output of the light field distribution with 800 V disorder level.

In a photorefractive SBN crystal, the interaction between light and matter requires
time to respond. During the experiment, the probe beam was initially blocked, and the
writing beam needed about ten seconds to establish disordered lattices and reach a stable
state. Then, the probe beam was turned on to propagate along the z-axis in disordered
lattices. Linear output patterns were recorded at the instant of probe beam incidence due to
the slow nonlinear response. We recorded nonlinear output patterns when the probe beam
reached nonlinear propagation, five seconds later. Linear and nonlinear output patterns
were recorded at different disorder levels. Figure 2c,d provide illustrations of the light
field distribution under linear and nonlinear states at U = 800 V, respectively. For each set
voltage level (600 V, 800 V, and 1000 V), we conducted 30 repeat experiments in different
modulation distributions of the same disorder level, each yielding an analysis based on
approximately 4000 waves.

By following a standard criterion on RWs [31], we consider RWs those with intensities
larger than twice a significant Ie, which is defined as the average value of the highest-
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intensity tertile of the corresponding probability density function (PDF) distribution. PDF
is a function used to describe the probability of a continuous random variable’s output
being near a certain value. I is denoted as the intensity of every wave packet. Waves with
an abnormality index AI ≡ I/Ie > 2 (marked with a gray dashed line) were considered
RWs. For example, the PDF corresponding to AI = 3 represents the probability of the wave’s
intensity being around three times Ie [inset in Figure 3a]. To determine the probability
of RW occurrence, we computed P(IE > AI) = 1 − cumulative PDF. This represents the
probability of having an intensity event (IE) with an AI larger than a certain value, P(IE > AI)
[Figure 3a,b]. Hence, the probability of having RWs corresponds to the value at which the
data cross AI = 2.

Figure 3. Semi–log plots of the probability of having an IE above a particular AI for linear evolution
at different disorder levels determined (a) experimentally and (b) numerically. All events above
AI = 2 are considered RWs (vertical dotted line). Different disorder levels at 600 V (square), 800 V
(circle), and 1000 V (triangle) determined experimentally correspond to ε = 1.0 (square), 1.3 (circle),
and 1.6 (triangle) determined numerically, respectively. Insert: PDF for 600 V.

Following this, we conducted a probability analysis of all waves for output contours
at different disorder levels. These levels corresponded to voltage settings of 600 V, 800 V,
and 1000 V, all of which were tested under linear conditions, as depicted in Figure 3a. To
our surprise, we found evidence of RWs even under linear states. Interestingly, as the
disorder level increased, the statistical distribution of P(IE > AI) displayed a shorter “long
tail”. We suggest that as the disorder level increases, discrepancies in the mode between
distinct refractive index channels become more substantial, and the mutual coupling starts
to deteriorate. This, in turn, attenuates the interaction between the propagating probe
beams within the channels, consequently making the generation of high-energy RWs more
challenging. By using various voltage levels to represent different disorder levels, we
calculated RW occurrence probability under linear conditions, with PL (600 V) = 9.7%, PL
(800 V) = 10.2%, and PL (1000 V) = 13.1% [Figure 3]. As the disorder level increased, the
probability of RW occurrence also increased.

Figure 4a–c illustrate a comparative P(IE > AI) at the same disorder level, for both
linear and nonlinear conditions. Interestingly, when nonlinearity is introduced under the
same disordered conditions that are applied to the linear conditions, the “long tail” becomes
noticeably shorter. Then, the RW occurrence probability under nonlinear conditions was
calculated, with PNL (600 V) = 10.6% [Figure 4a], PNL (800 V) = 10.9% [Figure 4b], and
PNL (1000 V) = 13.4% [Figure 4c]. The introduction of nonlinearity accentuated the wave
differences, increasing the probability of RW occurrence and noticeably shortening the
“long tail”.

Further, we found that the red line (linear) in Figure 4 sometimes appeared above and
sometimes below the blue line (nonlinear). We suggest that the inclusion of nonlinearity
indeed leads to the further focusing of the probe light wave guided by the disordered
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lattices, particularly for waves with lower energy. This focusing effect results in a decrease
in the probability of wave generation with a lower abnormality index (AI), an increase in
the probability of rogue wave occurrence (AI > 2), and a concurrent decrease in the proba-
bility of extremely high-energy wave occurrence. Consequently, the blue line (nonlinear)
exhibits an overall side “S”-shaped trend, with a low-to-high-to-low pattern, explaining
the instances where the red line (linear) crosses above or below the blue line (nonlinear) in
Figure 4. Furthermore, as the level of disorder increases, the dominant role of nonlinearity
diminishes, and the disorder gradually takes over as the primary determinant. This transi-
tion is reflected in the increasingly similar trends between the red line (linear) and the blue
line (nonlinear), as is evident in Figure 4a–c.

Figure 4. Semi–log plots of the probability of having an IE above a particular AI for linear and
nonlinear evolution at different disorder levels determined (a–c) experimentally and (d–f) numerically.
All events above AI = 2 are considered RWs (vertical dotted line). Different disorder levels at 600 V
(square), 800 V (circle), and 1000 V (triangle) determined experimentally correspond to ε = 1.0 (square),
1.3 (circle), and 1.6 (triangle) determined numerically, respectively. Different nonlinear intensity
determined at 600 V (square), 800 V (circle), and 1000 V (triangle) experimentally correspond to
α = 2.0 (square), 2.6 (circle), and 3.2 (triangle) determined numerically, respectively.
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3. Numerical Simulation

To verify the experimental results, we numerically simulated the phenomena. The prop-
agation of a probe beam in the SBN crystal was approximated by a nonlinear Schrödinger
equation (NLSE) with saturable nonlinearity in the form [30]

i
∂ψ(x, y, z)

