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Abstract: Brewing espresso coffee (EC) is considered a craft and, by some, even an art. Therefore, in
this study, we systematically investigated the influence of coffee grinding, water flow rate, and tem-
perature on the extraction kinetics of representative EC components, employing a central composite
experimental design. The extraction kinetics of trigonelline, caffeine, 5-caffeoylquinic acid (5-CQA),
and Total Dissolved Solids (TDS) were determined by collecting and analyzing ten consecutive frac-
tions during the EC brewing process. From the extraction kinetics, the component masses in the cup
were calculated for Ristretto, Espresso, and Espresso Lungo. The analysis of the studied parameters
revealed that flow rate had the strongest effect on the component mass in the cup. The intensity of the
flow rate influence was more pronounced at finer grindings and higher water temperatures. Overall,
the observed influences were minor compared to changes resulting from differences in total extracted
EC mass.

Keywords: espresso; coffee; extraction kinetics; non-volatiles; caffeine; trigonelline; caffeoylquinic
acid; brew ratio

1. Introduction

Espresso coffee (EC) brewing is a solid–liquid extraction process from a packed (coffee)
bed—the coffee puck [1]. A commonly recommended extraction method for the preparation
of EC utilizes a pump (9 ± 2 bar) to infuse 6 ± 1.5 g fine ground and tamped coffee in
a portafilter with heated water (90 ± 5 ◦C). The typical extraction for a single espresso
(25 ± 5 mL) takes approximately 30 ± 5 s. The ranges of these recommendations for EC
extraction leave much leeway to the barista, as the complex influence of the operating
parameters on the final product is not fully understood. Hence, brewing espresso coffee is
a craft, even considered an art by some.

EC is obtained from only two main ingredients: water and ground, roasted coffee
beans. The type and quality of the used coffee beans and water set the quality window
attainable by the EC extraction. The most common coffee bean species Coffea arabica
(Arabica) and Coffea canephora (Robusta) differ significantly in their chemical, physical, and
sensory properties [2]. Additionally, the post-harvest processes [3], storage [4] and the
degree of roasting [5,6] change the chemical compositions of the beans through thermal
degradation or neogenesis of new compounds, e.g., by the Maillard reaction [7]. The water
mineral content and composition also influence the EC extraction [8,9].

Most scientific studies on EC extraction focus on analyzing sensory attributes, volatile
and non-volatile EC components. Over 1000 components are present in an EC cup, of which
around 30–50 are considered key odorants [10,11]. For non-volatile components, typically,
trigonelline, caffeine, caffeoylquinic acids, caffeoylquinic acid lactones, organic acids, fatty
acids, and lipids, are analyzed [12]. The main aspects considered for an EC extraction
are grinding and tamping the coffee in the portafilter, the water flow rate, pressure, and
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temperature, as well as the extraction time that determines the EC mass in the cup [12].
The ratio between the ground coffee mass in the puck and the extracted EC mass in the cup
is called the brew ratio (BR).

The grinding process defines the particle size distribution and the amount of coffee
mass in the portafilter. Finer grinding levels (GL) increase the particle surface area in contact
with water, enabling a higher extraction yield for trigonelline, caffeine, and 5-caffeoylquinic
acid (5-CQA) [13–17]. Increasing the ground coffee mass at a similar extracted EC volume
increases the masses of trigonelline, caffeine, and 5-CQA in the cup [18,19]. Particle size
distribution, coffee mass, and tamping define the puck’s mechanical structure and hydraulic
resistance, which, in turn, sets the relation of water flow rate and pressure [20]. The relation
between water pressure and flow rate can be described by Darcy’s law [21].

In previous studies, increasing the applied pressure from 7 to 11 bar has shown a
decreasing trend in extracted component mass in the coffee cup [22–24]. The corresponding
flow rates (F) for the pressure-controlled experiments were not reported. Though, Lee et al.
pointed out that the flow through a coffee puck is non-uniform and could lead to irregular
EC extractions [25].

Higher water temperatures (T) increase the components’ solubility and reduce water
viscosity [26]. However, the influence of water temperature on EC component mass in
the cup has been inconclusive for experiments with otherwise constant conditions [13].
Albanese et al. [27] analyzed coffee pods and reported increased caffeine concentration with
rising temperatures from 90 ◦C to 110 ◦C. Masella et al. [28] found no significant difference
in trigonelline, caffeine, and chlorogenic acid concentrations in the EC cup for 75 ◦C, 80 ◦C,
or 85 ◦C. For similar EC components, Andueza et al. [29] reported several ambiguous
temperature correlations for significant differences between EC brewed at 88 ◦C, 92 ◦C,
96 ◦C, and 98 ◦C. Also, Salamanca et al. [30] described different influences on the caffeine
and 5-CQA concentrations in the cup for upward and downward temperature gradients
between 88 ◦C and 93 ◦C without identifying a conclusive correlation.

While most studies analyze full EC cups, some authors have highlighted the impor-
tance of understanding extraction kinetics, as the concentration of extracted components
strongly changes over time. Generally, the majority of EC components are extracted at
the beginning of the brew [24,31,32]. Only a few studies compared extraction kinetics for
varying preparation and processing conditions. Kuhn et al. [14] and Severini et al. [33]
compared the extraction kinetics for different particle size distributions. They observed
that trigonelline and caffeine were extracted faster from smaller rather than larger particles.

Overall, there is a highly complex interplay of several preparation and processing pa-
rameters on the EC component masses in the cup. Though known to be decisive, only very
few data on extraction kinetics for controlled varying conditions are available. This study
combines a rigorous statistical experimental design (central composite) with a detailed
analysis of time-dependent extraction behaviors (extraction kinetics). This work aims to
investigate the individual and combined influences of the extraction process parameters
flow rate (F), coffee grinding level (GL), and water temperature (T) on trigonelline, caffeine,
5-caffeoylquinic acid (5-CQA), and Total Dissolved Solids (TDS) masses in the EC cup for
Ristretto (BR 1/1), Espresso (BR 1/2), and Espresso Lungo (BR 1/3).

