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Abstract: Iron derivatives have emerged as valuable catalysts for a variety of transformations, as well
as for biological and photophysical applications, and iminophosphorane can be considered an ideal
ligand scaffold for modulating electronic and steric parameters in transition metal complexes. In this
report, we aimed to synthesize dichloride and dibromide iron(II) complexes supported by symmetric
bis(iminophosphorane)pyridine ligands, starting from readily available ferrous halides. The ease
of synthesis of this class of ligands served to access several derivatives with distinct electronic and
steric properties imparted by the phosphine moiety. The ligands and the resulting iron(II) complexes
were characterized by 31P and 1H NMR spectroscopy and DART or ESI mass spectrometry. While
none of these iron(II) complexes could be characterized by single-crystal X-ray diffraction, suitable
crystals of a µ-O bridged dinuclear iron complex bearing an iminophosphorane ligand were obtained,
confirming a κ3 binding motif. The bis(iminophosphorane)pyridine ligands in the obtained iron(II)
complexes are labile, as demonstrated by their facile substitution by terpyridine. Cyclic voltammetry
studies revealed that the oxidation of bis(iminophosphorane)pyridine iron(II) complexes to iron(III)
species is quasi-reversible, suggesting the strong thermodynamic stabilization of the iron(III) center
imparted by the σ-donating iminophosphorane ligands.

Keywords: pincer ligands; iminophosphorane ligand; iron; cyclic voltammetry

1. Introduction

Iron complexes supported by 2,6-disubstituted pyridine pincer ligands have emerged
as valuable catalysts for a variety of transformations, such as olefin polymerization and
oligomerization, hydrogenation, and hydrofunctionalization reactions (Figure 1a) [1–3].
While, in some cases, the catalytic activity of these systems has been attributed to the
redox-active nature of some of these ligands [4], it is generally accepted that adjusting the
electronic properties at the metal center by ligand design is crucial for achieving optimal
performance in catalysis [5]. Thus, developing new ligand sets in which ligand tuning
can be easily accomplished is a challenging task. Diiminopyridine ligands are one of the
most explored scaffolds for developing new transformations mediated or catalyzed by iron
(Figure 1a, left). In considering this, we sought to access other types of easy-to-synthesize
N,N,N-tridentate pincer ligands that could be suitable for tuning both the electronic and
steric properties at the iron metal center [3,6].
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Figure 1. Examples of iron(II) pincer complexes and iminophosphorane iron(II) complexes [1–
3,7,8]. 

Iminophosphoranes, the nitrogen analogs of phosphonium ylides, are suitable lig-
ands for transition metal centers [6]. As shown in Scheme 1, the iminophosphorane motif 
is better represented by two canonical forms, one with phosphorus and nitrogen having a 
double bond R3P = NR’ (ylene form) and the other with a single R3P+–-NR’ bond with a 
positive charge on phosphorus and a negative charge on nitrogen (ylidic form). While 
experimental bond parameters support the depiction of iminophosphoranes as the R3P = 
NR’ form (e.g., bond lengths of 1.54 Å–1.64 Å, and bond angles of 119°–143° in the solid-
state) [9], DFT calculations indicate that the rotation energy of the P–N bond is only 2.1 
kcal/mol, suggesting a significant contribution of the R3P+–−NR’ form [10]. Due to the ylidic 
canonical form, iminophosphorane ligands are predominantly strong σ N-donors, 
resulting in convenient ligands to stabilize transition metal complexes in high oxidation 
states [11]. As the nature of the R3P = NR’ partial double bonds involves negative 
hyperconjugation from a nitrogen lone pair p(N) to s *(P–C) orbitals [12,13], the σ-donor 
character of iminophosphoranes can be adjusted by the electronic properties of the 
phosphine moiety [11]. Consequently, iminophosphorane could be an ideal ligand 
scaffold for modulating electronic and steric parameters in transition metal complexes. 

Figure 1. Examples of iron(II) pincer complexes and iminophosphorane iron(II) complexes [1–3,7,8].

