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Abstract: A unique class of β-boron-functionalized non-steroidal anti-inflammatory compound (pinB-
NSAID) was previously synthesized via copper-catalyzed 1,2-difunctionalization of the respective
vinyl arene with CO2 and B2pin2 reagents. Here, pinacolylboron-functionalized ibuprofen (pinB-
ibuprofen) was used as a model substrate to develop the conditions for pinacol deprotection and
subsequent boron functionalization. Initial pinacol-boronic ester deprotection was achieved by
transesterification with diethanolamine (DEA) from the boralactonate organic salt. The resulting DEA
boronate adopts a spirocyclic boralactonate structure rather than a diazaborocane–DABO boronate
structure. The subsequent acid-mediated hydrolysis of DEA and transesterification/transamination
provided a diverse scope of new boron-containing ibuprofen derivatives.
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1. Introduction

Boronic acid- and ester-containing molecules have garnered significant attention in
synthetic and medicinal chemistry due to the unique chemical properties of the boron
center [1]. Neutral, trivalent boron compounds feature an empty p-orbital that makes
the compounds Lewis acidic, enabling reactions with nucleophiles/Lewis bases, such
as organometallic reagents, alcohols/alkoxides, amines, hydroxy acids, halides, etc. [1].
This reactivity has made organoboron compounds important synthons in catalysis as
starting materials and intermediates in transition-metal-catalyzed cross-coupling reactions
(e.g., Suzuki–Miyaura [2] and Chan–Lam [3]) and C–X bond forming reactions [4]. Under
physiological conditions, boronic-acid derivatives convert from a trivalent sp2 hybridized
form to a tetravalent sp3 hybridized form upon capture by Lewis bases, enabling enzyme
inhibition. In 2003, the United States Federal Drug Administration (FDA) approved the
first boron-containing therapeutic agent, Bortezomib, that acts as a proteasome inhibitor
to treat multiple myeloma and cell lymphoma [5]. In subsequent years, several other
boron-containing drugs featuring either a boronic-acid bioisostere replacing a carboxylic
acid/aldehyde (e.g., Bortezomib and Ixazomib) or an oxaborole motif (e.g., Tavaborole and
Crisaborole) were approved by the FDA to treat various conditions (Figure 1a) [5–7].

The identification and preparation of new boron therapeutic agents, especially ones
featuring unique pharmacologically important motifs, has been a highly active area of in-
vestigation [5–13]. In 2016, Popp and co-workers reported a redox neutral copper-catalyzed
boracarboxylation method to add carboxylic acid and boron ester (pinacolylboron, (pinB))
groups to vinyl styrene regioselectively [14]. This unique catalytic entry point to the pharma-
cologically important α-aryl propionic acid pharmacophore allowed for the first synthesis of
boron-containing non-steroidal anti-inflammatory drug (pinB-NSAID) congeners of ibupro-
fen and naproxen (Figure 1b). Subsequently, the synthesis of pinB-fenoprofen and pinB-
flurbiprofen, using the same copper catalyst system with inclusion of triphenyl phosphine
(PPh3) as a catalytic additive, was reported [15,16]. Herein, we report a mild, high-yielding
method to remove pinacol from pinB-ibuprofen (1), allowing for structural and electronic
diversification of the boron center through transesterification/transamination reactions
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and providing new opportunities for screening the medicinal potential of boron-containing
NSAIDs [10,11].
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Figure 1. (a) United States Federal Drug Administration-approved boron-containing therapeutic drugs.
(b) Boron-containing α-aryl propionic acid derivatives (pinB-NSAIDs) prepared via copper(I) catalysis.

2. Results and Discussion

Numerous methods have been reported to hydrolyze/transesterify diols in organoboron
esters [1]. We began evaluating classical methods to hydrolyze pinB-ibuprofen (1pin) that
generally used reagents that were expected to be incompatible with the carboxylic acid func-
tional group (Figure 2a). Not surprisingly, transborylation with boron trichloride [17,18]
and reductive cleavage with lithium aluminum hydride [19,20] led to intractable product
mixtures. Oxidative cleavage with sodium periodate [21] cleaved the sp3C–B bond to give
the deborylation–hydroxylation product [14]. Hydrolysis with potassium hydrogen fluo-
ride [22–25] led to the isolation of a difluoroboralactonate salt that has proven remarkably
stable [14,26].

