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Abstract: In this paper, a turbulent wavefront measurement model based on the Hartmann system
structure is proposed. The maximum recognizable mode number of different lens units is discussed,
and the influence of different lens array arrangements on the accuracy of turbulent wavefront
reconstruction is analyzed. The results indicate that the increase in the aberration order of the
turbulent wavefront has a certain influence on the reconstruction ability of the system. Different
lens arrangements and number of lens units will lead to the effective reconstruction of different final
mode orders. When using a 5 × 5 lens array arrangement and a hexagonal arrangement of 19 lenses,
the maximum order of turbulent wavefront aberrations allowing for effective reconstruction was
25. When the sparse arrangement of 25 lenses or the sparse arrangement of 31 lenses was used, the
maximum order allowing for effective reconstruction was 36. If the aberration composition of the
turbulent wavefront contained higher-order aberrations, the system could not accurately measure
the turbulent wavefront. When the order of the aberrations of the turbulent wavefront was low,
the turbulent wavefront could be measured by the lens arrangement with fewer lens units, and the
wavefront reconstruction accuracy was close to the measurement results obtained when more lens
units were used.

Keywords: atmospheric turbulence; Hartmann system; wavefront measurement; lens array

1. Introduction

Turbulence has long been considered one of the most important factors limiting the
performance of optical systems in the atmospheric environment [1]. Monitoring the level of
optical turbulence in the atmosphere is of great significance for estimating its impact on the
functions of optoelectronic devices and systems operating through the atmosphere [2–4].
In order to overcome the interference of atmospheric turbulence, large ground-based
astronomical telescopes have been equipped with adaptive optical systems in astronomical
imaging observations [5,6]. When the laser is transmitted in the atmosphere, it may be
affected by turbulence disturbance, molecular absorption, etc., which makes it difficult for
the measurement system to accurately obtain the beam parameters at the exit of the laser
system [7,8]. Therefore, the analysis of the wavefront after the influence of turbulence helps
us to obtain more realistic optical system parameters.

The wavefront detector is one of the key components of adaptive optics systems and
can measure the dynamic error of the atmospheric turbulence wavefront in real time. The
Shack–Hartmann wavefront sensor (SHWFS) is a commonly used wavefront sensor [9–11].
It can measure the wavefront phase of atmospheric turbulence by measuring the slope ϕx,
ϕy of the atmospheric turbulence phase ϕ(x, y) in real time through a regularly arranged
lens array. Rodolphe [12] proposed a method to generate turbulence measurements using
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the Shack–Hartmann wavefront sensor. This method takes into account the spatial and
temporal statistical characteristics of the slope so that the turbulent wavefront gradient
and time series corresponding to the natural guide star and the laser guide star can be
generated according to the frozen flow model. Ryan [13] designed a Shack–Hartmann
image motion monitor to achieve a 24 h continuous vertical monitoring of atmospheric
optical turbulence. Eric [14] believes that the perturbation of the wavefront phase can be
measured by a Hartmann wavefront sensor (H-WFS), and then these measurements can
be used to directly characterize atmospheric turbulence. However, most of researchers’
work on atmospheric turbulence consists of direct measurements and analyses [15–18].
Research on the aberrations of atmospheric turbulence, especially high-order aberrations,
is relatively scarce. Especially when the Hartmann system structure is used to measure
turbulence, the influence of different lens array arrangements on the measurement results
still lacks systematic research.

