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Abstract: To investigate the gelation process of direct ultra-high-temperature (UHT) milk, a pilot-
scale steam infusion heat treatment was used to process milk samples over a wide temperature of
142–157 ◦C for 0.116–6 s, followed by storage at 4 ◦C, 25 ◦C, and 37 ◦C. The results of the physic-
ochemical properties of milk showed that the particle sizes and plasmin activities of all milk sam-
ples increased during storage at 25 ◦C, but age gelation only occurred in three treated samples,
147 ◦C/6 s, 142 ◦C/6 s, and 142 ◦C/3 s, which all had lower plasmin activities. Furthermore, the
properties of formed gels were further compared and analyzed by the measures of structure and
intermolecular interaction. The results showed that the gel formed in the 147 ◦C/6 s-treated milk with
a higher C* value had a denser network structure and higher gel strength, while the 142 ◦C/6 s-treated
milk had the highest porosity. Furthermore, disulfide bonds were the largest contributor to the gel
structure, and there were significant differences in disulfide bonds, hydrophobic interaction forces,
hydrogen bonds, and electrostatic force among the gels. Our results showed that the occurrence of
gel was not related to the thermal load, and the different direct UHT treatments produced different
age gels in the milk.

Keywords: direct UHT; age gelation; gel property; gel structure; interaction force

1. Introduction

In direct ultra-high-temperature (UHT) sterilization, milk is directly mixed with steam
under pressure and then subjected to vacuum cooling. This heating treatment greatly
decreases the thermal load compared with indirect UHT treatment [1]. Therefore, more
bioactive components in the raw milk are retained [2]. However, direct UHT milk often
suffers from instability with age gelation, sedimentation, and creaming during storage [3].
In age gelation, liquid milk forms a three-dimensional protein network during storage that
increases the viscosity and causes the milk to lose fluidity. The formed gel is usually weak
and initially tends to form at the bottom and extend throughout the pack over time. This
phenomenon in direct UHT milk is mainly attributed to plasmin [4,5].

Plasmin, an endogenous enzyme, is a component of a complex system consisting
of plasmin, plasminogen, plasminogen activator, plasminogen activator inhibitor, and
plasminogen inhibitor [6,7]. Among them, two inhibitors are sensitive to direct UHT
treatment and even almost completely inactivated, while plasmin, plasminogen, and
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plasminogen activator are thermostable. They can be retained to a greater extent [8]. Thus,
plasminogen is continuously converted to plasmin by plasminogen activator during storage.
Consequently, plasmin will hydrolyze β-casein (β-CN) and αS1-casein (αS1-CN)/αS2-casein
(αS2-CN) inside casein micelles, causing the destabilization of casein micelles and the release
of tendrils composed of κ-casein (κ-CN) and β-lactoglobulin (β-Lg), and then these tendrils
anchor with each other to ultimately form a gel [3,5]. On the other hand, if residual plasmin-
induced proteolysis occurs too rapidly, this protein system does not have time to rearrange
to form a gel; thus, clarification/sedimentation of the milk may occur rather than age
gelation [3].

For the age gelation by plasmin in UHT milk, indirect UHT milk was once the main
subject of research, but with the application of direct UHT technology in liquid milk
processing, protein destabilization during storage still exists. Heating units for direct UHT
treatment consist of two types: either an injection type, in which steam is injected into the
product, or an infusion type, in which the product is infused into a chamber of steam [9].
The infusion method is gentler than that of steam injection and does not cause disruption of
fat globules [9]. Malmgren et al. [5] found that the steam injection method produced more
sediment than steam infusion under the same UHT treatment (140 ◦C/4 s) and storage
conditions. Thus, it is of vital importance to study the mechanisms of age gelation in
direct steam infusion UHT milk. However, many heating conditions in previous studies
were limited in range, such as 140–150 ◦C for 3–6 s [5,10–14]. Given that direct steam
infusion UHT treatment can achieve extremely short heating time (<0.12 s), we designed
a wide temperature range of 142–157 ◦C for 0.116–6 s in this study. It should be noted
that the extreme condition of the equipment used in this study is 0.116 s for heating, and
commercial direct UHT milk in China has a similar heating time. In addition, previous
studies have mostly focused on the protein behavior of bovine milk before age gelation, but
there has been limited research into the appearance and development of aged gel. In our
previous study, we investigated the composition of aged gel in direct steam infusion UHT
milk by using Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)
and peptidomics analysis, where we found that the aged gel is primarily composed of
intact β-Lg, β-CN, αS2-CN, αS1-CN, κ-CN, α-lactalbumin, and peptides derived from αS2-
CN, αS1-CN, and β-CN. Additionally, the presence of other proteins and peptides in milk
may contribute to gel formation. However, it is not clear which action dominates the gel
formation or whether the gel structure is consistent across different direct UHT conditions.