2. Materials and Methods
2.1. Chemicals

Trigonelline hydrochloride (≥97.5% purity), caffeine (≥99.0%), and 5-caffeoylquinic
acid (≥96%) analytical standards were purchased from Sigma-Aldrich Chemie GmbH
(Taufkirchen, Germany). HPLC-water (≥99.9%, HiPerSolv Chromanorm), methanol
(≥99.9%, HiPerSolv Chromanorm Reag. Ph. Eur.), and formic acid (≥98%, AnalaR Norma-
pur) for the high-performance liquid chromatography (HPLC) analysis were acquired from
VWR Chemicals GmbH (Darmstadt, Germany).
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2.2. Coffee Beans and Roasting

The coffee beans were obtained from List + Beisler GmbH (Hamburg, Germany). The
brand Colombia Suprema Huila consisted of 100% Arabica and was washed in a post-harvest
process. For the experiment, 5 kg was roasted by BB Coffee Company GmbH (Unterhaching,
Germany). The coffee beans were roasted in a CRS-30 roaster (Joper SA, Canelas, Portugal)
with an increasing temperature profile from 180 ◦C to 212 ◦C (190 ◦C at first crack) for
approximately 10 min. Two roasting batches of the same coffee beans were used for the
experiments. Both roasting batches were tested in triplicate under the same extraction
conditions (20 g puck, flow rate F 2.0 mL s−1, grinding level GL 1.7, temperature T 89 ◦C,
40 g EC) and showed no significant differences for trigonelline, caffeine, 5-CQA, and TDS
concentrations in the espresso coffee (EC) cup. After roasting, the coffee beans were stored
in 250 g packages for two weeks. The evening before each experiment, the required 250 g
packages were opened and divided into air–sealed 50 g packs per EC extraction to prevent
aroma loss over the course of the day.

2.3. Brewing Water

Bottled 750 mL water Acqua Panna (Sanpellegrino S.p.A., Pellegrino Terme, Italy) with
the following composition was used to prepare the coffee samples: 106 mg L−1 HCO−3 , 32.2
mg L−1 Ca2+, 22.0 mg L−1 SO2−

4 , 7.8 mg L−1 Cl−, 6.9 mg L−1 SiO2, 6.6 mg L−1 Na+ , and
6.5 mg L−1 Mg2+.

2.4. Coffee Puck Preparation

The coffee beans were ground on the Mahlkönig E65S (Hemro International AG,
Zurich, Switzerland). As EC is typically brewed using fine ground coffee, the grinder was
set to the EC grinding levels GL 1.4, GL 1.7, and GL 2.0. The chosen interval corresponded
to 7.5% of the available scale, for which the manufacturer declared a volume mean diam-
eter bandwidth of 180–580 µm [34]. The particle size distributions for the used grinding
levels were measured dry and wet by laser diffractometer (Helos/BR + Rodos/Quixel,
Sympatec GmbH, Clausthal-Zellerfeld, Germany) and showed high similarity (Appendix A
Figure A1). The wet-measured, volume-based De Broucker mean particle diameter (stan-
dard deviation SD) for the GL 1.4, GL 1.7, and GL 2.0 increased from 273 µm (SD 7.6) to
277 µm (SD 17.0) and 295 µm (SD 18). The respective surface-area-based Sauter mean
diameters were 28.3 µm (SD 1.6), 26.9 µm (SD 3.2), and 29.2 µm (SD 1.4) for GL 1.4, GL 1.7,
and GL 2.0.

The mass of ground coffee for all experiments was 20 ± 0.01 g. The ground coffee was
distributed and levelled with the distribution tool Grande TRE (Sahdia Enterprises GmbH,
Frankfurt, Germany). The levelled puck was then tamped parallel to the basket bottom
with a force equal to 25 kg on the tamping station CPS Tamper (Macap SRL, Maerne, Italy).

2.5. Espresso Coffee Preparation

The extraction was performed with a Decent DE1 Pro (Decent Espresso Intl. Ltd.,
Hong Kong, China). The machine was equipped with an IMS Cl 200 IM shower screen
attached to the original Decent shower head and an IMS BT702Th26.5M precision portafilter
basket (I.M.S. spa, Torre D’isola, Italy). During the coffee extraction, ten fractions were
collected with a time-controlled sampling wheel developed by Kuhn et al. [14]. The velocity
of the sampling wheel was chosen so that ten fractions of similar mass were collected
for an average total EC mass of 58.1 g (SD 4.1) for each of the studied flow rates. The
average mass of a single fraction was 6.0 g (SD 0.9). Fraction 1 exhibited the highest
mass variation because of inaccuracies in starting the sample wheel on the first EC drop.
The sampling wheel was positioned on a KB 2400-2N digital scale (Kern & Sohn GmbH,
Balingen, Germany) to record the extracted EC mass continuously.

Water temperature, flow rate, or pressure profiles could be set on the Decent DE1
Pro. The machine measured the brew temperature just above the coffee puck and the brew
pressure between the boiler and portafilter. In the experiments performed in this work, the
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extraction was flow rate controlled in order to keep a constant residence time and to be
able to collect fractions of constant mass. In the preinfusion phase, the coffee machine was
set to 7 mL s−1 and to a preselected temperature (80 ◦C, 89 ◦C, or 98 ◦C), which matched
the one used in the extraction phase. The machine changed to the extraction phase setting
when the portafilter basket was filled, and the pressure rose above 2.5 bar. For the set
water flow rates 1.0 mL s−1, 2.0 mL s−1, and 3.0 mL s−1, the achieved average flow rates
of 0.96 mL s−1 (SD 0.1), 1.9 mL s−1 (SD 0.0), and 2.8 mL s−1 (SD 0.1) were determined
based on the scale’s time-stamped measurements of the extracted EC mass. The set water
temperatures of 80 ◦C, 89 ◦C, and 98 ◦C resulted in average brew temperatures of 79.1 ◦C
(SD 0.5), 88.2 ◦C (SD 0.5), and 96.5 ◦C (SD 0.5), as continuously measured by the Decent
DE1 Pro. An example of water flow and temperature course during the EC preparation is
shown in Appendix A Figure A2. Before each EC extraction experiment, one test EC was
brewed with identical settings to pre-heat the machine.