Iminophosphoranes, the nitrogen analogs of phosphonium ylides, are suitable ligands
for transition metal centers [6]. As shown in Scheme 1, the iminophosphorane motif is
better represented by two canonical forms, one with phosphorus and nitrogen having
a double bond R3P = NR’ (ylene form) and the other with a single R3P+–−NR’ bond
with a positive charge on phosphorus and a negative charge on nitrogen (ylidic form).
While experimental bond parameters support the depiction of iminophosphoranes as the
R3P = NR’ form (e.g., bond lengths of 1.54 Å–1.64 Å, and bond angles of 119◦–143◦ in
the solid-state) [9], DFT calculations indicate that the rotation energy of the P–N bond
is only 2.1 kcal/mol, suggesting a significant contribution of the R3P+–−NR’ form [10].
Due to the ylidic canonical form, iminophosphorane ligands are predominantly strong
σ N-donors, resulting in convenient ligands to stabilize transition metal complexes in
high oxidation states [11]. As the nature of the R3P = NR’ partial double bonds involves
negative hyperconjugation from a nitrogen lone pair p(N) to s *(P–C) orbitals [12,13], the
σ-donor character of iminophosphoranes can be adjusted by the electronic properties of the
phosphine moiety [11]. Consequently, iminophosphorane could be an ideal ligand scaffold
for modulating electronic and steric parameters in transition metal complexes.
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Scheme 1. Canonical forms of an iminophosphorane: ylene (A) and ylidic (B); its coordination to a 
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metal centers [11]. In 2000, Bochmann and co-workers reported the synthesis of sterically 
hindered 2,6-bis(aryliminophosphoranyl)pyridine pincer complexes of vanadium, iron, 
cobalt, and nickel (e.g., Figure 1b, center) [7]. More recently, Auffrant and co-workers 
synthesized a related P,N,N-phosphine–pyridine–iminophosphorane iron pincer 
complex, which showed excellent catalytic activity in the hydrosilylation of 
acetophenones (Figure 1b) [8]. While these reports represent a significant advance toward 
using iminophosphoranes in the design of iron pincer complexes, their synthesis required 
the use of either LiPR2 or Na/NH3. Therefore, employing other pyridine 
iminophosphorane pincer ligands in designing iron coordination complexes that could be 
readily prepared from commercially available phosphines is highly desirable. 

The N,N,N-pincer ligand bis(methyliminophosphoranyl)pyridine (ImPh, see Scheme 
2a) is an ideal platform for stabilizing copper [20] and low-valent f elements [21,22]. In the 
case of copper, the coordination mode of ImPh depends on the oxidation state of the 
metal, with k3-N,N,N and k2-N,N coordination modes for Cu(II) and Cu(I) centers, 
respectively [20]. Due to the ease of synthesis of ImPh, which can be accessed from the 
corresponding organic diazide and triphenylphosphine, we hypothesized that other 
derivatives of this ligand scaffold could be obtained similarly using other phosphines. 
This would generate a set of ligands to modulate the electronic and steric properties of 
iron(II) pincer complexes. In addition, the potential of bis(iminophosphorane)pyridine 
ligands to exhibit hemilability could be advantageous for catalytic applications of the 
resulting iron complexes [20].  

Scheme 1. Canonical forms of an iminophosphorane: ylene (A) and ylidic (B); its coordination to a
metallic center (C).

While complexes supported by iminophosphorane ligands are common with lan-
thanides and early transition metals, examples of more electron-rich metal derivatives with
iminophosphorane ligands have also been reported [6]. Iron catalysts bearing iminophos-
phoranes have been successfully employed for the activation of small molecules [14–16], as
well as in ethylene oligomerization [17] and transfer hydrogenation [18].

