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Abstract: The interaction of polysaccharides–protein with varied origins and structures provides
opportunities for tailoring the physicochemical qualities of food protein-based materials. This work
examined the feasibility of ultrasound-modified interaction between kidney bean dietary fiber (KSDF)
and duck myofibrillar proteins (MP) to improve the physicochemical properties of the gel matrices.
Accordingly, gel strength, water holding capacity, solubility, chemical interaction, secondary structure,
and network structure of MP were determined. The addition of KSDF combined with the ultrasound
treatment contributed to the improved water retention capability, G’ values, and the reduced particle
size of protein molecules, corresponding with the formation of dense pore-like structures. The results
demonstrated that 1% KSDF and ultrasonication at 400 W significantly enhanced gel strength by up to
109.58% and the solubility increased by 213.42%. The proportion of α-helices of MP gels treated with
1% KSDF and ultrasonication at 400 W was significantly increased. The sonication-mediated KSDF–
MP interaction significantly improved hydrophobic interactions of the proteins, thus explaining the
denser network structure of the MP gels incorporated KSDF with ultrasound treatments. These
results demonstrated the role of ultrasonication treatments in modifying KSDF–protein interaction to
improve the gel and structural properties of the MP gels.

Keywords: ultrasound; dietary fiber; myofibrillar protein; gel properties; structure

1. Introduction

Asia accounts for approximately 84.2% of the world’s duck meat production, among
which China has always been one of the leading producers of duck meat. However,
traditional duck meat products are developing slowly, and various forms of minced duck
meat products to stimulate consumer demand are needed [1]. There is a tendency toward
creating various functional low-temperature minced meat products due to the gradual rise
in the number of sub-healthy people [2]. However, the loss of water and oil in traditional
low-temperature minced meat products has a serious impact on the sensory quality of
meat products. Additionally, the low gel qualities of duck breast significantly lower the
sensory quality of meat products [3]. Therefore, the addition of starch, polysaccharides,
and dietary fiber to meat products has been investigated to improve the gelation properties
of myofibrillar proteins (MP) for improving the quality of meat products.

Soluble dietary fiber (SDF) dissolved in water can absorb water, swell, and can be
fermented by microorganisms in the large intestine. Although kidney beans are widely
grown in China, they are mostly neglected as a source of dietary fiber. Kidney beans
as an excellent natural source of dietary fiber play an essential role in reducing body
weight, balancing blood sugar levels, reducing the risk of heart disease, and improving
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intestinal health [4]. Kidney beans’ soluble dietary fiber (KSDF) not only plays a significant
physiological role, but it is also frequently employed in food processing and to enhance
gel characteristics [5]. Some surveys have shown that the addition of oat-insoluble dietary
fiber to meat products significantly enhanced the gel strength of meat products, and also
improved the color and texture [6]. Existing studies have also found that the addition of
sugarcane dietary fiber can effectively reduce the water channels in the gel network and
make the gel network structure dense [7]. Distinct dietary fibers typically have different gel
properties, and the extent that a single dietary fiber may enhance the gel properties of MP
is frequently constrained. The majority of current research is restricted to looking at how
a single dietary fiber affects the macroscopic characteristics of meat products [8], which
restricts the use of dietary fiber in food processing.

As a new non-thermal processing technology, ultrasound, which is a mechanical
vibration wave over 20 kHz, is widely used in the chemical, biological, medicinal, and
food industries [9]. It has been shown that ultrasound can modify the structural and
functional properties of proteins, such as improving solubility, and hydrophobic emulsion
gelation [10]. In our previous study, the effect of different ultrasound powers on the
structure of chicken breast protein was evaluated, revealing that proper sonication can
effectively preserve the thermal stability of the chicken breast protein and reduce the loss
of energy storage modulus [11]. On the basis of this theory, this study applied ultrasound
to a composite system of dietary fiber and protein with a view to further improving the
gelation properties of the protein. Additionally, the present research has only examined
how ultrasound can enhance gel characteristics; it has not looked at how ultrasound affects
interactions between proteins and dietary fiber.