Fractions 1, 2, 3, 5, 7, and 10 were cooled immediately after the extraction in an ice
bath. For HPLC analysis, fractions 1 and 2 were diluted with HPLC-water by mass ratios
of 1:50, fractions 3 and 5 were diluted by 1:20, and fractions 7 and 10 were diluted by 1:5.
The diluted samples were filtered with 0.2 µm Chromafil PET-20/15 MS syringe filters
(Macherey-Nagel GmbH & Co., KG, Düren, Germany), and an aliquot of 1.5 mL was stored
in a refrigerator at 9 ◦C until the analysis. For the TDS analysis, 2 mL per fraction was
centrifuged at 4700 rpm for 10 min in the Centrifuge 5804 R (Eppendorf AG, Hamburg,
Germany), and 0.1 mL of the supernatant was stored in a freezer at −20 ◦C.

2.6. HPLC Analysis

Trigonelline, caffeine, and 5-CQA were analyzed by high performance liquid chro-
matography (HPLC) on an Agilent 1290 Infinity LC System (Agilent Technologies Inc.,
Santa Clara, CA, USA) equipped with a UV/VIS detector. The analysis was performed
with the reverse phase column VDSpher PUR C18-E (150 mm × 4.6 mm, 5 µm; VDS
optilab Chromatographie Technik GmbH, Berlin, Germany). The method described by
Farah et al. [5] was modified for the analysis. Eluent A consisted of HPLC-water with 0.5%
formic acid and eluent B of methanol with 0.5% formic acid. At the constant flow rate of
1.2 mL min−1, the following gradient method was used for 10 µL injected sample volume:
2% B (0–1.2 min), 20% B (2.5 min), 40% B (13 min), 95% B (14.5–15 min), 2% B (15.5–21 min).
Trigonelline and caffeine were detected at λ = 272 nm, whereas 5-CQA was detected at
λ = 324 nm. The component concentrations were calculated by preparing calibration curves
from two stock solutions of the corresponding standards with five calibration points each.

2.7. Determination of TDS

The centrifuged (4700 rpm, 10 min) and frozen samples of 0.1 mL were thawed at
room temperature and diluted by volume ratio 1:3 with demineralized water from a Milli-Q
Direct 8 (Merck KGaA, Darmstadt, Germany). To determine the Total Dissolved Solids
(TDS) mass, the limit angle and refractive index at λ = 589 nm and 20 ◦C were measured
in the refractometer DR6000-T (A. Kruess Optronic GmbH, Hamburg, Germany). The
calibration was performed according to the German norm DIN 10775 [35] by correlating
the refractive index with the mass of dried samples.

2.8. Data Processing and Statistical Analysis
2.8.1. Extraction Kinetics Fitting

To characterize the extraction kinetics, the extract’s component concentration at the
portafilter outlet was considered as a function of the cumulative extracted EC mass. As no
continuous measure of the concentration at the outlet was available, such a function was
derived from six analyzed EC fractions (1, 2, 3, 5, 7, and 10). For the discrete samples, the
accumulated extracted EC mass until fraction n was calculated according to:
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mn
∑ = 0.5 ∗mn +

n−1

∑
1

mn (1)

The extraction kinetic c
(
m∑
)

for continuous accumulated EC mass m∑ was obtained
by least-square fitting the discrete concentrations of the analyzed components using the
following exponential function:

c(m∑) = c0·e−
m∑

λ (2)

The accumulated extraction mass m∑ was utilized to describe the EC extraction
progress and highly correlated with the extraction time for flow-controlled EC brewing.
Therefore, λ could be interpreted as a time constant. The theoretical start concentration
was represented by c0. Extraction kinetics were determined individually for every sin-
gle experimental run. Additionally, for each of the 15 experiment settings presented in
Section 2.8.3, the average extraction kinetics were determined by fitting Equation (2) to
data obtained in triplicate (6 replicates at DoE central point).

2.8.2. Calculation of Component Mass in EC Cup

From the extraction kinetics, it is possible to calculate the component mass in the
EC cup for different beverage sizes at their respective brew ratios (BR). In this study, the
influence of flow rate, coffee grinding level, and water temperature on the component mass
in the cup for Ristretto (~BR 1/1), Espresso (~BR 1/2), and Espresso Lungo (~BR 1/3) are
discussed. Thus, beverage masses of 20 g, 40 g, and 60 g were chosen for the calculation to
match the coffee puck mass of 20 ± 0.01 g and achieve the brew ratios of BR 1/1, BR 1/2,
and BR 1/3.

The exact extraction kinetic at the beginning of the brew (mcup � mFrak.1) was un-
known and suspected to deviate from the exponential decay described by Equation (2) [36].
Therefore, to calculate the component mass in the cup, the discrete component mass in the
first fraction was combined with the mass obtained by integration of the extraction kinetics
curve:

mBR
cup = mFrak.1 · cFrak.1 +

∫ 20 g/BR

mFrak.1

c
(
m∑
)

dm∑ with BR ∈ {1/1, 1/2, 1/3} (3)

The component mass of the first fraction was determined by multiplying the measured
fraction mass mFrak.1 and component concentration in this fraction cFrak.1. For the remaining
duration of the extraction process, the component mass was determined by integrating the
extraction kinetic curve c

(
m∑
)
, correlated with Equation (2), from the first fraction mass

mFrak.1 to the desired end mass of the EC beverage.