Boronic-ester hydrolysis via transesterification with an exogenous boronic acid has
been achieved previously (Figure 2b). Biphasic transesterification with excess phenyl
boronic acid and pinB-ibuprofen (1) led to difficulties in product isolation [27] while at-
tempts to use solid-phase polystyrene-based boronic acid were also unsuccessful [28]. Klein
and co-workers reported a monophasic transesterification method using excess methyl
boronic acid, after which the resultant methyl pinacol ester was removed via evaporation
at a slightly elevated temperature, 40 ◦C [29]. Again, inefficient transesterification was
observed, leading to the problematic isolation of boron-containing products.

Deprotection of cyclic boronic esters has been achieved by transesterification with a va-
riety of diethanolamine derivatives, providing sp3-hybridized zwitterionic diethanolamine
boronate ester (dioxazaborocane, DABO boronate, [30,31], Figure 2c), after which mild acid
hydrolysis of DEA from DABO boronate cleanly provided the boronic acid [32–36]. Santos
and co-workers demonstrated the two-step method with 2◦-alkylpinacolyl boronate-ester
deprotection, yielding 2◦-alkylboronic acids with a variety of functional groups (e.g., es-
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ter, cyano, amide) [35]. Gratifyingly, when 1pin was mixed with DEA in diethyl ether, a
suspension formed, and after extended stirring, a small amount of fine, white precipitate
appeared on the walls of the flask, albeit in amounts that prevented isolation. The white
precipitate was presumed to be DABO-ibuprofen (1DABO).
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Figure 2. Pinacolylboronic-ester deprotection methods.

Further experimental screening showed that after adding a slight excess of Hünig’s
base to 1pin in diethyl ether, the initial suspension resolved to a clear solution over 30 min.
NMR characterization of the pale-yellow oil remaining after the removal of solvent indi-
cated the formation of a new, possibly tetravalent, boron species as indicated by an upfield
shift in the 11B NMR resonance from 33.5 ppm (1pin) to 15.8 ppm (Figure 3a, left overlay),
mirroring the 11B and 1H shifts observed in the IPr-copper(I) boralactonate complexes that
we recently isolated and characterized [16]. Although a definitive X-ray structural charac-
terization of the molecule has been elusive, we cautiously assign it as the [1pin][DIPEA-H]
organic salt.

Redissolution of the salt in diethyl ether, and addition of excess DEA, led to the forma-
tion of significant amounts of an insoluble white precipitate. The precipitate was collected
via simple filtration and found to be insoluble in most non-polar solvents, including CDCl3.
NMR characterization in CD3OD revealed no pinacol resonances and characteristic DEA
resonances in the 1H NMR spectrum, while a further upfield shift of the boron resonance
to 9.34 ppm was observed in the 11B NMR spectrum (Figure 3a, right overlay). This shift
was consistent with other previously characterized DABO boronate esters [35,37]; how-
ever, there was some ambiguity, since the shift could also be consistent with retention
of the boralactonate structure (1DEA). All attempts to grow X-ray-quality crystals were
unsuccessful, so we carried out extensive NMR characterization to elucidate the solution
structure. Dynamical behavior on the NMR time-scale of 1DEA was not observed. Detailed
analysis of the 1H NMR spectrum showed that the methylene 1H resonances of the α-aryl
propionic ester AMX spin system were upfield shifted, consistent with the retention of
the boralactonate ring [16], while the four magnetically inequivalent pairs of DEA protons
were best described as an AA’XX’ spin system (Figure S4 (Supplementary Materials)),
which is markedly different from the ABMX system observed for independently prepared
DABO methyl boronate (Figure S5). The final structural confirmation was obtained by
acquiring two-dimensional 1H-15N CIGAR-HMBC spectra [38] for the DEA boronate and
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DABO methyl boronate (Figure 3b and Figure S6). The heteronuclear inverse-correlation
experiment was optimized to reveal vicinal (3J), and to a lesser extent geminal (2J) 1H-15N
coupling. The DEA boronate CIGAR spectrum showed two- and three-bond correlations
to the DEA AA’XX’ spin system (Figure 3b). In contrast, the DABO methyl boronate
CIGAR spectrum showed three-bond correlations to the DEA AB spin system, as well
as a three-bond correlation, across the 11B nucleus, to the methyl group. These NMR
experiments collectively confirm that DEA boronate adopts the spirocyclic boralactonate
structure (1DEA) rather than the DABO boronate structure (1DABO).
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Figure 3. (a) Stepwise preparation of diethanolamine boronate ibuprofen (DEAB-ibuprofen, 1DEA)
via boralactonate organic salt [1pin][DIPEA-H] as illustrated by 11B NMR spectra in CDCl3 (1pin) and
CD3OD ([1pin][DIPEA-H] and 1DEA). (b) Two-dimensional 1H-15N CIGAR-HMBC NMR spectrum
of 1DEA in CD3OD.
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After further synthetic optimization, conditions were identified for the preparation
of 1DEA by mixing 1pin, Hünig’s base, and excess DEA in Et2O, then heating the mixture
in a sealed vial for 4 h (Scheme 1). Yields of up to 80% were achieved at a 0.1 mmol scale.
Reactions at scales of up to 1 mmol required longer reaction times (8–12 h) and generally
gave slightly lower yields (65–75%). The isolated compound was found to be reasonably
air and moisture stable, with no significant decomposition observed over 2–3 months when
stored in the solid state on the benchtop, in a clear glass vial. Further, the compound was
observed to be stable with no apparent decomposition when dissolved in CD3OD for at
least 4 weeks, as judged by the 1H and 11B NMR experiments.
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Scheme 1. Synthesis of DEA boralactonate 1DEA.