In this paper, a turbulence wavefront measurement model based on the Hartmann
system structure is proposed, which can measure and analyze the atmospheric turbulence
wavefront under different lens arrangements. At the same time, the wavefront of large-
aperture and high-power laser beams propagating through the atmosphere can also be
analyzed. According to the correspondence between Zernike polynomials and Seidel
aberrations, the turbulent wavefront can be decomposed into multiple single aberrations
from low order to high order. In this paper, lens array models with uniform arrangement
and sparse arrangement are established. The maximum number of identifiable modes of
different lens units is discussed, and the influence of different lens array arrangements
on the accuracy of turbulent wavefront reconstruction is analyzed. The results show that
the maximum identifiable mode order of the system for the turbulent wavefront is related
to the number of sub-lenses in the lens array. Increasing the number of sub-lenses in
the lens array can achieve the measurement of a turbulent wavefront with higher-order
aberrations. When the order of the aberrations of the turbulent wavefront is low, the
turbulent wavefront can be measured by the lens arrangement with fewer lens units, and
the wavefront reconstruction accuracy is relatively high.

2. Methodology
2.1. Wavefront Generation

At present, the wavefronts that have been improved in this system model include dis-
torted wavefronts through atmospheric turbulence, dynamic random wavefronts, function-
modulated wavefronts, static wavefronts, and plane wavefronts (whose amplitude is 1).

The generation methods of the Kolmogorov turbulence random phase screen include
the power spectrum inversion method, the Zernike polynomial method, the random
midpoint displacement method, and so on [19,20]. In simulations, the Zernike polynomial
method is used to generate the phase screen. The random phase screen generated by this
method is non-correlated in the time dimension and can be used for the statistical analysis
of multi-frame image data [21]. The low spatial frequency component is consistent with
the theoretical value, and the high spatial frequency component gradually improves with
the increase in Zernike order. In simulations, the Karhunen–Loeve (K-L) function is used to
quickly construct the wavefront [11,22–24]. The wavefront φ(r) affected by atmospheric
turbulence can be expressed as a two-dimensional function that obeys certain known modes
and statistical laws, that is, the two-dimensional form of Zernike polynomials [25]:

Φ(x, y) =
l

∑
k=1

akzk(x, y) (1)

where l is the number of modes, ak is the coefficient of the kth Zernike polynomial, and zk is
the kth Zernike polynomial. Noll derived the covariance of any two Zernike polynomial
coefficients from the perspective of energy, which can be expressed as [26]:
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E(aj, aj′) =
Kzz′δzΓ[(n + n′ − 5/3)/2](D/r0)

5/3

Γ[(n − n′ + 17/3)/2]Γ[(n′ − n + 17/3)/2]Γ[n + n′ + 23/3)/2]
(2)

where n and n′ are the radial frequency numbers of Zj and Zj′ respectively, aj and aj′ are any
two coefficients of Zernike polynomials, D and r0 are the aperture of the telescope and the
atmospheric coherence length, respectively, Γ is the gamma function, and δz and Kzz′ can
be expressed as:

δz = (m = m′) ∧ [Xparity(j, j′)] ∨ (m = 0) (3)

Kzz′ =
Γ(14/3)[(24/5)Γ(6/5)]5/6[Γ(11/6)]2

2π2 × (−1)(n+n′−2m)/2
√
(n + 1)(n′ + 1) (4)

where m and m′ are the angular frequency numbers of Zj and Zj′ , respectively, Xparity(j, j′) de-
notes that the polynomials of order j and j′ have the same parity, ∧ is logic and symbol,
and ∨ is logic or symbol. From Equations (2)–(4), the covariance matrix of Zernike polyno-
mial coefficients of any order can be obtained, and there is a correlation between Zernike
polynomial coefficients. To obtain the turbulent wavefront, Zernike polynomials need to
be converted. In the simulation, the K-L function is used to expand the wavefront. The
polynomial coefficients are statistically independent, and the Zernike polynomial coefficient
matrix can be obtained by conversion.

A random wavefront that does not conform to the statistical law of turbulence can be
directly generated by Equation (1). The Zernike coefficient is a pseudo-random number
uniformly distributed in the range of (−1, 1). The Zernike coefficients between frames are
randomly independent, and the order of Zernike polynomials can be set arbitrarily [27].