Therefore, this study aimed to explore the effect of ultrasound on the interaction
between dietary fiber and duck myogenic fibronectin and to investigate the link between
the physicochemical properties of KSDF–MP and the properties of gels. The results of this
study could provide some theoretical basis for the development of minced duck products.

2. Materials and Methods
2.1. Materials and Reagents

The duck breast meat was purchased from Huaying poultry group (Xinyang, China),
and kidney bean soluble dietary fiber was provided by Dongfeng Biotechnology (Xi’an,
China). All chemicals of analytical grade used in the work were from commercial sources.

2.2. Extraction of Myofibrillar Proteins

The extraction method of MP was referred to as the method of Zhuang et al. [12].
The ground duck breast was added to 4 vol of Tris-EDTA (0.1 mol/L Tris, 10 mmol/L
EDTA) extract and stirred, and homogenized in an ice bath at 10,000 r/min for 60 s. After
homogenization, the supernatant was removed by centrifugation at 6000 r/min for 20 min,
and then 4 vol of SSS reagent (containing 0.1 mol/L KCl, 0.02 mol/L K2HPO4/KH2PO4,
2 mmol/L MgCl2, 1 mmol/L EGTA, pH 7.0) was added, shaken well, and centrifuged
at 8000 r/min for 10 min. The supernatant was removed, with the precipitate as the
purified MP.

2.3. Sample Treatment

The extracted myofibrillar protein was diluted to 40 mg/mL with 0.02 mol/L PBS
buffer, 1% of KSDF was added and mixed, then the samples were divided into 10 mL
beakers for sonication (0 W, 200 W, 400 W, and 600 W). The ultrasound procedure lasts
5 min with an intermittent mode (3 s on and 6 s off). Additionally, the control group (CK)
was the sample without adding dietary fiber or ultrasound treatment. The samples were
refrigerated at 4 ◦C. The treated samples of each group were heated in a water bath from 25
to 85 ◦C for 30 min, then cooled in an ice bath and placed in a 4 ◦C refrigerator overnight.
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2.4. Gel Properties
2.4.1. Gel Strength

The gel strength was determined according to the method of Li et al. [13] with few
modifications. Testing was performed using the P0.5 probe of the physical property
analyzer (TA.XT. PlusC, Stable Micro Systems Ltd., Godalming, UK) with a pre-test rate
and mid-test rate of 1 mm/s, a post-test rate of 5 mm/s, a deformation rate of 40%, and a
trigger force of 3 g.

2.4.2. Water Holding Capacity

The determination of water holding capacity (WHC) is based on the method of
Jiang et al. [14]. By centrifugation, a certain mass of protein gel was put into a centrifuge
tube and centrifuged at 10,000 r/min for 5 min, and the mass before and after centrifugation
was recorded, respectively, and the WHC was defined as the following equation:

WHC(%) = (M2 − M3)/(M1 − M3)× 100 (1)

where M1 indicates the total mass before centrifugation, M2 indicates the total mass after
centrifugation and M3 indicates the mass of the centrifuge tube.

2.4.3. Dynamic Rheological Testing

The rheological properties of the sol sample were analyzed using a DHR-2 rheometer
equipped with a 40 mm probe [15], and the sol was oscillated from 20 to 85 ◦C at 2 ◦C/min
with a linear ramping frequency of 0.1 Hz. The storage modulus (G’) was recorded.

2.4.4. Low-Field Nuclear Magnetic Resonance (NMR)

Relaxation time (T2) and water distribution were measured using a Niumag-pulsed
NMR analyzer (MicroMR12-025V, Niumag Analytical Instruments Corporation, Suzhou,
China) by the Carr-Puecell-Meiboom-Gill (CPMP), which equated to a proton resonance
frequency of 12 MHz. The samples (weight of 2.5 ± 0.1 g) were placed into a cylindrical
glass tube (diameter 22 mm, height 50 mm) at room temperature. The relaxation data were
analyzed by the method of Guo et al. [16] using Muti-Exp Inv Analysis software (Niumag
Electric Corp, Suzhou, China). The proportion of the water distribution of each component
was calculated by normalizing the peak area of the curve.