2.8.3. Statistical Analysis

The influence of flow rate, grinding level, and temperature on the extraction kinetics of
trigonelline, caffeine, 5-CQA, and TDS was studied. The experiment set was defined using
a face-centered Central Composite Design [37]. Table 1 provides the design of experiment
(DoE) operating conditions for the 15 experiments (each with 3 repetitions, 6 repetitions for
the central point).
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Table 1. Face-centered Central Composite Design including axis, central (CP) and corner points with
the parameter settings for flow rate (mL s−1), grinding level (−), and temperature (◦C).
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The masses of trigonelline, caffeine, 5-CQA, and TDS in the EC cup (mcup) for three
different brew ratios (BR 1/1, BR 1/2, and BR 1/3) were used as response variables to
evaluate the influence of the studied process parameters flow rate, grinding level, and
temperature on the EC extraction. The necessary 12 response sets were calculated with
Equation (3) and evaluated by response surface methodology in OriginPro 2021b (OriginLab
Corporation, Northampton, MA, USA). The response surface method was based on the
following full-quadratic model function:

mcup = β0 + β1x f low + β2xgrind + β3xtemp + β4x2
f low + β5x2

grind + β6x2
temp + β7x f lowxgrind + β8x f lowxtemp + β9xgrindxtemp (4)

For the evaluation, the set grinding levels xgrind as well as the experimental values
for the flow rate x f low and the temperature xtemp were used. The coefficient β0 is the
intercept, β1–β3 are the linear coefficients, β4–β6 are the quadratic coefficients, and β7–β9
are the interactive coefficients. The significance of each effect was determined by ANOVA.
Based on the ANOVA and the standardized effects, backward elimination was used to
reduce the full-quadratic fitting to the significant effect parameters for higher-order factors
(significance level α = 0.05) [38].

3. Results & Discussion
3.1. Extraction Kinetics

The extraction kinetics describe the components’ concentration change in the espresso
coffee (EC) extract as a function of the cumulative extracted EC mass in the cup. The
extract concentration of all compounds was highest at the beginning of the brewing process
(i.e., in the first collected fraction) and decreased exponentially the more EC was extracted.
The fastest decrease was observed for trigonelline and Total Dissolved Solids (TDS), fol-
lowed by 5-caffeoylquinic acid (5-CQA) and caffeine. This behavior was also described in
the literature and correlated with the components’ polarity for trigonelline, caffeine, and
5-CQA [39,40]. For comparison, Figure 1 shows the extraction kinetic curves normalized
with respect to the corresponding initial concentration c0 for different components obtained
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by fitting Equation (2) to the experimental data of the design of experiment’s (DoE) central
point.
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For all 15 performed experiments, the fit parameters of the average extraction kinetic
curves can be found in Appendix A Table A1. In addition, the raw concentration data for the
fractions 1, 2, 3, 5, 7, and 10 for all experiments’ replicates are available in Supplementary
Materials Table S1. For the experiments at the DoE axis points (Exp. 1–6 in Table 1), the
average extraction kinetics for the concentration of trigonelline, caffeine, 5-CQA, and TDS
in the EC extract are shown in Figure 2. At the DoE axis points, only one process parameter
is changed at a time compared to the DoE central point settings (F 2.0 mL s−1, GL 1.7, and
T 89 ◦C). The process parameters are set to the lower and upper boundaries of the DoE
space (see Table 1). In general, the studied components show similar behaviors toward
the different influences of the process parameters flow rate (F), grinding level (GL), and
temperature (T).
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The component extraction kinetics for the flow rates at the lower and upper boundaries
(Figure 2, top row) differ at the beginning of the extraction and in their extraction dynamics.
The extract’s component concentrations at the beginning are higher for the slower flow rate
of 1.0 mL s−1 but decrease faster during the brew than for the faster flow rate of 3.0 mL s−1.
The difference in the extract’s component concentrations between the slow and fast flow
rates decreases as the extraction progresses. A slower flow rate allows for a longer contact
time between water and ground coffee. As the extraction process is time dependent, the
longer contact time explains the higher concentrations of the EC extract at the beginning of
the brew [1].

The extraction kinetics obtained for the lower and upper boundaries of the grinding
level (Figure 2, middle row) behave similarly considering their extraction rates. However,
the lower grinding level GL 1.4 extract’s component concentration is slightly smaller than
GL 2.0. Their 95% confidence bands overlap for most of the brewing process.

The obtained extraction kinetics are nearly identical for the temperature lower and
upper boundary settings (Figure 2, bottom row), and their 95% confidence bands overlap
for the whole analyzed brewing process. Consequently, in contrast to the literature [23,30],
no measurable influence on the trigonelline, caffeine, 5-CQA, and TDS masses in the cup
would be expected by individually changing the water temperatures from 80 ◦C to 98 ◦C.

3.2. Extracted Component Mass in the Cup for Brew Ratios 1/1, 1/2, and 1/3

The average trigonelline, caffeine, 5-CQA, and TDS masses in the EC cup for brew
ratios BR 1/1, BR1/2, and BR1/3 are presented in Table 2, together with the set grinding
levels and the measured process parameters flow rates, temperatures, and pressures. The
presented component masses in the cup are average values for each of the 15 experiments
based on integrating each replicate’s extraction kinetics individually with Equation (3)
for extracted EC mass of 20 g (BR 1/1), 40 g (BR 1/2), and 60 g (BR 1/3). The pa-
rameters for the extraction kinetic curves for the individual replicates can be found in
Supplementary Materials Table S3.