From the outset, our objective was to identify a synthetic method that would first
enable pinacol deprotection from pinB-NSAIDs and other boracarboxylated products, and
then enable the addition of new diols, amino alcohols, diamines, etc., to the boron center
for catalytic and medicinal chemistry substrate library generation. Given the instability of
reported DABO boronates to aqueous acid (cf., [35]), we reasoned that a biphasic reaction
mixture would allow for the initial generation of an aqueous-soluble boronic acid via DEA
hydrolysis, followed by the formation of an organic, soluble, desired boronic ester via
esterification with an exogenous diol. Indeed, we have preliminary evidence to support
rapid hydrolysis of DEA from 1DEA in 0.1 M HCl; however, an unambiguous solution and
solid-state characterization of the presumed ibuprofen-derived boronic acid has not yet
been obtained and will be reported in due course elsewhere.

Using a biphasic reaction medium composed of the equivalent volumes of aqueous
HCl and diethyl ether, we observed an excellent formal transesterification reactivity in 2 h at
room temperature with a variety of diols (Scheme 2). Six-membered, 1,3-diol boronic-ester
derivatives (1a–e) were prepared in yields between 78% and 83%. The preparation of 1a
and 1e was performed at a 0.7 and 0.31 mmol scale, respectively, providing slightly reduced
yields in both cases. A single crystal of 1e was obtained by the slow recrystallization from
n-heptane at room temperature, revealing similar structural features to those reported
previously for 1pin [15]. Five-membered, 1,2-diol boronic-ester derivatives (1f–i) were
also synthesized in moderate to excellent yields, and no reduction in yield was observed
when the reactions were scaled three-fold. In all cases, the mixtures of the diastereomers
(i.e., benzylic α-aryl propionic acid racemate) were obtained and the attempts at selec-
tive recrystallization were not successful. Transamination with 1,8-diaminonaphthalene
provided 1Bdan (1j) in a 68% yield. Diols with acid-sensitive groups such as ethers
(e.g., 3-phenoxypropane-1,2-diol, 1k) and monosaccharides were not tolerated under the
reaction conditions, producing intractable mixtures of product.
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3. Materials and Methods
3.1. General Methods

All commercially available compounds were used as received, and were purchased
from Oakwood Chemical, Alfa Aesar, or Fisher Chemical. 1pin was prepared according
to the literature precedent [39]. The DABO methyl boronate was prepared based on the
literature precedent and matched the previous spectroscopic characterization [35,40]. The
1H, 13C, and 11B NMR spectra were recorded on JEOL 400 MHz and Varian INOVA 600 MHz
NMR spectrometers, and all deuterated solvents were purchased from Cambridge Isotope
Laboratories, Inc. Chemical shifts (δ) were given in parts per million and referenced relative
to tetramethylsilane (0.0 ppm for CDCl3) or to residual proteo solvent (1.94 or 3.31 ppm
for CD3CN and CD3OD, respectively), CD3CN or CD3OD (1.30 or 49.30 ppm for 13C),
and internal (capillary) BF3·OEt2 (32.1 ppm). The 11B NMR spectra were recorded using
quartz NMR tubes purchased from Wilmad. High-resolution mass spectra were recorded
on a Thermo Fisher Scientific Q-Exactive Mass Spectrometer with samples dissolved in
methanol (Fisher Optima grade).

