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Abstract: A novel fibrinolytic enzyme was produced by the liquid fermentation of Coprinus comatus.
The enzyme was purified from the culture supernatant by hydrophobic interactions, gel filtration, and
ion exchange chromatographies. It was purified by 241.02-fold, with a specific activity of 3619 U/mg
and a final yield of 10.02%. SDS-PAGE analysis confirmed the purity of the enzyme, showing a
single band with a molecular weight of 19.5 kDa. The first nine amino acids of the N-terminal of the
purified enzyme were A-T-Y-T-G-G-S-Q-T. The enzyme exhibited optimal activity at a temperature
of 42 ◦C and pH 7.6. Its activity was significantly improved by Zn2+, K+, Ca2+, Mn2+, and Mg2+

while being inhibited by Fe2+, Fe3+, Al2+, and Ba2+. The activity of the enzyme was completely
inhibited by ethylenediamine tetraacetic acid (EDTA), and it was also dose-dependently inhibited
by phenylmethylsulfonyl fluoride (PMSF) and soy trypsin inhibitor (SBTI). However, inhibitors
such as N-α-tosyl-L-phenylalanine chloromethyl ketone (TPCK), aprotinin, and pepstatin did not
significantly affect its activity, suggesting that the enzyme was a serine-like metalloproteinase. The
enzyme acted as both a plasmin-like fibrinolytic enzyme and a plasminogen activator, and it also
exhibited the capability to hydrolyze fibrinogen and fibrin. In vitro, it demonstrated the ability to
dissolve blood clots and exhibit anticoagulant properties. Furthermore, it was found that the enzyme
prolonged activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time
(TT), and reduced the levels of fibrinogen (FIB) and prothrombin activity (PA). Based on these studies,
the enzyme has great potential to be developed as a natural agent for the prevention and treatment of
thrombotic diseases.

Keywords: Coprinus comatus; fibrinolytic enzyme; anticoagulant activity; fermentation

1. Introduction

The incidence and mortality of thromboembolic diseases have been increasing year
by year, making it a major threat to human health. Thrombosis is a complex physiological
process involving fibrinogen, thrombin, coagulation factors, and coagulation inhibitors [1].
Insoluble fibrin can be hydrolyzed to fibrin degradation products (FDPs) by fibrinolytic
enzymes. Under normal physiological conditions, the fibrinolytic and clotting systems
in the body maintain a dynamic equilibrium [2,3]. However, in a state such as disease or
aging, the dynamic balance is disrupted. In the abnormal fibrinolytic system, fibrinogen
forms fibrin under the action of thrombin and polymerizes into fibrin clots in the blood
vessels, leading to thrombosis [4].

Fibrinolytic enzymes are a kind of proteolytic enzyme. Fibrinolytic enzymes can be
classified into plasminogen activators and plasmin-like proteases, based on the mecha-
nism of fibrinolysis. Plasminogen activators activate plasminogen into plasmin, whereas
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plasmin-like proteases can degrade fibrin clots directly [5,6]. At present, the main clinical
plasminogen activators are streptokinase, tissue plasminogen activator (t-PA), and uroki-
nase plasminogen activator (u-PA). Despite being in widespread use, these reagents have
drawbacks such as a short half-life, low specificity for fibrin, high price, and excessive
bleeding [7,8]. Therefore, the exploration and development of a safe and natural source
for new thrombolytic agents with fewer or no side effects have become the key to the
prevention and treatment of cardiovascular diseases.

Microbial fermentation is the main method for producing fibrinolytic enzymes, and
it allows for the rapid production of a large quantity of target products. Over the past
decade, there has been a significant amount of research conducted on fibrinolytic enzymes
that are extracted from various fermented foods with traditional Asian origins [9,10]. New
strains need to be developed for fermentation to produce fibrinolytic enzymes. Edible
mushrooms grow in a wide regional range, often used as food, traditional Chinese medicine,
or folk medicine [11]. Mushrooms are rich sources of natural bioactive compounds, such
as polysaccharides, fibrinolytic enzymes, and phenolic compounds, which have become a
hot topic for research. It has been found that fibrinolytic enzymes can be isolated from the
fruiting bodies of edible mushrooms, mycelium, and fermentation broth [12–16].

Coprinus comatus, a traditional Chinese medicinal mushroom, is mainly distributed
in temperate and subtropical humid areas [17]. It possesses abundant nutritional value
and a substantial protein composition, containing 20 different types of amino acids, in-
cluding 8 essential ones, as well as some bioactive components. Studies have found that
it has several physiological functions such as antioxidant effects, hypoglycemic effects,
prevention of liver damage, anti-tumor effects, immunity enhancement, and bacteriological
inhibition [18]. Currently, the majority of research on Coprinus comatus primarily focuses on
its capacity and functionality in polysaccharide production [17–19]. Prior to our current
report, in the literature available, a fibrinolytic enzyme from Coprinus comatus has not been
reported. In this preliminary study, the culture conditions for the liquid fermentation of
the fibrinolytic enzyme from Coprinus comatus (CFE) were optimized and the productivity
improved significantly. The objective of the present study is to purify the fibrinolytic
enzyme from the fermentation supernatant of Coprinus comatus and study its properties, as
well as its anticoagulant and thrombolytic activities.