Therefore, this study aimed to investigate the gelation process of direct UHT milk
treated with steam infusion over a wide temperature range of 142–157 ◦C for 0.116–6 s
and then stored at 4 ◦C, 25 ◦C, or 37 ◦C, respectively. The changes in the pH, particle size,
zeta-potential, and plasmin activity of the milk after direct UHT treatment and during
storage were monitored. To further investigate the characteristics of gels produced in the
milk samples, the gel strength, macrostructure, and microstructure, and the contribution of
intermolecular interaction forces of gels were compared and analyzed. The study provides
guidance for the optimization of heat treatment and storage parameters for direct steam
infusion UHT milk.

2. Materials and Methods
2.1. Milk Samples

Skim milk was obtained from the local industry in Maanshan, China. Bacteria in
the raw milk were at low levels of 0.6–2.2 × 104 CFU/mL and somatic cell counts of
12.3–35.1 × 104 CFU/mL. The milk was transported to SPX (Shanghai) FLOW Technology
Co., Ltd. (Shanghai, China) via a 4 ◦C cold chain for follow-up pilot-scale commercial
direct UHT treatment. A total of 500 L of skim milk was pasteurized at 72 ◦C for 25 s.
Subsequently, the skim milk was heated by a direct UHT system (InfusionPlusTM, SPX
Flow, Charlotte, NC, USA) with a steam infusion chamber (direct UHT conditions: 142 ◦C
for 0.25 s, 3 s, or 6 s; 147 ◦C for 0.25 s, 3 s, or 6 s; 153 ◦C for 0.116 s, 0.25 s, or 6 s; or 157 ◦C
for 0.116 s; 50 L of skim milk was processed for each of the heat treatments). Thereafter, the
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product was cooled by vacuum cooling back to 75 ◦C and then directed to the two-stage
homogenizer (15 MPa). Finally, the product was cooled indirectly to 20 ◦C and collected
in an aseptic storage tank. The direct UHT-treated skim milk for each heat treatment was
filled aseptically into 50 plastic containers (350 mL; 6 cm diameter). Samples were stored
at 4 ◦C, 25 ◦C, or 37 ◦C and analyzed at intervals of approximately half a month. Once
sedimentation or age gelation occurred, the storage was discontinued. Before each analysis,
the sample is fully mixed by inversion. Immediately before storage, the changes in pH
value, particle size, and zeta-potential of the samples before and after direct UHT treatment
were analyzed. Information regarding heating conditions and storage temperatures is
shown in Supplementary Materials (Table S1). C* provides a measure of the effect of a heat
treatment on the chemical components of a product. In addition, C* can be calculated by
the following equation:

C* =

∫
10(

(T−135)
31.4 ) ∗ dt

30.5
where T is the heating temperature, and t is time [9].

2.2. Physicochemical Properties of Milk during Storage
2.2.1. Total Plate Count

The total bacterial count of milk samples was determined by using the test piece
(Food Safety Tech., Food Safety Technology Co., Ltd., Guangzhou, China) according to the
manufacturer’s instructions. This test piece contains a color-developing reagent, a soluble
absorbent gel, and the same nutrients as Plate Count Agar medium. Briefly, 1 mL of the
sample was fully mixed with 9 mL of sterile normal saline to obtain the 1:10 solution of
the sample. Then, 1 mL of the 1:10 solution was fully mixed with 9 mL of sterile normal
saline to obtain the 1:100 solution of the sample. We dropped 1 mL of the solution into the
test piece and operated with two test pieces for each dilution. Finally, the test pieces were
incubated at 37 ◦C for 24 h [15].