As observed for other pincer ligands [19], tridentate ligands with one or two iminophos-
phorane fragments are less prone to engage in ligand substitution reactions than their
bidentate and monodentate analogs, especially when bound to electron-rich metal cen-
ters [11]. In 2000, Bochmann and co-workers reported the synthesis of sterically hindered
2,6-bis(aryliminophosphoranyl)pyridine pincer complexes of vanadium, iron, cobalt, and
nickel (e.g., Figure 1b, center) [7]. More recently, Auffrant and co-workers synthesized a
related P,N,N-phosphine–pyridine–iminophosphorane iron pincer complex, which showed
excellent catalytic activity in the hydrosilylation of acetophenones (Figure 1b) [8]. While
these reports represent a significant advance toward using iminophosphoranes in the de-
sign of iron pincer complexes, their synthesis required the use of either LiPR2 or Na/NH3.
Therefore, employing other pyridine iminophosphorane pincer ligands in designing iron
coordination complexes that could be readily prepared from commercially available phos-
phines is highly desirable.

The N,N,N-pincer ligand bis(methyliminophosphoranyl)pyridine (ImPh, see
Scheme 2a) is an ideal platform for stabilizing copper [20] and low-valent f elements [21,22].
In the case of copper, the coordination mode of ImPh depends on the oxidation state of
the metal, with k3-N,N,N and k2-N,N coordination modes for Cu(II) and Cu(I) centers,
respectively [20]. Due to the ease of synthesis of ImPh, which can be accessed from the
corresponding organic diazide and triphenylphosphine, we hypothesized that other deriva-
tives of this ligand scaffold could be obtained similarly using other phosphines. This
would generate a set of ligands to modulate the electronic and steric properties of iron(II)
pincer complexes. In addition, the potential of bis(iminophosphorane)pyridine ligands to
exhibit hemilability could be advantageous for catalytic applications of the resulting iron
complexes [20].

Herein, we report the synthesis of new bis(iminophosphorane)pyridine iron(II) pincer
complexes. Their iminophosphorane ligands were effortlessly synthesized from com-
mercially available phosphines. Reactivity studies of the complexes with terpyridine
demonstrated the lability of the bis(iminophosphorane)pyridine ligands. The electronic
properties of the new iron(II) complexes were evaluated by cyclic voltammetry.
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2. Results and Discussion
2.1. Synthesis of Ligands and Iron Complexes

Iminophosphorane derivatives containing different phosphine moieties were syn-
thesized analogously to the known ImPh ligand by the Staudinger reaction [20,23]. Ac-
cordingly, two equivalents of triphenylphosphine, tri-tert-butylphosphine, or diphenyl-
methylphosphine were added to a solution of 2,6-bis(azidomethyl)pyridine (PyN3) in
diethyl ether and reacted overnight to obtain ImPh and new ligands ImBu and ImMe,
respectively (Scheme 2a).

Iminophosphorane ligands ImPh, ImBu, and ImMe are white solids characterized by
1H and 31P NMR spectroscopy. In the 31P NMR spectra, the resonances associated with the
new ligands ImBu and ImMe appear as singlets at 53.65 and 12.85 ppm, respectively. In
the 1H NMR spectra, the methylene resonances of the iminophosphorane ligands appear
as a singlet at 4.92 ppm for ImBu and as a broad doublet at 4.28 ppm for ImMe. Such
differences observed in the multiplicity of the signal can be explained in terms of the
electronic differences between the ligands ImPh, ImMe, and ImBu, which can lead to
significant changes in the coupling constant values [24]. In the ATR-IR spectra, the band
corresponding to N = P vibration is observed for ImPh at 1240 cm−1, ImBu at 1109 cm−1
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and ImMe at 1223 cm−1. The assignment of these structures was corroborated by MS
(FAB+). The air and moisture-sensitive nature of ligands precluded their characterization
by elemental analysis.