The overall average concentrations for all experiments for a 40 g EC cup (BR 1/2)
were 2.45 mg g−1 for trigonelline, 4.57 mg g−1 for caffeine, 2.96 mg g−1 for 5-CQA, and
9.68 g (100 g)−1 for TDS. The use of different coffee and water types, roasting levels, coffee
puck masses, beverage sizes, and extraction machines impeded quantitative comparisons
to other studies. Angeloni et al., who also used a 20 g Arabica coffee puck and a ~BR 1/2,
extracted, on average, 3.39 mg g−1 trigonelline, 5.18 mg g−1 caffeine, 5.27 mg g−1 5-CQA,
and 10.02 g (100 g)−1 TDS [13]. Taking into consideration that Caprioli et al. reported
trigonelline masses in the cup ranging from 28.20 mg to 65.08 mg and caffeine masses from
116.87 mg to 199.68 mg for the same extraction settings (7.5 g ground coffee, 25 mL EC,
25 s) for 20 different EC coffee brands, the experimental results were within the expected
range [24]. Additionally, 5-CQA is known to be affected strongly by different roasting
processes [41,42], which could further explain the concentration differences between the
two studies. For TDS, the measured values were in accordance with Angeloni et al. [13].

In the literature, relative standard deviations (RSD) of <5–10% [19,23,24] for either
component concentration or mass in the cup are generally reported but can reach up to
20% [13]. The average relative standard deviation for the studied experimental set was
2.5%, with the highest RSD of 8.5%. In this work, the component masses in the cup were
calculated by integration of the extraction kinetics curves with Equation (3). Hence, the
error caused by the variation in the final EC mass in the cup was minimized.
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Table 2. Trigonelline, caffeine, 5-CQA, and TDS masses in the EC cup for brew ratios BR 1/1, BR
1/2, and BR 1/3, set grinding levels, and the measured flow rates, temperatures, and pressures. The
reported masses are averaged values with relative standard deviations in % provided in brackets.
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2.8 1.7 88.2
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9
0.9 1.4 96.2

3
80.1 102.2 108.4 139.8 195.2 217.2 92.6 126.4 138.8 3.22 4.18 4.46 2.8

(2.3) (0.2) (5.0) (5.6) (6.0) (4.2) (5.1) (5.8) (3.5) (4.4) (5.0) (3.9) (4.7) (5.1) (4.3)

10
1.0 2.0 78.7

3
78.0 96.6 101.1 127.0 172.9 189.6 87.5 117.0 126.9 2.92 3.72 3.94 2.9

(0.9) (0.1) (4.1) (7.3) (8.5) (3.6) (6.0) (7.4) (3.9) (6.2) (7.4) (3.7) (6.5) (7.7) (3.8)

11
0.9 2.0 96.1

3
83.9 106.1 111.9 135.3 187.8 208.2 94.9 129.0 141.3 3.19 4.11 4.38 2.6

(5.9) (0.3) (0.8) (1.4) (1.6) (0.6) (1.0) (1.3) (1.6) (2.2) (2.5) (1.0) (0.6) (1.0) (2.3)

12
2.7 1.4 79.8

3
69.0 88.3 93.8 120.4 172.4 195.0 77.1 106.9 118.4 2.67 3.53 3.81 8.4

(3.7) (1.0) (4.3) (2.9) (2.2) (5.7) (4.3) (3.4) (4.3) (3.1) (2.4) (4.3) (2.0) (0.9) (16.7)

13
2.7 1.4 97.1

3
72.8 93.2 99.0 129.2 184.0 207.2 83.0 114.4 126.3 2.89 3.83 4.13 7.6

(2.3) (0.4) (2.2) (2.0) (2.5) (1.8) (1.5) (2.0) (2.7) (2.3) (2.4) (2.3) (1.9) (2.5) (9.3)

14
2.9 2.0 79.1

3
75.1 97.8 104.7 122.6 176.3 199.8 81.8 115.5 128.7 2.75 3.68 3.99 3.6

(0.8) (0.1) (2.9) (1.9) (1.5) (3.4) (2.8) (2.5) (0.5) (0.7) (0.2) (1.3) (0.9) (1.0) (7.4)

15
2.8 2.0 96.4

3
76.2 98.9 105.7 127.5 182.7 206.6 86.9 120.7 131.4 2.93 3.88 4.19 3.5

(8.0) (0.5) (1.7) (1.0) (0.8) (1.7) (1.9) (2.1) (1.9) (1.5) (1.6) (0.8) (0.9) (1.0) (7.9)

Average mass in cup: 77.1 98.2 104.0 130.0 182.6 204.0 86.4 118.4 130.1 2.97 3.87 4.15

3.3. Influencing the EC Component Mass in the Cup
3.3.1. Linear Response Surfaces

The results from the experiments of the central composite design were evaluated using
the response surface methodology (Section 2.8.3). The resulting linear regression parameters
for the analyzed components and brew ratios are available in Table 3. The OriginPro file,
including the utilized ANOVA tables, F-tests, and Pareto charts of standardized effects, can
be found in Supplementary Materials S4.1 and S4.2.
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Table 3. Linear regressions and respective adjusted R2, derived by response surface methodology
for flow rates [1.0 mL s−1, 3.0 mL s−1], grinding levels [1.4, 2.0], and temperatures [80 ◦C, 98 ◦C] to
calculate the component masses in the EC cup for trigonelline, caffeine, 5-CQA, and TDS at brew
ratios BR 1/1, BR 1/2, and BR 1/3.

mcup=β0+β1xflow+β2xgrind+β3xtemp+β4x2
flow+β5x2

grind+β6x2
temp+β7xflowxgrind+β8xflowxtemp+β9xgrindxtemp

Components Brew
Ratio

β0
(mg)

β1
(mg s
mL−1)

β2
(mg)

β3
(mg
◦C−1)

β4
(mg s2

mL−2)

β5
(mg)

β6
(mg
◦C−2)

β7
(mg s
mL−1)

β8
(mg ◦C−1 s

mL−1)

β9
(mg
◦C−1)

R2

(adj.)