2.4.5. Scanning Electron Microscopy

Protein gel samples were sliced into 2 mm3 cubes, fixed in liquid nitrogen, and then
lyophilized and the microstructure was observed at 10.0 kV using S3400N (Hitachi, Tokyo,
Japan) at 100× magnification [17].

2.5. Physicochemical Properties
2.5.1. Solubility

The solubility was determined with reference to Pan et al. [18]. The protein solution
sample (5 mg/mL) was left for 1 hour at 4 ◦C and centrifuged at 9000 r/min for 15 min. The
protein concentration of the supernatant was measured, and the solubility was expressed as
a ratio of the supernatant protein concentration to the stock solution protein concentration.

2.5.2. Surface Hydrophobicity

According to the bromophenol blue (BPB)-binding method of Pan et al. [18]. The
protein concentration was adjusted to 5 mg/mL. An amount of 1 mL of the sample was
added to 200 µL of 1% bromophenol blue and mixed for 10 min, centrifuged at 9000 r/min
for 10 min. The supernatant was diluted 10 times and the absorbance value was measured
at 595 nm. Surface hydrophobicity was expressed as below:

BPB bound(µg) =
(

Acon − Asample

)
/Acon × 200 (2)
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where Acon indicates the absorbance value of the phosphate buffer without MP addition,
and Asample indicates the absorbance value of the supernatant of the sample.

2.5.3. Total SH

The total sulfhydryl group was determined by reference to Alavi et al. [19]. An amount
of 5 mg/mL of MP was diluted 10 times with Tris-glycine buffer containing 10 mM of
DTNB and the absorbance at 412 nm was recorded at room temperature for 30 min. A
molar extinction coefficient of 13,600 L M−1 cm−1 was used to calculate the SH content.

2.5.4. SDS-PAGE

SDS-PAGE was performed according to the published method [20]. The sample protein
concentration was adjusted to 1 mg/mL, mixed with the loading buffer, and set aside in a
metal bath at 100 ◦C for 10 min. SDS-PAGE was performed using spectral standard protein
labeling, 80 V for 30 min and 120 V for 90 min.

2.5.5. Particle Size and Zeta Potential

The micron particle size was determined using a micron laser particle sizer (HELOS-
OASIS) and the zeta potential was determined using a Zetasizer Nano ZS (Malvern Instru-
ments Ltd., Malvern, UK), tuning the protein to the same concentration to reduce multiple
scattering errors [21].

2.5.6. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR was performed based on the previous method [22]. After freeze-drying, the
proteolytic samples were mixed and ground with potassium bromide powder at a mass
ratio of 1:25, and FTIR spectra were scanned in the range of 400~4000 cm−1.

2.5.7. Chemical Forces

The chemical forces of the MP gels were determined with reference to Shi et al. [23].
0.5 g of gel was weighed and homogenized with 4.5 mL of S1 (0.05 M NaCl), S2 (0.6 M
NaCl), S3 (0.6 M NaCl, 1.5 M urea), S4 (0.6 M NaCl, 8 M urea), S5 (0.6 M NaCl, 8 M urea,
1.5 M β-ME), respectively, and centrifuged at 10,000 r/min for 10 min. The absorbance
value of the supernatant was measured, and the protein concentration was calculated. The
ionic bond, hydrogen bond, hydrophobic interaction, and disulfide bond contents were
determined by calculating S2-S1, S3-S2, S4-S3, and S5-S4, respectively.

2.6. Statistical Analysis

Each group of experiments was repeated at least three times to reduce the error, and
the data were analyzed by one-way ANOVA using statistical analysis software (SPSS 25.0)
and Duncan’s test.