2.2. Wavefront Reconstruction Algorithm

The commonly used wavefront reconstruction methods in adaptive optics include the
region method, the Zernike mode method, and the direct slope method. In this paper, the
Zernike mode method was used for wavefront reconstruction. The phase distribution of
the wavefront can be expressed by Equation (1). The wavefront reconstruction calculation
of the Zernike mode method can be expressed in the form of the following matrix:

Gx(1)
Gy(1)
Gx(2)
Gy(2)
. . .

Gx(m)

Gy(m)


=



Zx1(1) Zx2(1) . . . ZxN(1)
Zy1(1) Zy2(1) . . . ZyN(1)
Zx1(2) Zx2(2) . . . ZxN(2)
Zy1(2) Zy2(2) . . . ZyN(2)

. . . . . . . . . . . .
Zx1(m) Zx2(m) . . . ZxN(m)

Zy1(m) Zy2(m) . . . ZyN(m)


·


a1
a2
. . .
aN

 (5)

where m is the total number of lens elements, N is the number of Zernike polynomials,
and ZxN(m) and ZyN(m) are the average wavefront slope of the Nth Zernike polynomial in
the mth lens region in the x and y directions, respectively, which can be simplified as:

G = Z • A (6)

Here, G is the calculated wavefront slope matrix, Z is the 2 m × N reconstruction
matrix, and A is the Zernike polynomial coefficient matrix that we need to calculate. The
specific solution of matrix A can be achieved by a matrix operation. In general, twice the
total number of lenses is larger than the number of Zernike terms, so the singular value
decomposition method can be used to calculate the generalized inverse matrix Z+ of Z. The
matrix A is determined by

A = Z+• G (7)

After the coefficient matrix is calculated, the wavefront can be reconstructed by substi-
tuting it back into Equation (1).
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2.3. Evaluation Method of Wavefront Reconstruction Accuracy

In this paper, we used the root-mean-square error (RMSE) as the standard to measure
the accuracy of the wavefront reconstruction. The RMSE represents the root-mean-square
value of the wavefront residual; the smaller the value, the higher the accuracy of the
restoration. The phase information of a residual wavefront is obtained by subtracting the
reconstruction wavefront and the incident wavefront, and then the RMSE is calculated. The
calculation formula is:

εRMSE =
√
(∑

u
(ϕ(u)− ϕo(u))

2
)/N (8)

where ϕo(u) is the original wavefront, ϕ(u) is the recovery wavefront, and N is the total
number of sampling points.

3. Numerical Simulation Conditions
3.1. Simulation System Parameters

Under the same arrangement, the wavefront reconstruction accuracy of the system
increases with the increase in the duty factor of the lens array. When the duty factor of the
lens array is about 0.8, the wavefront reconstruction accuracy of the system is moderately
different from that obtained when the duty factor of the lens array is 1 [28]. On the premise
of using the smallest lens size combination to detect the largest distortion wavefront, we
chose a duty factor of the system lens array of 0.8.

In addition, since the Zernike mode method is based on centroid detection when
reconstructing the wavefront, the centroid detection accuracy is particularly important. To
improve the accuracy of the sub-spot centroid measurement, it is especially necessary to
ensure that the sub-spot size in the detection surface corresponds to a large number of pixels.
In this system, the minimum pixel area covered by the spot was set to 10 pixel × 10 pixel
to ensure the accuracy of the centroid measurement. According to Equation (9), the number
of pixels occupied by the spot can be determined by:

p = 2.44
λ

d
· f

P
(9)

where P = 4.5 µm is the pixel size, and λ = 1064 nm is the wavelength; if p ≥ 10, then f ≥ 20 d.
However, in addition to considering the number of pixels in the imaging spot, the selection
of the lens parameters should also consider whether the camera pixel resolution can achieve
the effective detection of wavefront distortion under different wavefront distortion degrees.