2.2.2. pH Value

Skim milk samples stored at 4 ◦C, 25 ◦C, and 37 ◦C were either heated by a water bath
(Bluepard; Shanghai, China) or cooled by an ice water bath (HMKXYQ; Wuxi, China) to
ensure temperature balance. The pH value of the milk was measured at room temperature
(25 ◦C) using a pH meter (Sevencompact, Shanghai, China).

2.2.3. Particle Size and Zeta-Potential

According to the methodology described by Li et al. [16], the Malvern Zetasizer Nano
ZEN3600 instrument (Malvern Instruments Ltd., Malvern, UK) was used to determine
the size and zeta-potential of milk proteins. To determine the particle size, the samples
were diluted with ultra-pure water (1:200) and subsequently transferred into a cuvette
(DTS0012, Malvern Instruments Ltd., Malvern, Worcestershire, UK). All measurements
were performed at 25 ◦C using the refractive index of the milk protein: 1.45. The mea-
surements were performed at a fixed angle of 173◦, with each measurement consisting of
11 runs for 15 s.

2.2.4. Plasmin Activity

According to the methodology described by Rauh et al. [11] with some modifications,
plasmin-derived activity was measured by the rate of hydrolysis of the chromogenic
substrate S-2251 (Chromogenix, Roncello, Italy) for plasmin. Briefly, 1 mL of milk sample
was mixed with 250 µL of trisodium citrate buffer (0.4 M; pH = 8.9; Merck, Shanghai, China),
followed by a vortex for 15 min to dissociate casein micelles. Then, an equal volume of
the detection buffer (0.1 M Tris-HCl, 8 mM 6-Aminocaproic acid, 0.4 M NaCl; pH = 8) was
added to the milk sample–buffer mixture. After that, 75 µL of Substrate S-2251 solution was
mixed with 75 µL of the mixture and incubated at 37 ◦C and detected at 20 min intervals
over 120 min. The absorbances were measured using a microplate reader. A milli-unit
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(mU) refers to the amount of plasmin that catalyzes the conversion of 1 nanomole of S-2251
per minute.

2.3. Gel Analysis
2.3.1. Determination of Gelation Time Range

To determine the occurrence of age gelation in the sample during storage, the milk
samples during each storage period were sifted with a 100-mesh sieve complying with U.S.
standards, corresponding to sieve opening dimensions of 150 µm [17]. When there were
particles that could not pass through the sieve, we determined that the milk produced aged
gel at this time range.

2.3.2. Dynamic Rheological of Gel

The supernatant was carefully aspirated from the plastic container; then, the plastic
container was cut to collect the intact gel. Dynamic rheological properties of the gel’s
samples were tested using an AR1500 (TA Instruments, New Castle, DE, USA). A stainless-
steel parallel plate (40 mm in diameter) was used, and the gap was set at 1 mm. Strain
sweeps were performed over the range of 0.01% to 10% strain at a frequency of 1 Hz
to determine the stress value. After that, a frequency scan on the other gel sample was
performed. The angular frequency was changed from 0.628 to 6.283 rad/s at 1% strain,
which was within the linear viscoelasticity region. The data points were recorded at a rate
of 10 points per decade [18]. The G’ (storage modulus) and variation trend of the loss angle
(tan δ = G”/G’) with frequency were also obtained in the experiment.

2.3.3. Water Holding Capacity

Water holding capacity was calculated by dividing the weight of gel after centrifuga-
tion (1000× g for 10 min; 4 ◦C) by the weight of gel (1 g) before centrifugation [19].

2.3.4. Observation of Gel Microstructure

A confocal laser scanning microscopy (A1Rsi, Nikon Instruments, Tokyo, Japan) with
a ×63 oil immersion objective was applied to observe the distribution of protein in the
formed gel. Protein phases of gels were stained with Fast Green solution (Sigma-Aldrich,
Saint Louis, MO, USA. 0.1 mg/mL in water). Overall, 1 mL of the sample was mixed with
50 µL Fast green. The stained sample was kept in the dark for 10 min at room temperature
(25 ◦C) to ensure complete labeling. The excitation wavelength of the Fast Green was
633 nm [20].