Next, the coordination of the iminophosphorane ligands to iron(II) was explored
(Scheme 2b). The reaction of ImPh with FeCl2 resulted in a complex reaction mixture,
as observed by 31P NMR spectroscopy. A yellow precipitate was formed when FeCl2py4
(py = pyridine) was employed as an iron precursor in the reaction with ImPh in THF at 45 ◦C
for 12 h. In the 31P NMR spectrum, the newly formed complex presented a characteristic
singlet resonance at 38.64 ppm, which is significantly downfield shifted compared to that
of the free ligand, thus supporting the coordination of ImPh to iron. The presence of only
one signal in the 31P NMR spectrum suggests a symmetric κ3 binding mode in solution
(Scheme 1b). When ImBu and ImMe independently reacted with FeCl2py4 under the
same conditions, the formation of analog iron complexes was observed, as supported
by the presence of singlet resonances in the 31P NMR spectra (57.75 ppm for FeImBu,
and 42.31 ppm for FeImMe). It should be noted that the presence of a small amount of
paramagnetic impurity that could not be entirely removed causes the broadening of the
1H NMR signals. In addition, the dibromide homolog FeImPh(Br) could be synthesized
directly from FeBr2 and ImPh at room temperature using a similar procedure (Scheme 2c).
This is supported by the presence of a singlet signal at 42.31 ppm in the 31P NMR spectrum
of FeImPh(Br), which is practically identical to that of the dichloride complex FeImPh. In
the ATR-IR spectrum, the band corresponding to N = P vibration is observed at 1113 cm−1

for FeImPh, at 1173 cm−1 for FeImBu, at 1118 cm−1 for FeImMe and, at 1116 cm−1 for
FeImPh(Br). The structure of the synthesized bis(iminophosphorane)pyridine iron(II)
complexes was corroborated by MS (DART) or MS (ESI). As mentioned for the free ligand,
FeImBu is also highly sensitive to atmospheric conditions, precluding satisfactory elemental
analysis [25]. Attempts to obtain MS data for FeImBu through different techniques such as
DART+, FAB+, and ESI were unsuccessful.

Efforts to obtain crystalline material for X-ray diffraction of the bis(iminophosphorane)
pyridine complexes under dry and air-free conditions were unsuccessful. Instead, suitable
monocrystals of the µ-O-bridged dinuclear iron complex Fe2ImPh were obtained from a
cold solution of FeImPh in THF (Scheme 3).
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Scheme 3. Obtention of µ-oxo bridged dinuclear iron complex Fe2ImPh from FeImPh.

The ImPh ligand is part of a bimetallic unit with an oxygen bridge that links two iron
atoms. This complex is obviously a minor byproduct. The bimetallic complex could form
after the dissociation of ImPh from FeImPh to produce FeCl2, followed by the oxidation of
the latter by traces of dioxygen and the final association of a species produced with FeImPh.
Bimetallic species Fe2ImPh contains a µ-oxo bridge that connects a FeCl3 moiety with an
iron center supported by the ImPh ligand. In the solid state of Fe2ImPh (Figure 2), the
distances between the oxygen and the two iron centers are similar (Fe1−O1, 1.777(3) Å;
Fe2−O1, 1.763(3) Å), suggesting a symmetrical binding mode of the O-donor. Analogous
bimetallic µ-O-bridged iron species bearing (diimine)pyridine [26] and terpyridine [27] lig-
ands have been reported. The three N-donor atoms of the bis(iminophosphorane)pyridine
ligand are bound to Fe1 in a k3 mode, as supported by bond distances (Fe1−N1, 2.098(4)
Å; Fe1−N2, 2.134(4) Å; Fe1−N3, 2.132(4) Å). The parameter τ5 = (β−α)/60, where β and
α are the two greatest valence angles, was calculated [28]. The value τ5 = 0.08 confirmed
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that the complex’s geometry around Fe1 could be described as a distorted square pyrami-
dal, with the ImPh ligand and the chloride atom in the plane and the OFeCl3 unit in the
axial position.
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Figure 2. ORTEP representation of complex Fe2ImPh with ellipsoids is shown at 40% probability;
hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Fe1−N1, 2.098(4);
Fe1−N2, 2.134(4); Fe1−N3, 2.132(4); Fe1−O1, 1.777(3); Fe2−O1, 1.763(3); P1−N2, 1.610(4); P2−N3,
1.592(3); Fe1−O1−Fe2, 158.4(2).

The P−N bond distances in Fe2ImPh (P1−N2, 1.610(4) Å; P2−N3, 1.592(3) Å) are
elongated with respect to the uncoordinated ImPh ligand (1.574(1) Å and 1.568(2) Å) [22].
This observation is consistent with the coordination of the nitrogen atoms of ImPh to the
iron center.