Figure 1 shows the imaging properties of the sub-lens with a plane wavefront (green
parallel line) incident on the lens and focused on the reference spot (green spot). The
distorted wavefront (red parallel line) does not have a normal incidence, focusing on the
position deviating from the reference spot (red point). The offset angle α can be calculated
according to geometric parameters. According to the geometric relationship of the offset
angle, the relationship between the wavefront distortion and the detected spot displacement
can be derived:

α =
δy
f

=
∆z
d

(10)

The relationship between the PV (peak–valley) value and the RMS value of the wave-
front had to be measured, and its β was determined by simulation. When the PV value
of the initial wavefront was 0.6 λ, and the RMS value was about 0.15 λ, the beam quality
factor β of the far-field spot was about 1.8. Here, β is an important parameter used to
describe the quality of a laser beam. It is usually used to measure the degree of similarity
between a laser beam and an ideal Gaussian beam and can also be used to compare the
quality difference between different laser beams, defined as the ratio of the actual far-field
divergence angle to the reference far-field divergence angle or as the ratio of the actual
focused spot radius to the ideal spot radius. Therefore, we set the wavefront PV value
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of the minimum effective reconstruction to be achieved by the measurement system to
about 0.6 λ. If the number of single-row lenses was 5, and the space-occupying factor of
the system was 0.8, the wavefront measured by a single lens was about 0.096 λ. According
to (10), we can calculate f ≥ 47 d.

When the lens diameter was d = 25.4 mm, the focal length was f ≥ 47 d ≈ 1194 mm.
In other words, when the diameter of the selected lens was 25.4 mm, the focal length of the
lens had to be adjusted to not less than 1194 mm to meet the measurement requirements of
the system. In summary, the main input parameters of the system are shown in Table 1.
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Figure 1. Sub-lens imaging schematic diagram.

Table 1. System input parameters.

Parameter Description

Pixel size/µm 4.5
Beam wavelength/nm 1064

Lens size/mm 25.4
Lens spacing/mm 6.35

Duty factor 0.8
Lens focal length/mm 1200

3.2. Lens Array Arrangement

In this paper, different turbulent wavefronts were analyzed. It was necessary to con-
sider the influence on the wavefront reconstruction accuracy not only of the number of
sub-lenses in the lens array of the measurement system but also of different lens arrange-
ments. Therefore, we propose two lens array layouts: a uniform arrangement and a sparse
arrangement. The uniform arrangement included the 5 × 5 lens array arrangement and
a 19-lense hexagonal arrangement, and the sparse arrangement included 25 lenses and
a 31-lense sparse arrangement. Here, the sparse arrangement was mainly applied to the
recovery analysis of higher-order aberrations, because the slope variation of higher-order
aberrations was mainly concentrated in the edge of the wavefront. The specific lens array
layouts are shown in Figure 2. The red area in the figure is the effective detection range of
the wavefront to be measured.
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4. Results and Discussion
4.1. Single Aberration Analysis

When using Zernike polynomials to reconstruct the wavefront of a distorted wavefront,
mode coupling and confusion need to be considered. Mode coupling is caused by the
number of Zernike terms selected in wavefront reconstruction being less than the number of
mode terms of the actual distorted wavefront. The reason for mode confusion is that high-
order aberrations and low-order aberrations cannot be effectively distinguished within the
sub-lens range of the system. Dai [22] and Zhang [29] et al. also discussed the relationship
between mode confusion, mode coupling, and the number of Zernike terms used in
wavefront reconstruction. By selecting different wavefront reconstruction orders, the
corresponding wavefront reconstruction accuracy and stability curves are obtained, and
then the final wavefront reconstruction order is determined by comparison. The turbulence
wavefront is mainly composed of low-order Zernike polynomials, and the proportion of
high-order Zernike polynomials is very small. Therefore, the first 28 Zernike polynomials
excluding piston and tilt were selected for wavefront reconstruction. To avoid mode
coupling, the order of the mode wavefront reconstruction we selected was the same as
the order of the actual aberration. According to the four kinds of lens array arrangement
described in Section 3.2, the reconstruction analysis of each single aberration order was
carried out. The simulation results are shown in Figure 3, and the statistical values of the
reconstruction accuracy for the different orders of single aberrations of the four kinds of
lens array arrangement are shown in Table 2.