2.3.5. Gel Porosity

The porosity of milk gel was analyzed by captured confocal laser scanning microscopy
images. The captured image is converted into an 8-bit image for analysis. Image J software
(1.8.0, National Institutes of Health, Bethesda, MD, USA) is used to perform grayscale
image analysis. The porosity of the gel is expressed as an area fraction percentage, which is
defined as the ratio of the pixels contributed by the pores in the image to the total number
of pixels in the image [21].

2.3.6. Intermolecular Interactions

The solubility of the gel was analyzed according to the method described by Zhao
et al. and Ran et al. [22,23] with some modifications. The sodium chloride solution
(0.6 M; Merck, Shanghai, China) could disrupt ionic bonds, 1.5 M urea (Merck, Shanghai,
China) could destroy hydrogen bondings, 8 M urea could simultaneously destroy the
hydrogen bondings and hydrophobic interactions, and 0.5 M 2-Hydroxy-1-ethanethiol
(Merck, Shanghai, China) could disrupt disulfide bonds. Gels were successively solubilized
in four solvents: 0.6 M sodium chloride (S1); 0.6 M sodium chloride + 1.5 M urea (S2); 0.6 M
sodium chloride + 8 M urea (S3); and 0.6 M sodium chloride + 8 M urea +0.5 M 2-Hydroxy-
1-ethanethiol (S4). Approximately 3 g of gel were mixed with 27 mL of S1, and then the
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mixture was dispersed using a high-speed disperser (FJ200-SH, Shanghai Specimen Model
Ltd., Shanghai, China) at 10,000 rpm for 1 min, followed by centrifugation at 10,000× g
for 25 min. The precipitate obtained from S1 was homogenized in 27 mL of S2 and then
subjected to the same procedure. The same procedure was also successively performed
using S3 and S4. The protein concentration was determined by the Bradford Protein Assay
Kit (Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) according to the
manufacturer’s instructions. The results presented are the average of three measurements
and are expressed as the percentage of each fraction concerning total protein.

2.4. Statistical Analysis

All measurements were performed in biological triplicates, and the results are ex-
pressed as means and standard deviations. We analyzed data using one-way repeated
measures ANOVA in SPSS (SPSS 19.0, SPSS Inc., Chicago, CA, USA). Significant differences
(p < 0.05) were analyzed using Duncan’s multiple-range test. GraphPad Prism software
(Version 8.01; San Diego, CA, USA) was used to visualize the data.

3. Results and Discussion
3.1. Effects of Direct UHT Treatment on the Physicochemical Properties of Milk

Changes in the pH value, particle size, and zeta-potential of milk treated with different
direct UHT treatment conditions are shown in Table 1. After direct UHT treatment, the
pH value of the milk decreased. This trend is mainly due to an insolubilization of calcium
phosphate, which migrates to the colloidal phase, consequently decreasing the concentra-
tion of phosphate ions in the whey [24]. Upon direct UHT treatment, the particle size of
the milk increased significantly (p < 0.05). The attachment of denatured whey proteins
to casein micelles caused by heating may contribute to increasing milk particle size [11].
The homogenization pressure of 15 MPa set based on the actual operating parameters of
the UHT equipment may not be high enough to disrupt the heating-induced association
between casein micelles, which may also increase the size of milk [11,25]. Moreover, C*
in this study provides a measure of the effect of direct UHT treatment on the chemical
components of the milk. We found that samples with a high C* value (>0.1) had smaller
particle sizes, suggesting heat-induced dissociation of κ-CN from the casein micelle during
direct UHT treatment [12]. The zeta-potential value did not change much and only slightly
due to the association of β-Lg with κ-CN at the surface of casein micelles.

Table 1. Changes in pH value, particle size, and zeta-potential of milk before and after direct
UHT treatment.

Samples C* pH Value Size (nm) Zeta-Potential (mV)