3. Results and Discussion
3.1. Gel Strength and WHC

The gel strength is an index to characterize the intermolecular aggregation ability of
proteins, and Figure 1 shows the changes in the gel strength and WHC of duck MP after
KSDF addition and ultrasonication treatments. Compared with the blank control group,
the gel strength of the MP gel added with 1% of KSDF was significantly improved (p < 0.05),
which was further enhanced by ultrasound treatment. With increasing ultrasonic power,
the gel strength grew, peaked at 400 W, and then began to decline. Notably, the combined
KSDF and ultrasound treatments increased the gel strength by 109.58%. The significant
improvements in gel texture by KSDF and ultrasound treatment were compatible with
the study of Zhang et al. [11], who suggested that the addition of dietary fiber combined
with ultrasonic pretreatment significantly improved the quality of meat products. The
association of proteins with KSDF through hydrophobic interactions to generate a dense
three-dimensional network structure may be the cause of the increase in gel strength [24].
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The cavitation shearing effect of ultrasound exposed the hydrophobic groups of the proteins
to form a tightly structured three-dimensional network, especially at 400 W. However,
excessive ultrasonic power interfered with the interaction between the protein and KSDF,
altering the protein structure and resulting in a reduction in gel strength [25].
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WHC is a quantitative indicator of the gel stability, with high WHC values correspond-
ing to high amounts of water retained within the gel network and the gel has high-quality
properties [26]. Protein gels can capture and hold water more effectively due to their special
three-dimensional network structure, and a dense network structure generally tends to
capture more water [27]. As shown in Figure 1, the addition of 1% KSDF improved the
WHC values of the gel, consistent with the previous studies examining the effects of other
types of dietary fiber addition. On the other hand, dietary fibers are water-absorbent and
swellable, contributing to improving water retention [12]. The WHC of MP rose and then
reduced as ultrasonic power increased; the group with the highest WHC value was that
of 1%-400 W, which was consistent with the gel strength’s observation [28]. These results
showed that ultrasonic treatment can be an effective approach to improve water retention
in protein gels [21]. The improvement of WHC was due to the easier access of water
molecules into dietary fiber–protein gel structure aided by the hole effects produced during
ultrasonic treatment, while the subsequent decrease in WHC values was related to the ex-
cessive ultrasound power which caused protein degradation and weakened protein–water
interactions [26].

3.2. Dynamic Rheological Analysis

The storage modulus is generally used as an indicator of the elasticity of the sample. G’
values of myofibrillar proteins from duck meat with different treatments were significantly
altered by KSDF and ultrasonic treatment. Figure 2 illustrated the changes in G’ values
across all samples as a function of temperature, showing that the three stages of the variation
of G’ values with temperature were as follows. The variation of G’ in the temperature region
of 25–45 ◦C was largely dependent on the changes in fluid flow characteristics. The change
in G’ values from 45–53 ◦C was mainly due to the denaturation of myosin heavy chain and
actin [15]. The second stage at 53–58 ◦C was the gel weakening period, which was caused
by the denaturation of the myosin filament. Finally, the gel strengthening period occurred
between 58–80 ◦C and 80–4 ◦C [29]. As shown in Figure 2, the gel formation period in the
temperature range of 20–53 ◦C showed the increased G’ value in all experimental groups.
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The addition of KSDF and UT promoted the denaturation of myosin and actin, which led
to an increase in G’ during the gel formation phase.
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The addition of 1% KSDF significantly increased the G’ value (Figure 2), demonstrating
that 1% KSDF can improve the rheological properties of protein gels during heat treatment,
which was similar to the findings of Wang et al. [6]. The G’ of MP was additionally
dramatically raised by the ultrasound therapy, and the protein gel with viscoelasticity
was formed as the ultrasound treatment’s G’ value of MP rose with increasing ultrasound
power. The hydrophobic groups of the protein molecules were exposed as a result of the
cavitation effect of ultrasound, and the hydrophobic contacts at the surface were stronger
as the ultrasound power rose [30].