In order to facilitate the exposition, in the following, the lens arrangements are in-
dicated as 1, 2, 3, 4, corresponding to the 5 × 5 lens array arrangement, the hexagonal
arrangement of 19 lenses, the sparse arrangement of 25 lenses, and the sparse arrangement
of 31 lenses, respectively.

Combining Figure 3 and Table 2, it can be seen that among the four lens array arrange-
ments, the lens arrangement 1 and the lens arrangement 4 allowed for better reconstruction
accuracy for the first 28 single aberrations. This is because the number of lens units in these
two arrangements was relatively large. The reconstruction accuracy for single aberrations
of the lens arrangement 1 was better than that achieved by the lens arrangement 3. The
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reason is that the number of lens units in the two arrangements was close, and the lens
units in the former were arranged more closely. According to the results obtained with
arrangement 3 and arrangement 4, we concluded that a sparse arrangement does not
provide much advantage in low-order aberration reconstruction. When the number of
lens units is relatively small, the aberration recovery ability of a sparse arrangement is
not as good as that of a uniform arrangement. However, when the number of sparsely
arranged lens units is large, a sparse arrangement has a good reconstruction effect on the
aberrations of the turbulent wavefront, especially on high-order aberrations. This is because
the higher the order of the turbulent wavefront aberrations, the larger their proportion
at the wavefront edge. Figure 4 shows the reconstruction results in the presence of some
high-order aberrations when using the lens arrangement 4.
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Table 2. The statistical values of the recovery accuracy for the different orders of single aberrations of
the four lens array arrangements.

Quantity Mean Standard Deviation Variance

5 × 5 Lens array 25 0.03944 0.02821 7.96036 × 10−4

Hexagonal arrangement of 19 lenses 25 0.05175 0.02475 6.12562 × 10−4

25 Units sparsely arranged 25 0.05184 0.03849 0.00148
31 Units sparsely arranged 25 0.03282 0.01831 3.35307 × 10−4
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4.2. Maximum Recognizable Mode Order of the System

The wavefront reconstruction accuracy and stability are used to evaluate the wave-
front reconstruction process when considering different mode reconstruction orders for
wavefront reconstruction. The wavefront reconstruction accuracy evaluation method was
described in detail in Section 2.3. Stability means that the anti-noise interference ability
of the wavefront reconstruction process can be evaluated by the condition number of the
reconstruction matrix [30,31]. The condition number is defined as:

Cond(Z) = σmax/σmin (11)

where σmax and σmin represent the maximum and the minimum singular values of the
reconstruction matrix Z, respectively. The relationship between the Zernike mode coefficient
fluctuation ∆A of the reconstructed wavefront and the slope measurement disturbance ∆G
is as follows:

∥∆A∥2
∥A∥2

= Cond(Z)
∥∆G∥2
∥G∥2

(12)

The above formula shows that the larger the condition number, the greater the fluctua-
tion of the Zernike mode coefficients of the reconstructed wavefront caused by the slope
measurement error.

According to Figure 3, the aberration recovery accuracy of the four arrangements
showed an upward trend after the 21st order, which indicated that the increase in the
aberration order had a certain degree of influence on the recovery ability of the system.
Therefore, we continued to increase the order of the turbulent wavefront aberrations to
be measured and analyzed the maximum order of recognizable modes that could be
achieved by the different arrangements. In addition, the condition numbers of the four
arrangements for different wavefronts are reported to judge whether the recovery results
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were reliable. The turbulent wavefront aberration reconstruction accuracy of the different
examined arrangements is shown in Figure 5a, and the curve displaying the condition
number changing with the increase in the aberration order is shown in Figure 5b.
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Figure 5. Reconstruction results of a turbulent wavefront by different lens arrangements. (a) Turbulent
wavefront reconstruction accuracy, (b) turbulent wavefront reconstruction stability.