Raw milk -- 6.75 ± 0.01 a 168 ± 0 f −26.4 ± 0.2 de

153 ◦C/0.25 s 0.03 6.72 ± 0.01 cde 185 ± 0 b −25.5 ± 0.2 ab

147 ◦C/0.25 s 0.02 6.71 ± 0.01 de 187 ± 1 a −25.8 ± 0.2 bcd

142 ◦C/0.25 s 0.01 6.71 ± 0.00 cd 182 ± 1 c −26.7 ± 0.1 e

157 ◦C/0.116 s 0.02 6.72 ± 0.00 cd 183 ± 1 bc −25.5 ± 0.3 bc

153 ◦C/0.116 s 0.01 6.71 ± 0.01 ef 189 ± 1 a −25.9 ± 0.3 bcd

147 ◦C/6 s 0.47 6.71 ± 0.01 def 175 ± 0 d −26.3 ± 0.6 cde

142 ◦C/6 s 0.33 6.70 ± 0.01 f 172 ± 1 e −26.0 ± 0.3 bcde

147 ◦C/3 s 0.24 6.73 ± 0.01 bc 176 ± 2 d −26.6 ± 0.4 de

142 ◦C/3 s 0.16 6.71 ± 0.01 ef 182 ± 2 c −25.3 ± 0.3 ab

153 ◦C/3 s 0.37 6.73 ± 0.01 b 172 ± 1 e −24.7 ± 0.6 a

a–f Results are mean ± SD (n = 3). For each row, different letters indicate significantly different values (p < 0.05).

3.2. Non-Gelation Observation of Direct UHT Milk Stored at Different Temperatures

The gelation process was monitored for direct UHT skim milk treated in different
conditions and stored at 4 ◦C, 25 ◦C, and 37 ◦C. The storage stability of milk was best
at 4 ◦C, and no age gelation or obvious sedimentation occurred even after 6 months of
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storage at 4 ◦C. By contrast, the severe protein destabilization of milk stored at 37 ◦C was
observed. The milk samples treated at 153 ◦C, 147 ◦C, and 142 ◦C for 0.25 s and 157 ◦C and
153 ◦C for 0.116 s showed obvious sedimentation and no gel formation within 1 month of
storage at 37 ◦C. All other groups of samples produced sediments during the later period
of storage, and images of all samples are shown in Supplementary Materials (Figure S1).
In addition, no formed gel was observed at 37 ◦C. The appearance of sedimentation may
be because the optimum temperature of plasmin is approximately 37 ◦C; consequently,
plasmin-induced proteolysis occurred too rapidly, and the protein system did not have
time to rearrange to form a gel [26]. Therefore, samples with sedimentation will not be
determined in subsequent experiments.

3.3. Characteristics of Direct UHT Milk Stored at 25 ◦C
3.3.1. Gel Appearance

To monitor the appearance and development of gel at 25 ◦C, the milk samples during
storage were filtered regularly with a 100-mesh sieve. This study found that residue on a
100-mesh screen can pass through the screen due to the friction and breaking of the particles.
These substances were the initial gels which were soft and fragile (Figure 1A). Within half
a month after the occurrence of the phenomenon in Figure 1A, the milk began to form a
visible gel-like substance at the bottom of the bottle, and flocculent gel fragments were
observed when gently shaking the bottle. The gels formed by samples from the 147 ◦C/6 s,
142 ◦C/6 s, and 142 ◦C/3 s treatment groups stored at 25 ◦C for 4 months, 5 months, and
3.5 months, respectively, are shown in Figure 1B–D. The results showed that the morphology
of the gel was dependent on heat-induced chemical changes. Samples treated with two
direct UHT conditions (147 ◦C/6 s and 142 ◦C/6 s) have higher C* values, and relatively
firm gels were formed. In contrast, 142 ◦C/3 s treatment had a lower C* value, and relatively
loose gels were formed. The difference in the morphology of the formed gel was due to
the fact that a higher thermal load induces more and longer tendrils, which contributed to
forming a relatively firm state [5]. To further analyze why only three groups of samples
underwent aging gelation while the other treatment groups underwent sedimentation,
we monitored the changes in pH value, particle size, zeta-potential, and plasmin activity
during storage.
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Figure 1. The apparent structure of the initial gel of 142 ◦C/3 s (A); and the age-gel formed in milk
with direct UHT treatments after storage at 25 ◦C (B–D). (B) Mature gel of 147 ◦C/6 s samples stored
for 4 months; (C) Mature gel of 142 ◦C/6 s samples stored for 5 months; (D) Mature gel of 142 ◦C/3 s
samples stored for 3.5 months.