3.3. Water State and Distribution of MP Gel

By evaluating the T2 relaxation time in the sample, low-field NMR is frequently
employed as an important technique to analyze the distribution of moisture in foods [31].
The relaxation time curve for each gel sample was composed of three main peaks, among
which the peak within 0–10 ms (T2b) indicated the bound water tightly associated with
protein; the second peak ranged from 100 ms to 1000 ms (T21) was defined as immobilized
water, which represented the intra-myofibrillar water; and the T22 (over 1000 ms) was
named as free water, corresponding to extra-myofibrillar water [32].

The T21 of MP gels with KSDF and ultrasound treatment changed to a shorter re-
laxation time when compared to MP gels without any treatment, suggesting that the
immobilized water had poor mobility and was more intimately bound to the proteins,
in agreement with [33] who reported that ultrasound caused lower moisture mobility.
According to Figure 3, the amount of bound water did not change dramatically with the
addition of KSDF and ultrasound-assisted, but the quantity of immobilized water increased,
and the amount of free water dropped. Based on the findings, there was less water loss
and increased water retention because the water molecules and the hybrid gel were more
tightly associated [34]. It was explained by the fact that a three-dimensional network struc-
ture that can trap more water molecules is produced as a result of an increase in surface
hydrophobicity and hydrophobic interactions, which is also compatible with the findings
of Wang et al. [35].
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3.4. Microstructure Analysis

Scanning electron microscopy (SEM) was used to demonstrate the microstructure
of the gel. A more stable three-dimensional network structure was produced as a result
of MP sols being denatured and aggregated during heating. With the addition of KSDF,
the three-dimensional network structure of myofibrillar proteins was denser and more
symmetrical (Figure 4A). It was evident that the gel network became continuous and fine,
thus explaining that the addition of KSDF facilitated the formation of the gel network
structure and further improved the gel strength. While certain discontinuous structures
started to emerge as the ultrasonic power rose, it was also clear that other water channels
had filled in or even vanished. There were significantly fewer water channels, which could
be one of the reasons explaining the higher gel strength [12]. According to research, tertiary
and secondary protein structures can be changed by appropriate ultrasonic processing,
which enhances the gel structure [36]. However, at an ultrasound power of 600 W, the gel
network was scale-like and the continuous part was smoother, which may be due to the
excessive ultrasound power changing the structure of myofibrillar proteins and leading to
a disordered protein aggregation [33].
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3.5. Changes the Solubility

Solubility is an indicator of the degree of protein aggregation and denaturation [37],
and Figure 5A suggested that the solubility of the proteins was increased with the increase
in the ultrasound power, reaching a maximum at 400 W. The solubility decreased again
when the ultrasound power was increased. When 1% KSDF was added, myofibrillar
proteins were also considerably more soluble than in the control group (p < 0.05), which
may be since the KSDF’s enhanced polarity when attached to myofibrillar proteins made it
simpler for the protein’s hydrophilic groups to bind to water [38]. The aggregation state
between protein molecules and water was altered by the physical cavitation of ultrasound,
producing smaller aggregates with a greater surface area [39], thus increasing the soluble
protein content. However, at the power of 600 W, the high intensity of ultrasound may
disrupt the structure of myofibrillar protein and inhibit the hydrophilic groups of the
protein from binding to water, which caused a reduction in solubility.
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3.6. Surface Hydrophobicity

Figure 5B demonstrates the reduction in hydrophobicity with the addition of 1% KSDF,
which probably be brought on by the binding of dietary fiber molecules to proteins. For
instance, protein aggregation may be facilitated by the binding of dietary fiber to proteins,
which lowers the hydrophobicity of the protein surface [36]. The tertiary structure of the
protein molecules may unravel as the sonication treatment’s power increases, which could
affect hydrogen bonds, electrostatic interactions, and hydration between protein molecules.
Surface hydrophobicity may also increase as a result of the exposure of buried hydrophobic
groups in the protein molecules [40]. The enhanced surface hydrophobicity promotes the
formation of hydrophobic aggregates, resulting in a tighter protein structure and a more
stable gel structure.