Trigonelline
1/1 185.8 −9.17 105.90 −4.48 0 −30.96 0.03 3.24 0 0 0.66
1/2 134.6 4.28 163.33 −4.40 0 −47.80 0.03 4.92 −0.18 0 0.60
1/3 99.9 8.54 184.84 −4.06 0 −54.17 0.03 5.71 −0.24 0 0.58

Caffeine
1/1 192.0 −13.85 118.83 −3.59 0 −38.45 0.02 5.52 0 0 0.50
1/2 −9.2 2.92 149.27 0.97 0 −48.37 0 7.57 −0.21 0 0.41
1/3 −57.7 15.87 186.29 1.37 0 −59.53 0 8.42 −0.34 0 0.42

5-CQA
1/1 112.2 −10.32 56.75 −1.74 0 −16.42 0.01 3.33 0 0 0.69
1/2 −10.4 2.96 83.84 0.74 0 −24.01 0 4.97 −0.18 0 0.62
1/3 −54.7 13.94 119.15 1.02 0 −34.02 0 4.93 −0.30 0 0.57

(g)
(g s

mL−1)
(g)

(g
◦C−1)

(g s2

mL−2)
(g)

(g
◦C−2)

(g s
mL−1)

(g ◦C−1

s mL−1)
(g

◦C−1)

TDS
1/1 3.65 −0.70 2.78 −0.06 0.05 −0.91 0.001 0.19 0 0 0.75
1/2 4.19 −0.50 4.75 −0.10 0 −1.48 0.001 0.21 0 0 0.64
1/3 2.91 0.12 6.16 −0.11 0 −1.87 0.001 0.20 −0.01 0 0.57

Additionally, in Table 3, the adjusted coefficient of determination (adjusted R2) is
included as an indicator of how well the fitted parameters describe the experimental data.
The comparatively low coefficients of determination show that the response surface method-
ology can only partially explain the observed data variations. The adjusted coefficients of
determination are particularly low for caffeine.

A quantitative interpretation, therefore, should be treated with care. Nevertheless,
this study is the most comprehensive experimental study for extraction kinetics to date
and yields important trends for trigonelline, caffeine, 5-CQA, and TSD mass in the EC
cup. For quantitative analysis, mechanistic modelling should be considered. The trends
for the analyzed parameters are discussed in the following Sections 3.3.2–3.3.5 based on
cross-sections of the response surface generated by Equation (4) with the coefficients βm
(Table 3).

3.3.2. Flow Rate Influence

As can be observed in Figure 3, increasing the flow rate reduced the mass in the
cup for all components. The influence of the flow rate on the component mass in the
cup was smallest for caffeine. While most components showed a similar trend (with
respect to the slope) for the different brew ratios, the effect of flow rate on the caffeine
concentration decreased from BR 1/1 to BR 1/3. In the literature, pressure control was
preferred for the EC brewing process. Hence, no systematic study was found to compare
the flow rate influence on the component mass in the cup. However, as postulated by
Darcy’s Law, an increasing flow rate corresponded directly to an increasing brew pressure
at otherwise constant conditions. As reported in the literature [22–24], increasing pressure
reduces component masses in the cup, which correlates well with the observed reduction
in trigonelline, caffeine, 5-CQA, and TDS masses in the cup by increasing flow rates. As
observed in Section 3.1 for the beginning of the brew, a faster flow rate reduces the extract’s
component concentration, which the time-dependent mass transport process can achieve.
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3.3.3. Grinding Level Influence

For the analyzed grinding levels, the component masses in the cup for trigonelline,
caffeine, 5-CQA, and TDS in Figure 4 show a parabolic behavior, as indicated by the
significance of the coefficient β5 (see Table 3). Changing the grinding level from GL 1.4
to GL 1.7 increases the component mass in the cup. Further increasing the grinding level
to GL 2.0 results in a near-constant 5-CQA mass in the cup and decreases the component
mass in the cup for trigonelline, caffeine, and TDS. Again, the caffeine mass in the cup is
only slightly influenced.
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In the literature, an increase in the extracted component mass in the cup is reported
for smaller particles and commonly explained by the larger particle surface area [14–17].
The influence was described for ground coffee with significantly different particle sizes,
often generated by sieving the coffee particles into fine and coarse fractions after grinding.
The grinder settings used in this study resulted in more realistic, however, rather similar
particle size distributions (see Appendix A Figure A1). The characteristic Sauter diameters
for the particle size distributions were not significantly different for GL 1.4, GL 1.7, and
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GL 2.0; dGL1.4
32 = 28.3 (SD 1.6), dGL1.7

32 = 26.9 (SD 3.2) and dGL2.0
32 = 29.2 (SD 1.4). The Sauter

diameter is an integral measure of the particle size distribution, representing its specific
surface area. Thus, the insignificance of difference in Sauter diameters indicates similar
specific surface areas. Therefore, the explanation found in the literature, based on the
particle surface area, cannot explain the observed influence of the grinding levels on the
component masses in the cup in this study. It should, however, be noted that the minor
differences in the particle size distributions for GL 1.4, GL 1.7, and GL 2.0 are already
sufficient to influence the maximal brew pressure.

For similar EC grinding levels, Cameron et al. observed a reassembling influence
on the extraction yield [43]. They attribute the decrease in the extraction yield for finer
grinding levels to a possible partial clogging inside the coffee puck, which might decrease
its permeability and increase the pressures needed to keep a set flow rate. The pressure
measured during our experiments agrees with the hypothesis of possible clogging. Namely,
the pressure was 3.8 bar, 7.4 bar, and 9.3 bar for the respective grinding levels GL 2.0, GL
1.7, and GL 1.4 and hence was higher for finer grinding.