3.2. General Procedure for Preparing the Spirocyclic Boralactonate Salt [1pin][DIPEA-H]

A 20 mL scintillation vial was charged with pinB-ibuprofen 1pin (1 equiv, 0.1 mmol,
33.1 mg) and N,N-diisopropylethylamine (1.1 equiv, 0.11 mmol, 19 µL). Diethyl ether (2 mL)
was added to the vial, and the resulting suspension was stirred at an ambient temperature
for 1 h. The resulting solution was concentrated under a vacuum, providing a yellow oil.
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The oil was dissolved in CD3OD and analyzed by 1H and 11B NMR spectroscopy. The salt
was used without further purification.

1H NMR (400 MHz, CD3OD) δ 7.18–7.11 (m, 2H), 7.08–7.00 (m, 2H), 3.85–3.59 (m, 1H),
3.58–3.50 (m, 2H), 3.04 (d, J 7.4, 2H), 2.43 (d, J 7.2, 2H), 1.83 (hept, J 6.8, 1H), 1.45 (s, 2H),
1.28 (m, 20H), 1.22–1.07 (m, 1H), 0.89 (d, J 6.6, 6H), 0.75–0.62 (m, 1H). 11B NMR (128 MHz,
CD3OD) δ 15.8.

3.3. General Procedure for the Synthesis of Diethanolamine Boronate Ibuprofen 1DEA

A 20 mL scintillation vial was charged with pinB-ibuprofen 1pin (1 equiv, 0.1 mmol,
33.1 mg), N,N-diisopropylethylamine (1.1 equiv, 0.11 mmol, 19 µL), and diethanolamine
(3 equiv, 0.3 mmol, 31.5 mg). Diethyl ether (2 mL) was added to the vial, which was sealed
with a Teflon cap, and the resulting suspension was stirred at 50 ◦C for 4 h. After 4 h, a
fine, white powder was vacuum filtered, washed with excess diethyl ether to remove the
impurities, and further dried in vacuo to provide the diethanolamine boronate ibuprofen
diethanolamine adduct.

1DEA: White solid, 80% yield (25.6 mg). 1H NMR (600 MHz, CD3OD) δ 7.15–7.11 (m,
2H), 7.03 (d, J = 7.8 Hz, 2H), 3.81–3.76 (m, 4H), 3.65 (t, J = 9.5 Hz, 1H), 3.13 (t, J = 5.3 Hz,
4H), 2.42 (d, J = 7.2 Hz, 2H), 1.82 (hept, J = 6.7 Hz, 1H), 1.13 (dd, J = 13.7, 10.0 Hz, 1H), 0.88
(d, J = 6.7 Hz, 6H), 0.69 (dd, J = 13.7, 8.9 Hz, 1H). 13C NMR (101 MHz, CD3OD) δ 186.7,
142.9, 140.2, 130.0, 128.9, 57.7, 51.8, 50.3, 46.1, 31.5, 22.7. 11B NMR (128 MHz, CD3OD) δ 9.4.
HRMS (ESI) m/z 320.2021 [C17H26BNO4

− (M+H)− requires 320.2028].

3.4. General Procedure for Preparing the bora-Ibuprofen Derivatives 1a–j

A 20 mL scintillation vial was charged with bora-ibuprofen diethanolamine adduct
1DEA (1 equiv, 0.1 mmol, 31.9 mg) and diol/diamine (1.1 equiv, 0.11 mmol). Diethyl ether
(2 mL) and 0.1 M HCl (2 mL) were added to the vial, and the resulting suspension was
stirred at ambient temperature for 2 h. The biphasic solution was added to a 15 mL
separatory funnel, and then extracted with diethyl ether (3 × 4 mL). The combined organic
extracts were washed with saturated sodium chloride (4 mL) and dried with sodium sulfate.
The organic solvent was removed under a reduced pressure to obtain the desired product.
The compound was further dried in vacuo and, if necessary, purified by recrystallization
from n-heptane at room temperature.