2.2. Efforts toward the Synthesis of Heteroleptic Diiminophosphorane–Terpyridine Iron(II)
Complexes

Octahedral ruthenium complexes with polypyridine ligands possess unique photo-
physical properties that have been broadly exploited [29–31]. While these complexes are
the more studied group 8 metal compounds for this purpose, iron complexes have also
been explored. Unfortunately, the metal-to-ligand charge transfer (MLCT) states of iron
complexes are typically short-lived relative to those of the ruthenium analogs, thus trans-
lating into low quantum efficiencies [32]. Incorporating strong σ -donating ligands into
an iron polypyridine fragment is an effective strategy for extending the lifetimes of MLCT
states traditionally observed in polypyridine iron(II) complexes [32].

Within this context, several efforts were made to synthesize heteroleptic pyridine
(diiminophosphorane)–terpyridine iron(II) complexes. When terpyridine (tpy) was intro-
duced at room temperature to a solution or suspension of FeImPh in various organic sol-
vents such as dichloromethane, methanol, acetonitrile, and THF, the bis(terpyridine)iron(II)
complex [Fe(tpy)2]Cl2 was obtained as the major product, along with unreacted starting
material, as observed by 31P NMR. When this reaction was carried out under the same
conditions with cationic iron(II) species formed in situ from FeImPh and different halogen
abstracting agents such as AgBF4, KPF6, TlPF6, and NaBPh4, similar results were obtained
(Scheme 4a). Starting from FeImPh(Br) led to similar results. For example, when terpyri-
dine was reacted in THF with a cationic iron complex formed in situ from FeImPh(Br) and
NaBPh4 (room temperature, 12 h), [Fe(tpy)2][BPh4]2 precipitated from the reaction mixture,
while unreacted starting material remained in solution along with other uncharacterized
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iron-containing species (Scheme 4b). X-ray diffraction studies of crystals of the material
obtained from the soluble portion of this mixture revealed the formation of a terpyridine-
diamine iron(II) complex [Fe(pyNH)(tpy)][BPh4]2 (Scheme 4b). However, the quality of the
crystals was only sufficient for connectivity determination. We hypothesize that terpyridine
heteroleptic complexes could be generated when the dissociated diiminophosphorane
ligand is hydrolyzed by traces of water to form the corresponding primary amine, which
could coordinate to a terpyridine-iron(II) fragment. However, more complex mechanisms
involving reactive unsaturated iron intermediates cannot be ruled out.
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Overall, these results highlight the lability of the diiminophosphorane ligand in these
iron(II) complexes, which facilitates the formation of bis(terpyridine)-iron(II) complexes
regardless of the reaction stoichiometry. Decoordination of the iminophosphorane ligand
was similarly observed when bipyridine or monodentate ligands such as PPh3 and CO
were reacted with FeImPh. Such lability of our pincer ligands was not expected. However,
the lability and hemilability of related ligands has previously been discussed [6,20,33].

2.3. Cyclic Voltammetry Studies

Redox properties of the synthesized bis(iminophosphorane)pyridine iron complexes
were explored by cyclic voltammetry (CV). A quasi-reversible one-electron wave centered
at E1/2 = 0.103 V vs. Ag/AgCl was observed for FeImPh (Figure 3, right). This feature
is tentatively assigned to a Fe(II)/Fe(III) couple. A similar quasi-reversible redox process
centered at E1/2 = 0.270 V vs. Ag/AgCl was observed for FeImPh(Br). A slight potential
shift was attributed to the more electron-donating nature of bromide with respect to
chloride. For complexes FeImBu and FeImMe, almost irreversible redox waves centered
around 0.62 and 0.05 V vs. Ag/AgCl, respectively, were observed. Other waves, probably
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due to pyridine-centered events, were observed in the studied potential window of −2 to
2 V (Figure 3) [34].
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3. Materials and Methods
3.1. Materials and Reagents

All reactions were carried out under a nitrogen atmosphere using standard Schlenk
techniques. THF and Et2O were distilled over sodium prior to use. Pyridine-2,6-dicarboxylic
acid, FeCl2, FeBr2 Na2CO3, NaBH4, PBr3, PPh3, PCH3Ph2, and tri-tert-butylphosphine so-
lution (1.0 M in THF) were purchased from Sigma-Aldrich (St. Louis, MO, USA), and
NaN3 was purchased from MCF Productos Científicos (Hermosillo, Mexico). All purchased
reagents were used as received. 2,6-bis(azidomethyl)pyridine and ImPh were prepared
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according to the literature procedures [20]. The precursor FeCl2py4 was prepared following
the literature procedures [35].