3.3.4. Temperature Influence

The influence of the temperature variation from 80 ◦C to 98 ◦C is shown in Figure 5. As
can be seen in Table 3, the quadratic coefficient β6 is only significant for selected components
and brew ratios yielding parabolic shapes. Generally, increasing temperature increases
the component mass in the EC cup, which was not expected from the extraction kinetics
presented in Section 3.1 for individually changing the temperature at the DoE central point.
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and brew ratios BR 1/1, BR 1/2, and BR 1/3 at constant flow rate F 2.0 mL s−1 and grinding level GL
1.7; Lines: calculated data (Table 3) with 95% confidence band; �, o, ∆: experimental data (Table 2)
with standard deviation.

As discussed in the introduction, literature knowledge on the effect of temperature is
inconclusive. The literature reports different trends and only minor information to track
potentially overlapping effects, which this study has attempted to avoid. However, note
that the differences found in this study are significantly smaller than the values reported in
the literature [13,29,30].

3.3.5. Interactive Influences

The combined effects of the operating parameters are reflected in the parameters β7–β9
in Table 3. The combined effect of the grinding level and temperature is not significant for
the investigated parameter space (β9 = 0). However, there are combined effects of the flow
rate with the grinding level (β7) and the flow rate with the temperature (β8).
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Figure 6 presents the influence of the flow rate on the component mass in the cup for
three different grinding levels at BR 1/2 and T 89 ◦C. The flow rate increase has a higher
effect on decreasing the component mass in the cup for the finer grinding level (GL 1.4)
than for the coarser grinding levels. For different grinding levels, even though the particle
size distribution was similar, the flow rate change resulted in different brew pressures.
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For GL 1.4, the brew pressure increases from 2.9 bar for flow rate 1.0 mL s−1 (average
pressure of Exp. 8 and Exp. 9 in Table 2) to 8.0 bar for flow rate 3.0 mL s−1 (Exp. 12, Exp.
13). For the same flow rate settings at GL 2.0, the pressure increases from 2.8 bar for flow
rate 1.0 mL s−1 (Exp. 10, Exp. 11) to 3.6 bar for flow rate 3.0 mL s−1 (Exp. 14, Exp. 15).
Higher pressures are known to decrease the component mass in the cup [22–24], which
is in agreement with the experimental data in Table 2 and could explain the interaction
between the influence of the flow rate and grinding level.

In Figure 7, the flow rate influence on the component mass in the cup is presented
for three different temperatures at BR 1/2 and GL 1.7. The component mass in the cup
decreases with an increase in the flow rate, whereas the influence is stronger at higher
temperatures. This interaction could possibly explain the different temperature influences
seen in Section 3.1 for the extraction kinetic curves and Section 3.3.4 resulting from the
response surfaces. Temperature influences water viscosity and density [26], which might
change uneven pressure and flow distributions in the coffee puck [25] and, in turn, influence
the component mass transfer rate.
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3.3.6. Brew Ratio Influence

Overall, the effect of the parameters flow rate, grinding level, and temperature are
small compared to the influences of different brew ratios. For example, decreasing the flow
rate at the DoE central point (GL 1.7, T 89 ◦C) from 2.0 mL s−1 to 1.0 mL s−1 for the BR 1/2
changes the cup concentration of 5-CQA according to the response surface (see Table 3)
from 2.99 mg g−1 to 3.11 mg g−1.

Using the extraction kinetics Equation (2), one can estimate the concentration in an
EC cup if the specified brew ratio is experimentally not perfectly met. E.g. extracting
38 g instead of the intended 40 g (BR 1/2) already results in a concentration difference
comparable to the one obtained by the above flow rate decrease from 2.0 mL s−1 to
1.0 mL s−1. While a 5% decrease in extracted mass appears to be larger, it corresponds to a
decrease in extraction time of ~1 s. Hence, for practical applications to extract a consistent
EC, the brew ratio is the first parameter to control with high accuracy before optimizing
the process parameters flow rate, grinding level and water temperature.

4. Conclusions

The extraction kinetics for the espresso coffee (EC) components trigonelline, caffeine,
5-caffeoylquinic acid (5-CQA), and Total Dissolved Solids (TDS) were studied for water flow
rates 1.0–3.0 mL s−1, grinding levels 1.4–2.0 (Mahlkoenig E65S), and water temperatures
80–98 ◦C. Through integration of the extraction kinetics, the component masses in the EC
cup were determined for different brew rations. Based on a central composite design of
experiment (DoE), the influence of the process parameters on the component masses in
the cup for brew ratios BR 1/1, BR 1/2, and BR 1/3 were analyzed by response surface
methodology. Comparably, low coefficients of variation allowed for qualitative rather than
quantitative statements. For a quantitative assessment, the data-driven approach seems
not to be entirely sufficient to capture the inherent complexity and irregularity of the coffee
extraction process. Nevertheless, the following qualitative trends could be identified:

Trigonelline, 5-CQA, and TDS showed similar behaviors with respect to flow rate,
grinding level, and temperature. Caffeine mass in the EC cup was only slightly influenced
by different flow rates and grinding levels. Increasing the flow rate from 1.0 to 3.0 mL s−1

decreased the component masses in the cup. Despite the grinding level range of GL 1.4
to GL 2.0 leading to nearly identical particle size distributions, it still affected the brew
pressure and component masses in the cup. In addition, finer grinding levels and higher
temperatures increased the intensity of the flow rate influence on the component mass in
the cup.

Overall, the experimental data showed good reproducibility and allowed interpreta-
tion of the extraction kinetics instead of only final concentrations in the EC cup. Especially,
such kinetic data provide excellent grounds for further mechanistic modelling of the extrac-
tion process, potentially yielding a quantitative interpretation.
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rate of 2.0 mL s−1 as well as a temperature of 89 °C. 
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Figure A1. Density volume distribution q3 and cumulative volume distributions Q3 for Mahlkoenig
EK65S grinding levels GL 1.4, GL 1.7, and GL 2.0, measured (a) dry and (b) wet.
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Figure A2. Representative (a) flow and (b) temperature courses during the espresso coffee preparation
with the Decent DE1 Pro for a set preinfusion flow rate of 7.0 mL s−1 and for the extraction flow rate
of 2.0 mL s−1 as well as a temperature of 89 ◦C.
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Table A1. Parameter values with standard error (SE) for the experiments’ average extraction kinetics
c
(
m∑
)

for trigonelline, caffeine, 5-CQA, and TDS, based on Equation (2).