1a: White solid, 82% yield (23.8 mg). 1H NMR (600 MHz, CDCl3) δ 7.19 (d, J = 7.7 Hz,
2H), 7.06 (d, J = 7.7 Hz, 2H), 3.95–3.86 (m, 4H), 3.76 (dd, J = 10.1, 6.0 Hz, 1H), 2.42 (d,
J = 7.2 Hz, 2H), 1.88–1.77 (m, 2H), 1.49 (dd, J = 16.0, 10.2 Hz, 1H), 1.16–1.09 (m, 1H), 0.87
(dd, J = 6.6, 1.0 Hz, 7H). 13C NMR (101 MHz, CDCl3) δ 180.1, 140.4, 138.1, 129.3, 127.5, 77.3,
77.2, 77.0, 76.7, 61.7, 46.3, 45.1, 30.2, 27.2, 22.4. 11B NMR (128 MHz, CDCl3) δ 31.7. HRMS
(ESI) m/z 289.1622 [C16H23BO4

− (M-H)− requires 289.1617].
1b: White solid, 81% yield (24.5 mg). 1H NMR (600 MHz, CDCl3) δ 7.24–7.18 (m,

2H), 7.09–7.04 (m, 2H), 3.88 (dddd, J = 11.0, 6.5, 4.4, 2.1 Hz, 2H), 3.77 (dd, J = 10.0, 6.2 Hz,
1H), 3.47 (dt, J = 11.0, 9.4 Hz, 2H), 2.43 (d, J = 7.2 Hz, 2H), 2.03–1.94 (m, 1H), 1.83 (hept,
J = 6.7 Hz, 1H), 1.50 (dd, J = 15.9, 10.0 Hz, 1H), 1.18–1.09 (m, 1H), 0.88 (dd, J = 6.6, 1.0 Hz,
6H), 0.80 (d, J = 6.8 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 207.2, 181.1, 140.4, 138.1, 129.2,
127.6, 127.5, 83.4, 77.4, 77.2, 77.0, 76.7, 67.6, 46.4, 45.1, 31.2, 30.9, 30.2, 29.7, 24.6, 24.5, 22.4,
19.5, 12.6. 11B NMR (128 MHz, CDCl3) δ 28.7. HRMS (ESI) m/z 303.1777 [C17H25BO4

−

(M-H)− requires 303.1773].
1c: White solid, 85% yield (27.1 mg). 1H NMR (400 MHz, CDCl3) δ 7.22–7.18 (m,

2H), 7.08–7.03 (m, 2H), 3.79 (dd, J = 9.6, 6.6 Hz, 1H), 3.52 (s, 4H), 2.42 (s, 2H), 1.82 (hept,
J = 6.7 Hz, 1H), 1.52 (dd, J = 16.0, 9.6 Hz, 1H), 1.19 (dd, J = 16.0, 6.7 Hz, 1H), 0.87 (d,
J = 6.6 Hz, 6H), 0.83 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 179.5, 140.4, 138.0, 129.2, 127.5,
77.3, 77.0, 76.7, 72.0, 46.2, 45.0, 31.6, 30.1, 22.4, 22.3, 21.7. 11B NMR (128 MHz, CDCl3) δ
30.2. HRMS (ESI) m/z 341.1895 [C18H27BO4+Na (M+Na)+ requires 341.1985].

1d: White solid, 78% yield (27.1 mg). 1H NMR (600 MHz, CDCl3) δ 7.23–7.19 (m, 2H),
7.08–7.03 (m, 2H), 3.78 (dd, J = 9.5, 6.7 Hz, 1H), 3.59 (ddd, J = 11.1, 4.4, 1.5 Hz, 2H), 3.51
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(ddd, J = 11.3, 7.6, 1.5 Hz, 2H), 2.42 (d, J = 7.1 Hz, 2H), 1.82 (dp, J = 13.5, 6.8 Hz, 1H), 1.51
(dd, J = 16.0, 9.5 Hz, 1H), 1.20 (tdd, J = 11.0, 8.4, 5.4 Hz, 3H), 1.16–1.10 (m, 2H), 0.88 (d,
J = 6.6 Hz, 7H), 0.85 (t, J = 7.1 Hz, 4H), 0.78 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 180.9,
140.5, 138.1, 129.3, 129.3, 127.6, 77.4, 77.1, 76.8, 70.9, 70.9, 46.4, 45.2, 37.1, 34.3, 30.2, 22.5, 18.9,
16.4, 14.9. 11B NMR (128 MHz, CDCl3) δ 28.3. HRMS (ESI) m/z 345.2244 [C20H31BO4