1H, 13C NMR, and 31P NMR spectra were carried out on a JEOL GX 300 spectrometer
(300.5296 MHz for 1H, 75.5682 MHz for 13C, and 121.5 MHz for 31P). The δ scale was
used throughout; chemical shifts were in ppm, and the coupling constants were in Hz.
The samples of the iron complexes were prepared in an inert atmosphere and transferred
to an NMR tube coupled to a J Young valve. FAB+ mass spectra were obtained using a
JEOL JMS-SX102A instrument with m-nitrobenzyl alcohol as a matrix. DART mass spectra
were obtained using the Joel AccuTOF JMS-T100LC instrument. Infrared spectra were
performed on a Bruker Alpha ATR spectrometer. A three-electrode configuration was used
with a BAS working glassy carbon electrode, Ag/AgCl reference electrode, and auxiliary Pt
electrode. Before each measurement, the working electrode was polished with a diamond
paste and rinsed with acetone and distilled water. All potential scans were carried out at a
scanning rate of 100 mVs−1 in dry CH2Cl2 at a concentration of 1 × 10−4 M and 0.1 M of
tetra-nbutylammonium hexafluorophosphate. Under those conditions, E1/2 = 0.494 V (vs.
Ag/AgCl) for the ferrocene/ferrocenium redox couple.

Crystallography. Dark brown crystals of Fe2ImPh were obtained by cooling a THF
solution of FeImPh to 0 ◦C for two days. The X-ray intensity data were measured at
298(2) K on a Bruker Smart Apex CCD diffractometer using standard MoKα radiation
(λ = 0.71073 Å). A multi-scan absorption correction procedure was applied. The integration
of the data was done using a triclinic unit cell to yield a total of 13654 reflections to a
maximum 2θ angle of 51.06◦, of which 9594 [R(int) = 0.0739] were independent. The
integration structure solution was performed using SHELXS-2012, and refinement (full-
matrix least squares) was performed using the SHELXS-2014/7 program [36]. Hydrogen
atoms were placed in calculated positions and were allowed to ride on the atoms to which
they were attached. Crystal structure parameters and experimental data on the structure
solution and refinement are given in Table S10 in Supporting Information.

3.2. Synthesis of ImBu

In a Schlenk flask, 0.214 g (1.056 mmol) of tri-tert-butylphosphine were slowly added
to a solution of 0.10 g (0.528 mmol) of 2,6-bis(azidomethyl)pyridine in 10 mL of dry diethyl
ether, and the reaction mixture was stirred at room temperature for 12 h. The solvent was
concentrated under a vacuum to about 5 mL, and the white precipitate was filtered off
through a cannula fitted with filter paper, then washed with 30 mL of cold hexane and
dried under a vacuum. The white solid corresponding to ImBu was obtained in 65% yield
(0.225 g, 0.343 mmol).

31P{1H} NMR (CDCl3, 121 MHz) 53.65 (s). 1H NMR (CDCl3, 300 MHz) 7.44 (t, 1H),
7.17 (d, JHH = 9.0, 2H), 4.92 (s, 4H), 1.43 (d, JPH = 12.0, 54H). IR (ν cm−1): 1109 (νN = P).

3.3. Synthesis of ImMe

In a Schlenk flask, 0.211 g (1.056 mmol) of methyldiphenylphosphine were slowly
added to a solution of 0.10 g (0.528 mmol) of 2,6-bis(azidomethyl)pyridine in 10 mL of
diethyl ether, and the reaction mixture was stirred at room temperature for 12 h. The
solvent was concentrated under a vacuum to about 5 mL, and the white precipitate was
filtered off through a cannula fitted with filter paper, then washed with 30 mL of cold
diethyl ether and dried under a vacuum. The white solid corresponding to ImMe was
obtained in 65% yield (0.168 g, 0.316 mmol).