3.3.2. Physicochemical Properties of Direct UHT Milk Stored at 25 ◦C
pH Value

The overall trends for the pH values in all samples were relatively similar (Figure 2A).
Generally, the pH value of the milk decreased during storage, which was consistent with
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previous studies [27]. The decrease in pH value is likely caused by the formation of acids
from lactose and the dephosphorylation of the amino acids PSer and PThr present in
caseins [28,29]. The fluctuation in the pH value during storage may be caused by the
dephosphorylation of casein or proton release caused by casein hydrolysis by plasmin [30].
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Particle Size and Zeta-Potential

The particle sizes in the milk during storage at 25 ◦C are shown in Figure 2B. During
the first month of storage at 25 ◦C, the particle size of the milk proteins decreased. It
suggested that the rate of hydrolysis of casein by plasmin to produce small-sized proteins
in the early stages of storage might be greater than the rate at which the hydrolyzed
casein fragments bind to each other. During the middle stage of storage, the particle
sizes of the milk samples started to increase, probably because more calcium and calcium
phosphate bridges formed between caseins and casein sub-micelles, inducing the larger
casein micelles [16]. A sharp increase in protein particle sizes for the 147 ◦C/6 s and
142 ◦C/3 s samples stored at 25 ◦C for 3 months may be caused by the association between
peptides produced by plasmin-induced hydrolysis and micelle fragments via hydrophobic
bonding and calcium bridge interactions to form a three-dimensional gel network [3,8].

The zeta-potential changes during storage are shown in Figure 2C. Over the longer
storage period, the absolute zeta-potential first decreased and then increased. A reduction
in the absolute value of the zeta-potential during storage probably occurred because of the
association between casein micelles [16,31]. However, the increase in absolute zeta-potential
values of the milk samples during storage may be due to the release of the β-Lg-κ-CN
complex from casein micelles induced by plasmin. Thus, it is assumed that the increased
electrostatic interactions affect gel formation rather than sedimentation.

3.3.3. Plasmin Activity in Direct UHT Milk Stored at 25 ◦C

Although microbial enzymes (produced mainly by psychrotrophic bacteria) are very
heat-resistant, which may remain active under direct UHT treatment, the gel formed in
this study was most likely not due to microbial action. There were few microorganisms
in the raw milk (total bacterial count: 0.6–2.2 × 104 CFU/mL), and the heat treatment
would reduce the number of enzymes produced by microorganisms. The raw milk used
in this experiment was pasteurized at 75 ◦C/25 s and subjected to high heat treatment at
>142 ◦C to kill the microorganisms. A total number of colonies results indicated that no
microorganisms were detected in all samples during storage (results not shown). These
results also indicated that there was no production of microbial enzymes during storage.
Therefore, the contribution of bacterial proteases should be low. Meanwhile, the gel formed
in the three samples was soft and fragile (Figure 1). Zhang et al. [20] compared the gel
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produced by exogenous enzymes and plasmin for hydrolyzing milk protein. Their results
showed that the gel structure from plasmin was loose and fragile, while the gel from
exogenous enzymes was harder and less fragile. Therefore, in this study, we focused on
changes in the plasmin activity of the milk samples during storage.

The milk samples with a low C* value (<0.1) have higher initial plasmin activity and
vice versa. During storage at 25 ◦C, the plasmin activity increased (Figure 3B) for all
sample groups. The five groups with high temperature/short holding time treatment had
higher plasmin activity and a larger increase in activity than the high temperature/long
holding time treatment group. This could be because plasminogen and plasminogen
activators have strong heat resistance and can survive under direct UHT treatment. The
residual plasminogen will be converted into plasmin, consequently increasing the plasmin
activity [32]. After two months, the plasmin activities of samples started to decrease. This
was possible due to the activation and/or inhibition of components of the complex plasmin
system and even the degradation of plasmin [14]. The plasmin activity of the aged gel
group samples remained at a low level during storage (Figure 3B). This result indicated
that limited residual plasmin activity leading to limited hydrolysis of casein may be the
cause of gel formation. When plasmin activity is very high, it tends to cause sedimentation;
therefore, a higher plasmin activity may not make it easier to form a gel. Instead, a moderate
level of hydrolysis will lead to gel formation, which is consistent with what is mentioned
in the literature.
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UHT milk samples during storage at 25 ◦C.