−

(M-H)− requires 345.2243].
1e: White solid, 79% yield (32.7 mg). 1H NMR (600 MHz, CDCl3) δ 7.25 (s, 1H), 7.13

(2 H, d, J 8.0), 7.06 (2 H, d, J 8.0), 4.84 (2 H, dd, J 13.2, 2.9), 4.31 (2 H, t, J 12.3), 3.76 (1 H, dd,
J 10.5, 6.0), 2.42 (2 H, d, J 7.2), 1.82 (1 H, hept, J 6.7), 1.48 (1 H, dd, J 16.1, 10.4), 1.17 (1 H,
dd, J 16.1, 6.0), 0.88 (6 H, d, J 6.6). 13C NMR (101 MHz, CDCl3) δ 180.6, 140.9, 137.4, 129.8,
129.5, 128.1, 127.5, 127.3, 83.4, 67.0, 46.3, 45.1, 30.2, 22.5, 19.0. 11B NMR (128 MHz, CDCl3)
δ 33.4. HRMS (ESI) m/z 412.0571 [C16H21BBrNO6

− (M-H)− requires 412.0573]. Melting
point: 141–148 °C.

1f: White solid, 70% yield (20.4 mg). 1H NMR (400 MHz, CDCl3) 7.19 (2 H, d, J 7.9),
7.05 (2 H, dd, J 7.8, 5.2), 4.19 (1 H, t, J 8.3), 3.82 (1 H, dt, J 9.0, 6.8), 3.63 (1 H, q, J 7.5), 2.41
(2 H, dd, J 7.2, 2.9), 1.82 (1 H, dp, J 12.9, 6.3), 1.56 (1 H, ddd, J 32.5, 16.0, 9.4), 1.28 (1 H,
dd, J 16.0, 7.6), 1.20 (2 H, t, J 6.6), 1.11 (4 H, d, J 5.0), 0.86 (6 H, dd, J 6.7, 4.4). 13C NMR
(101 MHz, CDCl3) δ 179.6, 140.6, 137.5, 129.3, 129.2, 127.5, 127.4, 83.3, 73.2, 72.1, 46.3, 45.0,
30.1, 30.1, 24.6, 24.5, 22.4, 22.3, 22.3, 21.5, −0.04. 11B NMR (128 MHz, CDCl3) δ 34.6. HRMS
(ESI) m/z 289.1620 [C16H23BO4

− (M-H)− requires 289.1617].
1g: White solid, 75% yield (24.3 mg). 1H NMR (400 MHz, CDCl3) δ 7.20 (d, J = 7.8 Hz,

2H), 7.08 (d, J = 7.8 Hz, 2H), 4.64–4.52 (m, 1H), 4.27–4.18 (m, 1H), 4.01 (ddd, J = 9.2, 7.5,
5.7 Hz, 1H), 3.85 (dd, J = 9.6, 6.6 Hz, 1H), 3.55–3.38 (m, 2H), 2.44 (d, J = 7.2 Hz, 2H), 1.84
(dp, J = 13.5, 6.8 Hz, 1H), 1.64 (ddd, J = 16.2, 9.8, 2.3 Hz, 1H), 1.39–1.23 (m, 1H), 0.89 (d,
J = 6.6 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 180.4, 141.0, 137.5, 129.6, 127.6, 127.6, 68.7,
46.5, 46.5, 46.2, 45.2, 30.3, 22.6, 15.3. 11B NMR (128 MHz, CDCl3) δ 33.0. HRMS (ESI) m/z
323.1230 [C16H22BClO− (M-H)− requires 323.1227].