3.7. Total SH

Sulfhydryl groups are considered to be important for protein structure and certain
redox reactions in living organisms, and they also play a crucial function in maintaining
the conformation of proteins. Figure 5C demonstrated that while the KSDF addition had



Foods 2022, 11, 3998 9 of 14

no discernible impact on the gels’ overall sulfhydryl content, the KSDF composite protein
system’s sulfhydryl content dramatically increased after being ultrasonically processed.
KSDF functions as an antioxidant that destroys hydroxyl radicals, and the combination of
ultrasound treatment significantly improved this scavenging ability, which mitigated the
loss of sulfhydryl groups and led to an increase in the sulfhydryl content [18]. As a result,
the total sulfhydryl content increased dramatically with increasing ultrasound power.

3.8. SDS-PAGE

The quality of meat products is greatly influenced by the gel structure created when
myofibrillar proteins are heated. Myosin heavy chain, actin, and light chain are each
depicted on the electrophoretic bands in Figure 6A. There were no significant changes in
the electrophoretic bands of the first four groups of samples, indicating that the addition of
KSDF and appropriate sonication did not change the structure of duck myofibrillar proteins,
without obvious breakage and formation of covalent bonds in the protein. This observation
was consistent with the results of the ultrasonic modification of egg white protein gels [36].
However, the electrophoretic bands of the KSDF–MP complex changed significantly when
the sonication power was increased to 600 W. This may be since the relative high sonication
power changed the subunits of the myofibrillar protein and degraded some of the duck
myofibrillar proteins [41]. It is possible that the thermal effect and mechanical shear stress
that occurred during the sonication process, which caused the mixed protein solution to
become a gel when the sample was treated, is what caused the protein electrophoresis
bands under 600 W treatment to be generally consistent with the thermally induced gel
bands in Figure 6B.
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3.9. Particle Size and Zeta Potential

Table 1 demonstrates that the addition of KSDF resulted in a significant reduction in
the particle size of the MP protein, which may be due to the fact that the KSDF and protein
molecules were bonded in either covalent or non-covalent manners, forming aggregates
with a smaller surface area, thus resulting in a reduction in particle size. The particle size of
protein molecules was also significantly reduced after ultrasound treatment. It has been
hypothesized that the cavitation effect of ultrasound disrupts the non-covalent connections
between MP molecules, causing the breakup of protein aggregates and a decline in particle
size [23]. It is worth noting that the particle size of KSDF and MP aggregates increased
significantly at an ultrasound power of 400 W. This is probably a result of the system’s KSDF
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forming molecular clusters with the MP in a more stable bound way during ultrasonic
treatment at 400 W, which led to an increase in particle size. It has been hypothesized that
ultrasound mostly disrupts non-bonded contacts, and that its impact varies with the ionic
strength of the solution [42], and that the solution system is probably most stable when
treated at 400 W.

Table 1. Effect of different treatments on the particle size and zeta potential of MP.

Groups Size (µm) Zeta Potential (mV)

CK 27.40 ± 0.37 b −25.73 ± 1.60 c
1%-0 W 20.15 ± 0.10 c −20.43 ± 0.59 b

1%-200 W 19.47 ± 0.25 c −18.00 ± 0.78 a
1%-400 W 31.52 ± 0.44 a −16.83 ± 1.10 a
1%-600 W 15.62 ± 0.76 d −18.47 ± 0.42 a

Results are presented as the mean ± standard deviation. Different letters in the same column represent significant
differences (p < 0.05).

The ζ-potential reflected the net charge of the protein surface and as can be seen in
Table 1 the potentials were all negative, indicating that more negatively charged amino
acids were in proteins than positively charged ones. A decrease in the absolute value
of the ζ-potential indicated that the protein dispersion system was becoming less stable
or aggregating. The absolute value of the ζ-potential decreased significantly after the
ultrasonic treatment, which may be due to the local overheating that occurred during the
ultrasonic process [43]. Protein molecules can be unfolded by ultrasound treatment, their
charge distribution can be changed, positively charged amino acids can be exposed, and the
negative charge on the protein surface can be neutralized. Accordingly, the reduction in net
surface charge may be related to the unfolding of tertiary structures exposing hydrophobic
non-polar residues [44].