The differences in plasmin activity and whey protein denaturation caused by different
heat treatment conditions may be the reasons for the differences in the macrostructure of the
three groups of gels. Studies have shown that a reasonable increase in protein concentration
will increase the strength of protein gel [33]. The complex formed by cross-linking of
denatured whey protein and casein accumulates at the bottom of the milk bottle because
of sedimentation, increasing the protein concentration at the bottom compared with other
layers [34–36]. However, an appropriate hydrolysis intensity will allow sufficient time for
the hydrolyzed casein to form a complex and sediment at the bottom of the bottle. This
will result in a high concentration of milk protein at the bottom of the bottle and facilitate
gel formation.
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3.4. Gel Characterization
3.4.1. Gel Microstructure and Porosity Ratio

Changes in the microstructures of milk samples during storage at 25 ◦C were ob-
served (Figure 4). Protein particles are evenly distributed in milk after direct UHT treat-
ment (Figure 4A–C). In the middle and later stages of storage, the confocal images of the
147 ◦C/6 s and 142 ◦C/3 s samples showed obvious protein aggregation and slight cross-
linking (Figure 4D–F). These changes could be the reason for the sudden increase in particle
size. The aggregated proteins in the gel were cross-linked to form a gel network (Figure 4G–
I). The gel network formed by the 147 ◦C/6 s sample had small pores and a dense structure,
and large protein aggregates directly participated in the formation of the gel network. The
gel network formed at 142 ◦C/6 s was loose and porous and had the largest pores. The
pore size of the gel network formed at 142 ◦C/3 s was between those of the 147 ◦C/6 s and
142 ◦C/6 s samples.
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The porosities of the three groups of gel samples are shown in Table 2. The gel network
structure formed in the 147 ◦C/6 s sample was dense, and the porosity of the gel was
14.30% ± 0.76%. The gel network formed in the 142 ◦C/6s sample had many large pores,
and the highest porosity was 42.43% ± 0.99%. The gel network structure formed in the
142 ◦C/3 s sample was denser than that of the 142 ◦C/6 s sample, and the porosity was
21.49% ± 2.25%. The differences in whey protein denaturation and plasmin activity caused
by different direct UHT treatment conditions may be the main reasons for the differences
in microstructures of the gels.

Table 2. Water holding capacity and porosity of age-gels formed in direct UHT milk samples after
storage at 25 ◦C.

Water Holding Capacity (%) Porosity (%)

147 ◦C/6 s 95.1 ± 0.4 a 14.3 ± 0.6 a

142 ◦C/6 s 59.9 ± 1.8 c 42.4 ± 0.8 c

142 ◦C/3 s 79.5 ± 3.4 b 21.5 ± 1.8 b

a–c Results are mean ± SD (n = 3). For each row, different letters indicate significantly different values (p < 0.05).

3.4.2. Dynamic Rheological Analysis

None of the gels deformed significantly at 1% stress (Figure 5A). Therefore, modulus
analysis was carried out at 1% stress. Changes in the elastic modulus were measured for
the three sets of gel samples (Figure 5B). The most elastic gel formed with 147 ◦C/6 s
treatment, and the least elastic gel formed with 142 ◦C/6 s treatment. This is related to
the network structure of the gel formed by coagulation. The gel formed with 147 ◦C/6 s
treatment had smaller pores and finer clusters than the gels from the other two treatments,
which meant that the structure was less likely to be deformed under the same stress and
showed better elasticity and gel strength [18]. The microstructures of the three groups
of gel samples (Figure 5) also support the results for the elastic modulus. The values of
tan δ of all samples decreased as the frequency increased (Figure 5D). The tan δ of all gel
samples were all <1, which indicated that the gel exhibited solid elasticity [37]. The results
confirmed that, the gels formed under different direct UHT treatment conditions were very
different. Therefore, control of thermal parameters will greatly affect the storage quality of
the product.