1h: White solid, 93% yield (39.8 mg). 1H NMR (400 MHz, CDCl3) 7.30 (8 H, tdd, J
9.1, 4.8, 2.2), 7.24–7.05 (7 H, m), 5.07 (2 H, s), 4.11–3.97 (1 H, m), 2.50 (2 H, dd, J 7.2, 3.0),
2.00–1.76 (2 H, m), 1.61 (1 H, ddd, J 15.9, 14.2, 7.5), 1.01–0.87 (6 H, m).13C NMR (101 MHz,
CDCl3) δ 179.6, 140.8, 140.3, 137.5, 129.4, 128.7, 128.2, 128.1, 127.9, 127.7, 127.6, 126.9, 125.8,
125.7, 86.5, 79.1, 46.5, 45.1, 30.2, 22.4. 11B NMR (128 MHz, CDCl3) δ 33.7. HRMS (ESI) m/z
427.2084 [C27H29BO4

− (M-H)− requires 427.2086]. Melting point: 149–152 ◦C.
1i: White solid, 78% yield (22.5 mg). 1H NMR (600 MHz, CDCl3) δ 7.24–7.20 (m,

2H), 7.10–7.05 (m, 2H), 4.31–4.25 (m, 2H), 3.86 (dd, J = 9.2, 7.3 Hz, 1H), 2.43 (d, J = 7.1 Hz,
2H), 1.83 (dp, J = 13.5, 6.7 Hz, 1H), 1.68 (ddd, J = 13.8, 9.2, 4.5 Hz, 2H), 1.61 (dd, J = 16.1,
9.2 Hz, 1H), 1.52 (s, 2H), 1.41–1.32 (m, 3H), 1.29–1.19 (m, 2H), 0.90–0.86 (m, 6H). 13C
NMR (101 MHz, CDCl3) δ 180.3, 140.7, 137.5, 129.3, 127.5, 77.3, 77.2, 77.0, 76.7, 75.2, 46.4,
45.0, 30.2, 28.3, 22.4, 19.0. 11B NMR (128 MHz, CDCl3) δ 33.4. HRMS (ESI) m/z 329.1936
[C19H27BO4

— (M-H)− requires 329.1930]. Melting point: 136–140 ◦C.
1j: Orange oil, 68% yield (25.4 mg). 1H NMR (400 MHz, CDCl3) 7.28–7.24 (2 H, m),

7.22–7.18 (1 H, m), 7.17–7.09 (3 H, m), 7.03 (2 H, dd, J 8.3, 7.2), 6.96 (2 H, d, J 8.2), 6.47 (1 H,
dd, J 7.2, 1.1), 6.14 (2 H, d, J 7.2), 5.47 (2 H, s), 3.76 (1 H, t, J 7.9), 2.45 (2 H, d, J 7.2), 1.83
(1 H, dq, J 13.4, 6.7), 1.59 (1 H, dd, J 15.3, 7.5), 1.48–1.40 (1 H, m), 0.89 (7 H, d, J 6.6). 13C
NMR (101 MHz, CDCl3) δ 179.7, 141.4, 140.9, 140.3, 137.1, 136.3, 134.7, 129.8, 129.2, 128.4,
127.6, 127.6, 127.1, 119.7, 117.6, 117.3, 113.1, 106.1, 105.8, 64.7, 47.2, 45.1, 32.0, 30.3, 29.0, 22.8,
22.5, 14.3. 11B NMR (128 MHz, CDCl3) δ 31.6. HRMS (ESI) m/z 371.1939 [C23H25BN2O2

−

(M-H)− requires 371.1936].

4. Conclusions

In this work, we have outlined a methodology to achieve pinacol deprotection from
pinB-ibuprofen via transesterification with DEA. The characterization of the DEA adduct
unexpectedly did not adopt the DABO boronate structure, but rather the DEA boralac-
tonate zwitterionic structure. The DEA adduct is bench stable and amenable to subse-
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quent synthetic elaboration via DEA hydrolysis under acidic aqueous biphasic-conditions,
likely forming ibuprofen boronic-acid species, which can be functionalized via esterifica-
tion/amination by the addition of diol or diamine to the biphasic reaction. Boron-containing
ibuprofen derivatives with 1,2-diol and 1,3-diol motifs and 1,2-diaminonaphthalene were
synthesized in moderate to excellent yields. This work paves the way for broader library
syntheses to commence, with the aim of utilizing these organoboron carboxylic acids in
catalysis and medicinal chemistry. Given the importance of NSAIDs in pain management
and other disease pathways [41–43] and recognizing their well-known side effects [44–46],
boron-containing NSAIDs may reveal new therapeutic opportunities [10,11].

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/inorganics11020070/s1, Figures S1–S40: NMR spectra;
Table S1: Selected crystallographic and refinement parameters.
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