31P{1H} NMR (CDCl3, 121 MHz) 12.85 (s). 1H NMR (CDCl3, 300 MHz) 7.66–7.54 (m,
12H, H1, H2, H6), 7.42–7.31 (m, 13H, H7, H8), 4.28 (d, JPH = 21.0, 4H, H4) 1.91 (d, JPH = 12.0,
6H, H9). MS(DART) m/z Calcd for C33H33N3P2 [M+H]+: 533.60; found: 534. See Figure S5
for compound numeration.
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3.4. Synthesis of FeImPh

In a Schlenk flask, 0.067 g, (0.152 mmol) of FeCl2py4 were added to a solution of 0.10 g
(0.152 mmol) of ImPh in 20 mL of dry THF. The reaction mixture was stirred for 12 h at
45 ◦C. The brown precipitate was obtained and filtered through a cannula fitted with filter
paper under a nitrogen atmosphere. The brown solid was dissolved in 15 mL of CH2Cl2
and filtered through a cannula fitted with filter paper. The solvent was evaporated to
dryness, and the dark residue was dissolved in 100 mL of acetone, filtered through a short
plug of Celite®, and the solvent was evaporated to dryness. The yellow solid was washed
with 30 mL of diethyl ether and dried under vacuum to give the compound FeImPh in 70%
yield (0.083 g, 0.106 mmol).

31P{1H} NMR (CDCl3, 121 MHz) 38.64 (s). 1H NMR (CDCl3, 300 MHz) 7.45–7.90
(m, 34H, H1, H2, H6, H7, H8), 4.15 (d, JPH = 18, 4H, H4). See Figure S6 for compound
numeration. MS(ESI+) m/z Calcd for C43H37Cl2FeN3P2 [M]+: 783.12; found: 783.60. IR
(ν cm−1): 1113 (νN = P). Anal Calcd for C43H37Cl2FeN3P2 · 0.7 CH2Cl2: N, 4.98; C, 62.19; H,
4.59. Found: N, 5.21; C, 62.03; H, 4.69.

3.5. Synthesis of FeImBu

In a Schlenk flask, 0.10 g, (0.186 mmol) of FeCl2py4 were added to a solution of 0.10 g
(0.152 mmol) of ImBu in 20 mL of dry THF. The reaction mixture was stirred for 12 h at
45 ◦C. The brown precipitate was obtained and filtered through a cannula fitted with filter
paper. The brown solid was dissolved in 15 mL of CH2Cl2 and filtered through a cannula
fitted with filter paper. The solvent was evaporated to dryness, and the dark residue was
dissolved in 100 mL of acetone, filtered through a short plug of Celite®, and the solvent
was evaporated to dryness. The yellow solid was washed with 30 mL of diethyl ether and
dried under vacuum to give the compound FeImBu in 65% yield (0.080 g, 0.120 mmol).

31P{1H} NMR (CDCl3, 121 MHz) 57.75 (s). 1H NMR (CDCl3, 300 MHz) 7.70–7.41
(m, 3H), 5.36 (m, 4H), 1.68–1.04 (m, 54 H). IR (ν cm−1): 1144 (νN = P). See Figure S7 for
compound numeration. Satisfactory elemental analysis could not be obtained due to the
high air and moisture-sensitive nature of this complex.

3.6. Synthesis of FeImMe

In a Schlenk flask, 0.083 g (0.187 mmol) of FeCl2py4 were added to a solution of 0.10 g
(0.187 mmol) of ImMe in 20 mL of dry THF. The reaction mixture was stirred for 12 h at
45 ◦C. The brown precipitate was obtained and filtered through a cannula fitted with filter
paper. The brown solid was dissolved in 15 mL of CH2Cl2 and filtered through a cannula
fitted with filter paper. The solvent was evaporated to dryness, and the dark residue was
dissolved in 100 mL acetone, filtered through a short plug of Celite®, and the solvent was
evaporated to dryness. The yellow solid was washed with 30 mL of diethyl ether and dried
under vacuum to give the compound FeImMe in 70% yield (0.086 g, 0.130 mmol).