3.10. Changes in Secondary Structure

Figure 7A reflects the effect of different treatments on the secondary structure of duck
myofibrillar protein. The amide I band is 1600–1700 cm−1, which reflects the vibrational
stretching of the carbon–oxygen double bond and has high sensitivity and is generally
used as an indicator of the secondary structure of the protein, including α-helix, β-sheet,
β-turn, and random coil. Analysis of the IR profiles of the different treatments on the duck
myofibrillar proteins showed no significant change in the characteristic peaks for each
group of samples, indicating that the addition of KSDF or ultrasound treatment did not
change the type of functional groups. In the experimental group, the addition of KSDF
shifted the location of the maximum absorption (1000–1200 cm−1), this change may have
been brought on by the addition of dietary fiber, in line with the findings of the study of
Kobayashi et al. [45].
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In accordance with Figure 7B, the contents of β-sheets and β-turns did not change
considerably, the contents of random coils reduced with the addition of dietary fiber, and
the contents of α-helices increased with the rise in ultrasonic power. The results suggested
that the random coil may be transformed into other structures with higher stability, similar
to the research of Du et al. [17]. The addition of KSDF and ultrasound treatment with
400 W dramatically raised the proportion of α-helices in the experimental group to which
KSDF was added, probably due to the formation of more α-helices structures and its higher
stability, as observed by Yu et al. [46].

3.11. Chemical Forces Analysis

The interactions of the myofibrillar proteins after the addition of KSDF and sonication
treatment are shown in Figure 8. It demonstrated that the ionic, hydrogen, and disul-
fide bonds of the system were significantly reduced with the addition of KSDF, with no
significant difference in hydrophobic interactions, but protein hydrophobic interactions
significantly increased after sonication. The lower proportions of ionic and hydrogen bonds
in the composite system of KSDF and myofibrillar protein suggested that the chemical
forces maintaining the structural stability of the gel network may not be mainly depen-
dent on ionic or hydrogen bonds. The hydrophobic interactions increased with increasing
ultrasound power, this is most likely as a result of the protein’s molecular structure’s hy-
drophobic groups being continuously affected by ultrasonic impacts, which cause tertiary
structures to unfold, resulting in increased hydrophobic interaction forces. The disulfide
bonding content was significantly lower with the addition of KSDF only compared to the
control, attributed to the non-disulfide bonding polymerization reaction between the KSDF
and MP molecules by binding some of the thiol groups during the heating process [23].
However, after ultrasound treatment, the disulfide bonds of the system increased signif-
icantly, probably because the cavitation of ultrasound generated free radicals such as H-
and -OH. Therefore, the increasing number of sulfhydryl groups further formed disulfide
bonds under the oxidation of these free radicals, causing the already loose protein structure
to become rigid, a result which was also in line with the gel strength [19].
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4. Conclusions

The addition of KSDF alone was able to somewhat increase the MP gel’s gel strength
and WHC while also causing a more even distribution of the MP gel’s microstructure. In
particular, it was demonstrated that the quality of MP gels was significantly improved
by the synergistic interaction between KSDF and ultrasonication. The gel strength, water-
holding capacity, rheological characteristics, solubility, and hydrophobicity of MP gels
treated with ultrasonication and KSDF were all better than when KSDF was added alone.
Particularly during 400 W ultrasonication, KSDF and duck myofibrillar proteins were more
closely bound by ultrasonication, causing a shift in the secondary structure of KSDF–MP
from disordered to ordered α-helices, which resulted in the creation of a more stable three-
dimensional network structure of MP gels. Ultrasound-assisted KSDF treatment improved
the meat quality of duck breast by modifying the structure and gel properties of MP. With
the help of this study, duck meat’s myofibrillar protein gel qualities can be enhanced, and
the groundwork is laid for the use of ultrasound as a green technology in the creation of
meat products with functional properties.
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