∂z
+ β∇2

⊥ψ(x, y, z) +

(
α

1 + |ψ(x, y, z)|2
+ ∆ξ

)
ψ(x, y, z) = 0 (2)

where ψ(x, y, z) corresponds to the slowly varying light wave envelope, z to the propagation
coordinate, β to the diffraction coefficient, and ∇2

⊥ to the transverse Laplace operator. The
nonlinear coefficient is denoted by α, and it is proportional to the external applied voltage in
the experiment. ∆ξ correlates with disordered refractive index modulation, corresponding
to ∆n in the experiment. By utilizing a random number generator, we configured disordered
refractive index modulation with the depth of ∆ξ set as ε, and the range of ∆ξ was [0, ε]. In
the experiment, the level of disorder and the intensity of nonlinearity were simultaneously
controlled by an applied voltage, with linear and nonlinear conditions being distinguished
merely by the evolution time of the probe beam. To make the simulation as close as possible
to the experiment, we used parameter α to control the intensity of nonlinearity, while the
depth (ε) reflected the level of disorder. ε = 1.0, ε = 1.3, and ε = 1.6 corresponded to the
disorder levels in the experiment at the voltage of 600 V, 800 V, and 1000 V, respectively.
When α = 0, it corresponded to the linear conditions in the experiment. α = 2, α = 2.6,
and α = 3.2 corresponded to the nonlinear conditions under 600 V, 800 V, and 1000 V
in the experiment, respectively. Furthermore, we conducted simulations 1000 times for
different random distributions of ∆ξ with equal ε, resulting in an analysis of approximately
32,000 waves per ∆ξ. P(IE > AI) was performed at varying modulation depths when α = 0,
as shown in Figure 3b.

The RW occurrence probability was then calculated, with Pα=0 (ε = 1.0) = 3.64%, Pα=0
(ε = 1.3) = 3.86%, and Pα=0 (ε = 1.6) = 4.05% [Figure 3b]. For α = 0, there is a slight increase
in the probability of RW occurrence in correlation with an increased level of disorder.
Figure 4d–f illustrate P(IE > AI) at the same disorder depth values (ε) but for varying
nonlinear intensities (α). It is worth noting that as the nonlinearity increases, the generation
of high-energy RWs becomes less likely, an observation that aligns with the experimental
outcomes. We calculated the RW occurrence probability at different disorder levels and
nonlinear intensities, with Pα=2 (ε = 1.0) = 4.17% [Figure 4d], Pα=2.6 (ε = 1.3) = 4.30%
[Figure 4e], and Pα=3.2 (ε = 1.6) = 4.41% [Figure 4f]. When α ̸= 0, the probability of RW
generation increases slightly at the same value of ε compared with α = 0. The general trend
of these numerical results is consistent with the experiments. The discrepancy between
the experimental and simulation values may be due to the approximations made in the
simulation.

To analyze the transformation of RWs in a homogeneous medium (∆ξ = 0), we kept
the same parameters of the probe beam used in the disorderly medium. A noise seed,
averaging zero and peaking at 20% of the GB amplitude at a specific position, was included.
The nonlinear intensity was gradually increased from 0 to 5 at increments of 0.01. For
the disordered medium, we set ε = 1.0. Subsequently, we determined the statistics of RW
occurrence probability for the outgoing surface under varying nonlinear intensities. For
enhanced visibility, we broke down the nonlinear intensity interval for these statistics
into 0.1 per segment. We then contrasted the probability trend of RW occurrence with
the nonlinear intensity (α) in both disordered and homogeneous media. The resultant
probability distribution of the RWs is visualized in Figure 5.
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Figure 5. Numerically determined probability trend of RW occurrence with nonlinear intensity in
(a) disordered medium (ε = 1.0) and (b) homogeneous medium (ε = 0).

Our results reveal a markedly higher RW occurrence probability in the homogeneous
medium, 12.1%, compared with a considerably lower value, 5.61%, for the disordered
medium. It is worth pointing out that the presence of RWs in a disordered medium
is independent of nonlinearity. Rather, the disorder level in the system is the primary
determinant of RW occurrence probability, whereas nonlinearity plays a substantially
marginal role. On the other hand, in a homogeneous medium, RW formation incorporates
a discernible influence of a nonlinear strength threshold of 0.7. Interestingly, a moderate
increase in nonlinear intensity initially prompts an increase in the probability of RW
occurrence, attributable to MI. As nonlinearity becomes more potent, the role of MI grows
increasingly dominant, triggering a significant surge in RWs. However, when nonlinearity
achieves an excessively high level, an equilibrium between the effects of MI and diffraction
is established. Consequently, RW occurrence probability experiences a dip, subsequently
stabilizing in a range between 1% and 3%. Therefore, our study underscores a distinct
difference in RW generation probability between disordered and homogeneous media.

4. Conclusions

This study delves into the intricate statistical law of RWs in two-dimensional disor-
dered lattices. The intriguing findings reveal a corresponding increase in the probability of
RW occurrence as disorder levels increase under linear conditions, consequently tightening
the statistical tail of RWs. However, with the introduction of nonlinearity, the statistical tail
undergoes further contraction, but the probability of RW occurrence retains relative stability.
Anderson localization significantly reduces the interactions among filaments. Unlike in a
homogeneous medium, where the probability of RW occurrence varies significantly with
nonlinear changes, this phenomenon is suppressed here. Instead, it maintains a relatively
stable trend with a slightly upward tendency. This compelling observation starkly contrasts
with the dynamics in homogeneous media. It indirectly reflects that the interaction between
adjacent waves in the disordered system is weak, which provides a train of thought for
future study on the nonlinear interaction between adjacent Anderson local waves.
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