Ex
pe

ri
m

en
t c(m∑) = c0 exp(−m∑/λ)

Trigonelline Caffeine

c0 (mg g−1) λ (g) Statistics c0 (mg g−1) λ (g) Statistics

Value SE Value SE Red.
Chi-Sqr Adj. R2 Value SE Value SE Red.

Chi-Sqr Adj. R2

1 7.40899 0.12316 14.76344 0.42552 0.02561 0.99481 10.4887 0.14327 20.52467 0.5199 0.04752 0.99493

2 6.46932 0.23064 16.40303 0.86193 0.05312 0.9806 9.46765 0.28924 23.93518 1.18507 0.13117 0.97824

3 6.54716 0.23705 14.93682 0.84702 0.06872 0.97702 9.66427 0.27442 21.96458 1.0845 0.14334 0.97831

4 6.83473 0.11231 15.99516 0.42845 0.01714 0.99521 9.67546 0.15595 23.05736 0.66335 0.04944 0.99303

5 7.30706 0.16914 15.42548 0.57294 0.03804 0.9907 10.38155 0.30436 21.59864 1.08663 0.174 0.97851

6 6.95468 0.10214 15.7859 0.3698 0.01422 0.99616 10.04235 0.15921 22.39093 0.62077 0.05039 0.99327

7 6.69949 0.09587 16.08737 0.36681 2.47 × 10−2 0.99227 9.70981 0.13064 23.09434 0.5462 0.06781 0.9897

8 7.62541 0.09065 13.12089 0.27877 0.01422 0.9973 10.69172 0.15672 18.92703 0.52514 0.0595 0.99409

9 7.08449 0.1493 15.63306 0.56872 0.03722 0.99154 10.69195 0.19535 21.67685 0.73662 0.08821 0.99072

10 7.34872 0.18011 14.07208 0.54291 0.03783 0.99095 10.13843 0.25125 19.75409 0.82583 0.10739 0.98646

11 7.57984 0.13439 15.04329 0.43899 0.02663 0.99434 10.45723 0.1349 21.14279 0.4897 0.03828 0.99552

12 6.17348 0.332 15.48473 1.32764 0.13618 0.94866 8.97304 0.39549 23.57685 1.85949 0.3117 0.94656

13 6.50908 0.26715 15.53493 1.03374 0.09268 0.97024 9.67713 0.31126 23.15069 1.31948 0.19488 0.97264

14 6.47069 0.1751 16.63498 0.70499 0.03894 0.98677 9.03485 0.21274 24.1222 0.98821 0.08722 0.98465

15 6.62197 0.14144 16.37875 0.56426 0.02867 0.9911 9.45174 0.17933 23.78621 0.80464 0.06779 0.98933

Ex
pe

ri
m

en
t 5-CQA TDS

c0 (mg g−1) λ (g) Statistics c0 (g g−1) λ (g) Statistics

Value SE Value SE Red.
Chi-Sqr Adj. R2 Value SE Value SE Red.

Chi-Sqr Adj. R2

1 7.32493 0.1108 19.11304 0.52774 0.02668 0.99429 0.28305 0.00386 15.70033 0.37567 2.68 × 10−5 0.9962

2 6.35357 0.22661 21.1787 1.18384 0.07051 0.97413 0.23924 0.00955 17.83024 1.06401 1.02 × 10−4 0.97201

3 6.47778 0.22434 19.62703 1.14453 0.08511 0.97164 0.24196 0.00933 16.59384 1.03039 1.21 × 10−4 0.97078

4 6.92748 0.11967 20.80018 0.62438 0.02622 0.99288 0.25164 0.00514 17.31233 0.58753 3.94 × 10−5 0.99185

5 7.08289 0.1861 19.75796 0.87311 0.05984 0.98429 0.2474 0.00636 17.98499 0.75292 6.37 × 10−5 0.98585

6 6.80018 0.12522 20.60333 0.6479 0.02871 0.9918 0.25713 0.00367 17.3144 0.40346 2.05 × 10−5 0.99593

Table A1. Cont.

7 6.79246 0.10682 20.77137 0.55683 4.08 × 10−2 0.98752 0.24827 0.00419 17.47261 0.48029 5.20 × 10−5 0.98811

8 7.31745 0.09572 17.29798 0.4219 0.02055 0.99572 0.30725 0.00999 13.16232 0.76497 1.73 × 10−4 0.97956

9 7.32619 0.12423 19.92738 0.61563 0.03302 0.99274 0.27778 0.00462 16.50264 0.47902 3.77 × 10−5 0.99428

10 7.18869 0.17832 18.48345 0.76212 0.05056 0.98742 0.2599 0.00608 15.62012 0.58694 4.89 × 10−5 0.99069

11 7.57346 0.10943 19.56499 0.49683 0.02338 0.99488 0.27975 0.00446 16.03038 0.42671 3.15 × 10−5 0.99499

12 6.02455 0.29418 20.79431 1.75317 0.15129 0.94255 0.22578 0.01287 17.38228 1.62994 2.36 × 10−4 0.93514

13 6.53399 0.25585 20.40671 1.37513 0.11588 0.96435 0.24308 0.01083 17.58935 1.30555 1.76 × 10−4 0.96041

14 6.35075 0.15431 21.56882 0.88151 0.04089 0.98564 0.22567 0.00635 18.4123 0.83369 5.79 × 10−5 0.98403

15 6.76424 0.14962 21.01016 0.79908 0.04192 0.98738 0.24533 0.00629 17.69504 0.74554 6.18 × 10−5 0.98599
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