31P{1H} NMR (CDCl3, 121 MHz) 42.31 (s). 1H NMR (CDCl3, 300 MHz) 7.81–7.47 (m,
23H, H1, H2, H3, H6, H7, H8), 4.19 (m, 4H, H4), 2.66 (m, 6H, CH3). See Figure S8 for
compound numeration. MS(DART) m/z Calcd for C33H33Cl2FeN3P2 [M+H]+: 660.09; found:
660. IR (ν cm−1): 1118 (νN = P). Anal Calcd for C33H33Cl2FeN3P2 · 0.8 CH2Cl2: N, 5.77; C,
55.74; H, 4.79. Found: N, 6.57; C, 55.06; H, 5.00.

3.7. Synthesis of FeImPh(Br)

In a Schlenk flask, 0.039 g (0.182 mmol) of FeBr2 were added to a solution of 0.12 g
(0.182 mmol) of ImPh in 20 mL of dry THF. The reaction mixture was stirred for 12 h at
room temperature. After this time, a yellow precipitate was obtained and filtered through
a cannula fitted with filter paper. This solid was washed with 30 mL of cold THF and dried
under vacuum to give the compound FeImPh(Br) as a yellow solid in 76% yield (0.121 g,
0.138 mmol).
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31P{1H} NMR (CDCl3, 121 MHz) 42.31 (s). 1H NMR (CDCl3, 300 MHz) 8.61 (s, 4H)
7.73–7.28 (m, 27H), 6.24 (s, 2H), 4.22 (s, 4H). MS(ESI+) m/z Calcd for C43H37Br2FeN3P2
[M+H]+: 874.02; found: 874.2. IR (ν cm−1): 1116 (νN = P).

3.8. Reaction between FeImPh and terpyridine

In a typical reaction, 0.1 g (0.127 mmol) of FeImPh were added to a solution of 0.029 g
(0.127 mmol) of terpyridine in 20 mL of dry solvent in a Schlenk flask. The reaction mixture
was stirred at room temperature. The purple solution was evaporated to dryness under
vacuum, and the residue was dissolved in 15 mL of CH2Cl2. Upon chromatography through
a short column of alumina, two fractions were obtained. A yellow fraction contained
mainly unreacted FeImPh, while the purple fractions contained [Fe(tpy)2]Cl2. After the
evaporation of the solvent, the purple solid was washed with 20 mL of diethyl ether and
dried under vacuum, leading to [Fe(tpy)2]Cl2 in yields from 15% to 25%, depending on the
reaction time and solvent.

1H NMR (CDCl3, 300 MHz) 7.69–7.62 (m, 8H), 7.57–7.51 (m, 5H), 7.48–7,42 (m, 9H).
See Figure S12 in Supporting Information.

4. Conclusions

Pyridine(diiminophosphoranes) are convenient ligands for accessing iron(II) coordi-
nation complexes. The methodology developed here allows for the easy preparation of
various bis(iminophosphorane)pyridine complexes of iron(II). Their electronic and steric
properties can be tuned by the phosphine ligand, which can be incorporated into the
iminophosphorane framework through a straightforward synthetic procedure. We hy-
pothesize that such iron(II) bis(iminophosphorane)pyridine complexes are candidates for
catalytic processes known to be catalyzed by other iron(II) pincer complexes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics12040115/s1: Synthesis and characterization of PyN3
and ImPh (S2–S3); IR, 1H- and 31P-NMR spectra, IR, M/S data, and cyclic voltammogram for
IMBu, ImMe, FeImPh, FeImBu, FeImMe, and FeImPh(Br) (S4–S9); Crystallographic details for
Fe2ImPh (S10); Studies of the stability of FeImPh and FeImBu in solution (S11); NMR spectra for
[Fe(tpy)2]Cl2 and OPPh3 (S12); CV of ferrocene in CH2Cl2 (S13). CCDC 2332976 for Fe2ImPh contains
the supplementary crystallographic data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre.
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