3.4.3. Water Holding Capacity Analysis

The water holding capacity of the gels produced by the different direct UHT milk
is shown in Table 2. The gel formed with 147 ◦C/6 s treatment had the greatest water
retention. This may be related to the network structure of the gel. By comparison, the gel
formed with 147 ◦C/6 s treatment had a denser network structure (Figure 4G). The retained
water in this gel network would not be readily lost with the destruction of the network
structure during centrifugation. Consequently, the gel water-holding capacity was as high
as 95.1 ± 0.4%. For the 142 ◦C/6 s sample, the gel structure was loose, the interaction
between protein molecules was weak, and the porosity was high. After centrifugation, the
network structure was readily destroyed, and the water retention capacity was poor (water
holding capacity: 59.9 ± 1.8%). The gel strength of the 142 ◦C/3 s sample was between
that of the other two samples, and the porosity was 79.5 ± 3.4% [18]. The water-holding
capacity results are consistent with the gel network porosity results.
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3.4.4. Intermolecular Interaction Analysis

The occurrence of a gel network structure in direct UHT milk is a result of protein
aggregation after plasmin hydrolysis, which leads to covalent (disulfide bond) and non-
covalent interactions (ionic bonds, hydrogen bonds, and hydrophobic interactions) [3,8].
To further explore the key force maintaining the three-dimensional network structure of
the gel in milk, the type and percentage of intermolecular forces were determined. As
shown in Figure 6, the key force was disulfide bonds, followed by hydrophobic interactions.
This result was similar to those of Duan et al. [38] who reported that disulfide bonds and
hydrophobic interactions were positively correlated with the gel strength. In addition, the
sum of the hydrophobic interaction force and disulfide bond contribution of the sample at
147 ◦C/6 s was larger than that of the 142 ◦C/6 s sample (Figure 6), which was consistent
with the results in Figure 5B. Additionally, there were significant differences among the
contributions of hydrophobic interactions to the maintenance of the gel network structure
among the three groups of gel samples. The contribution of hydrophobic interactions
in the 147 ◦C/6 s sample was greater than that in the 142 ◦C/6 s or 142 ◦C/3 s sample.
These differences may be related to the degree of protein denaturation and unfolding
caused by heat treatment [39]. There was a significant difference in the contributions of
electrostatic interactions between the 147 ◦C/6 s and 142 ◦C/6 s samples (p < 0.05). This
was consistent with the results in Figure 2C. Furthermore, there was a significant difference
in the contributions of hydrogen bonding between the 147 ◦C/6 s and 142 ◦C/3 s samples
and between the 142 ◦C/3 s and 142 ◦C/6 s samples (p < 0.05). However, the contributions
of electrostatic interactions and hydrogen bonding were smaller and mainly dominated
by disulfide bonds and hydrophobic interactions. Combined with the plasmin activity
results, we speculate that the gel that appears in direct UHT milk during storage is mainly
caused by plasmin hydrolyzing casein and releasing sulfhydryl groups buried in the protein
molecules. When the activity of residual plasmin is high, direct UHT milk tends to form a
protein sediment rather than a gel because of excessive casein hydrolysis.
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4. Conclusions

The effect of direct steam infusion UHT treatment on milk was monitored for the
gelation process of the milk during storage. Milk stored at 4 ◦C remained stable for
6 months, while milk stored at 37 ◦C rapidly produced a protein sediment. Although the
particle sizes and plasmin activities of the milk samples all increased during 25 ◦C storage,
age gelation only occurred in three of the samples (147 ◦C/6 s, 142 ◦C/6 s, and 142 ◦C/3 s
treatment). Furthermore, there were significant differences in the microstructures and gel
strengths among these gels. Among the gels that formed under 147 ◦C/6 s treatment had
the densest network structure, highest gel strength, and highest water retention. Compared
to the other two groups of samples that produced gels, the gel formed under 142 ◦C/6 s
treatment had a looser structure, higher porosity, and lower water retention. The values
of the porosity and water holding capacity in the gel formed under 142 ◦C/3 s treatment
were higher than the gel formed under 142 ◦C/6 s treatment but lower than the gel formed
under 147 ◦C/6 s treatment. This result was consistent with the gel strength results. The
key forces maintaining the stability of the three-dimensional network structure in the
gels were disulfide bonds and hydrophobic interactions. However, there were significant
differences in the contributions of intermolecular interaction forces in the different gels.
When the plasmin activity was high, the milk tended to form a protein sediment rather
than a gel. According to the findings from this study, formation mechanisms of aging
gel in direct UHT skim milk treated in different heating conditions can be proposed, as
schematically illustrated in Figure 7. The results provide a basis for precise control of the
process parameters of direct UHT milk and further targeted inhibition of gel formation
with storage. In addition, this study was conducted on a pilot scale and has the potential to
scale up to the industrial level.
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