According to Figure 5, when the order of the turbulent wavefront aberrations ex-
ceeded 25, the condition number of the lens arrangements 1 and 2 increased sharply, and
the wavefront recovery accuracy decreased rapidly, which means that the wavefront recon-
struction ability was poor. Therefore, we determined that the maximum order of turbulent
wavefront aberrations for the lens arrangements 1 and 2 allowing for achieving effective
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reconstruction was 25. According to Figure 5a, we could also conclude that in order to
ensure a high reconstruction accuracy, the order of turbulent wavefront aberrations with
the lens arrangements 1 and 2 should not exceed 21. With the lens arrangements 3 and
4, the reconstruction accuracy and stability of the turbulent wavefront composed of the
first 36 aberrations were relatively good. In order to continue to explore the maximum
possible order of these two arrangements allowing for effective wavefront reconstruction,
we continued to increase the constituent aberrations of the turbulent wavefront. Further
simulation results are shown in Figure 6. According to the above analysis and as shown in
Figure 6, the maximum order allowing for effective reconstruction was 36 with the lens
arrangements 3 and 4. This further illustrates that different lens arrangements and different
numbers of lens units in the turbulent wavefront reconstruction system will lead to effective
recovery in the presence of different aberration orders.

Photonics 2024, 11, x FOR PEER REVIEW 11 of 15 
 

 

3 and 4, the reconstruction accuracy and stability of the turbulent wavefront composed of 
the first 36 aberrations were relatively good. In order to continue to explore the maximum 
possible order of these two arrangements allowing for effective wavefront reconstruction, 
we continued to increase the constituent aberrations of the turbulent wavefront. Further 
simulation results are shown in Figure 6. According to the above analysis and as shown 
in Figure 6, the maximum order allowing for effective reconstruction was 36 with the lens 
arrangements 3 and 4. This further illustrates that different lens arrangements and differ-
ent numbers of lens units in the turbulent wavefront reconstruction system will lead to 
effective recovery in the presence of different aberration orders. 

 
Figure 6. Reconstruction results of turbulent wavefront aberrations by the examined sparse ar-
rangements. 

4.3. Turbulent Wavefront Analysis 
The third section of this paper discusses the accuracy of turbulent wavefront aberra-

tion reconstruction under different lens arrangements and the maximum order allowing 
for effective reconstruction that can be achieved with the various arrangements. The at-
mospheric turbulence wavefront in the actual measurement presented mixed aberrations. 
According to the Equations (2)–(5) in Section 2.2, we can obtain a series of random turbu-
lent wavefronts. In order to facilitate the comparison of the reconstruction ability of the 
four arrangements in the presence of mixed aberrations, we generated two different sets 
of turbulent wavefronts. In one group, the maximum order of aberrations that constituted 
the turbulent wavefront was 28, and the aberration coefficients of the orders from the 22nd 
to the 28th were much smaller than the remaining aberration coefficients. The other group 
of turbulent wavefront only retained the wavefront aberration coefficients of the first 21 
orders of the previous group. Figure 7 shows the RMS value curve of the generated tur-
bulent wavefront aberrations. 

Z5 Z7 Z9 Z11 Z13 Z15 Z17 Z19 Z21 Z23 Z25 Z27 Z29 Z31 Z33 Z35 Z37 Z39 Z41

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
M
S
E（

λ
）

 Sparse arrangement of 25 lenses
 Sparse arrangement of 31 lenses

Zernike mode numbers

Figure 6. Reconstruction results of turbulent wavefront aberrations by the examined sparse arrangements.

4.3. Turbulent Wavefront Analysis

The third section of this paper discusses the accuracy of turbulent wavefront aberra-
tion reconstruction under different lens arrangements and the maximum order allowing
for effective reconstruction that can be achieved with the various arrangements. The at-
mospheric turbulence wavefront in the actual measurement presented mixed aberrations.
According to the Equations (2)–(5) in Section 2.2, we can obtain a series of random turbulent
wavefronts. In order to facilitate the comparison of the reconstruction ability of the four
arrangements in the presence of mixed aberrations, we generated two different sets of
turbulent wavefronts. In one group, the maximum order of aberrations that constituted the
turbulent wavefront was 28, and the aberration coefficients of the orders from the 22nd to
the 28th were much smaller than the remaining aberration coefficients. The other group of
turbulent wavefront only retained the wavefront aberration coefficients of the first 21 orders
of the previous group. Figure 7 shows the RMS value curve of the generated turbulent
wavefront aberrations.
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Figure 7. RMS values of 50 turbulent wavefronts.

The generated wavefront was processed and examined by the lens array systems to
obtain a reconstructed wavefront, and then the wavefront reconstruction accuracy was
calculated. Figure 8 shows one of the calculation examples. The same turbulent wavefront
was reconstructed by the above four arrangements. The measured turbulent wavefront
PV value was 1.56 λ, and the RMS value was 0.26 λ. The turbulent wavefront reconstruction
accuracy of the four arrangements is shown in Figure 9.
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Figure 9. The turbulent wavefront reconstruction accuracy of the different lens arrangements.
(a) A 28-order turbulent wavefront, (b) a 21-order turbulent wavefront.

According to Figure 9, we can conclude that for general turbulent wavefronts, the
number of sub-lenses in the lens array is a major factor limiting wavefront measurements.
Due to the relatively small number of lens units, the maximum number of modes that could
be effectively identified was also relatively low. This caused the system to lose the ability
to measure the turbulent wavefront when higher-order aberrations were present in. The
reconstruction results when using the lens arrangements 3 and 4 proved that increasing
the number of sub-lenses in the lens array can allow for the measurement of a turbulent
wavefront with higher-order aberrations. As shown in Figure 9b, when the aberration
order of the turbulent wavefront was low, the lens arrangement with fewer lenses could be
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used to measure the turbulent wavefront, and the wavefront reconstruction accuracy was
less different from that achieved when the number of lenses was large, compared to the
previous situation.

5. Conclusions

In this paper, a turbulent wavefront measurement model based on the Hartmann
system structure is proposed, which can measure and analyze atmospheric turbulence
wavefronts using different lens arrangements. Four lens array models with uniform and
sparse arrangements were established. The maximum identifiable aberration order for
different lens numbers was discussed, and the influence of different lens array arrangements
on the accuracy of turbulent wavefront reconstruction was analyzed. The results showed
that the increase in the aberration order of the turbulent wavefront had a certain influence
on the reconstruction ability of the system. When the system contained a 5 × 5 lens array
arrangement or a hexagonal arrangement of 19 lenses, the maximum order of turbulent
wavefront aberration allowing for effective reconstruction was 25. In order to ensure a
high reconstruction accuracy, the reconstruction order of turbulence wavefront aberrations
should not exceed 21. When the system contained a 25-lense sparse arrangement or a
31-lense sparse arrangement, the reconstruction accuracy and stability of the turbulent
wavefront composed of the first 36 aberrations were relatively good. This also proved that
different lens arrangements and different numbers of lenses in the turbulence wavefront
reconstruction system will lead to effective reconstruction in the presence of aberration of
different orders.

When the aberration composition of the turbulent wavefront contained higher-order
aberrations, the system could not accurately measure the turbulent wavefront. Increasing
the number of sub-lenses in the lens array could achieve the measurement of a turbulent
wavefront with higher-order aberrations. When the aberration order of the turbulent
wavefront was low, the lens arrangement with a small number of lens units could be used
to measure the turbulent wavefront.

The turbulence wavefront measurement model proposed in this paper provides a new
idea and method for atmospheric turbulence measurement. It is effective for the analysis of
the operating performance of optical systems affected by turbulence.
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