2. Materials and Methods
2.1. Materials

Octyl-Sepharose Fast Flow, Sephadex G-25, SP-Sepharose High Performance, and
Source 15PHE were purchased from GE Life Sciences (Pittsburgh, PA, USA). Fibrinogen,
thrombin (bovine and human source), immunoglobulin G, and human serum albumin
(Shanghai Jingke Biological Co., Ltd., Shanghai, China). Ammonium sulfate, agarose, a low-
molecular-weight protein standard kit for SDS-PAGE, and sodium chloride (Sangon Biotech
Co., Ltd., Shanghai, China). Soybean trypsin inhibitor (SBTI), N-α-tosyl-L-phenylalanine
chloromethyl ketone (TPCK), phenylmethylsulfonyl fluoride (PMSF), aprotinin, pepsin,
and pepstatin (Sangon Biotech Co., Ltd., Shanghai, China). Coomassie Brilliant Blue R-250
(Sangon Biotech Co., Ltd., Shanghai, China). KCl, NaCl, NaHCO3, CaCl2, and HCl (Kemi
Ou Chemical Reagent Co., Ltd., Tianjin, China).

2.2. Strain and Culture Conditions

The Coprinus comatus strain was stored on PDA slants. The mycelia were transferred
from the slants to the plate medium. Aseptic inoculation of the mycelia was performed
in 250 mL shake flasks, each containing 50 mL of fermentation media composed of 2.9%
fructose, 3.6% soybean cake, 0.25% KH2PO4, and 0.2% MgSO4. The fermentation process
was conducted at a temperature of 24 ◦C and a speed of 160 r/min for 6 days. After that,
the resulting mixture underwent centrifugation at a rate of 10,000 r/min for 10 min at 4 ◦C.
The resulting supernatant was then considered the crude enzyme extract.
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2.3. Purification of the Fibrinolytic Enzyme from Coprinus comatus

The crude enzyme was subjected to 60% saturation of ammonium sulfate precipitation
and stored at 4 ◦C for 12 h. The supernatant, obtained by centrifugation (8000 r/min for
20 min at 4 ◦C), was dissolved with 20 mM sodium phosphate buffer (pH 7.4). The enzyme
solution was loaded onto an Octyl-Sepharose FF column (1.6 cm × 30 cm) which had
previously been equilibrated with 20 mM sodium phosphate buffer (pH 7.4) containing
30% saturated (NH4)2SO4. Bound proteins were eluted with a decreasing linear gradient
of 30–0% (NH4)2SO4 in 20 mM sodium phosphate buffer (pH 7.4). Each tube collected
6 mL of the active component. The buffer was exchanged on a Sephadex G—25 column
(1.6 cm × 80 cm) using 20 mM sodium phosphate buffer, pH 4.0. The enzyme preparation,
after desalting, was loaded onto an SP-Sepharose HP column that had been pre-equilibrated
with the same buffer. Elution was performed using a linear gradient of NaCl concentration
ranging from 0 to 0.1 M. Each tube collected 4 mL of the active component. Fractions with
the highest potency were combined and subjected to further purification using a Source
15PHE column. The column was initially equilibrated with a sodium phosphate buffer (pH
7.4) containing 20% saturated (NH4)2SO4, followed by elution using a linear gradient of
ammonium sulfate ranging from 20% to 0% in the same buffer. Each tube collected 2 mL of
the active component. Finally, the purified active fractions were pooled, lyophilized, and
used for further characterization.

2.4. Fibrinolytic Enzyme Activity Assay

Fibrinolytic enzyme activity was estimated according to the improved method of
Astrup and Mullertz [20]. The fibrin plates were prepared according to Liu et al. [13].
Fibrinolytic enzyme activity was assessed using the fibrin plate method with urokinase as
the reference standard.

The protein concentration of the samples was quantified by the Lowry method [21].
The standard protein content curve was prepared using bovine serum albumin (BSA) as
the reference protein, with the standard protein serving as the independent variable and
the absorption value at OD640 nm as the dependent variable. The regression equation
y = 0.0023x + 0.0114 was derived.

2.5. Determination of Molecular Weight and Fibrin Zymography

The SDS-PAGE method, as described by Laemmli [22], was employed to assess the
molecular weight and purity of the purified fibrinolytic enzyme. The molecular weight of
standard proteins ranges from 10 to 170 kDa. The fibrin zymography of CFE was detected
according to Li [23]. The resolving gel solution, which contained 0.12% (w/v) fibrinogen
and thrombin (2 U/mL), was prepared. After electrophoresis of the purified enzyme on the
fibrin gel, it was soaked in a 2.5% Triton X-100 solution for 30 min and incubated overnight
at 37 ◦C in a reaction buffer bath (20 mM Tris–HCl buffer, pH 7.4, containing 0.15 M NaCl).
The gel was washed with distilled water and then stained with Coomassie Brilliant Blue
R-250. The digested bands were visualized as non-stained regions on the fibrin gel.

2.6. Determination of the N-Terminal Amino Acid Sequence

The Edman degradation method was employed to determine the N-terminal amino
acid sequence of CFE. Following purification, the enzyme underwent analysis using SDS-
PAGE and Coomassie Brilliant Blue R-250 staining. Subsequently, an electroblotting system
facilitated the transfer of protein bands onto a polyvinylidene difluoride (PVDF) membrane.
The stained band was used for N-terminal sequencing at Applied Protein Technology
(Shanghai, China).
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2.7. Effects of Temperature and pH on the Activity of CFE

The purified enzyme (105 U/mL) was incubated on the blood fiber plate for 6 h within
a temperature range of 22 ◦C to 67 ◦C. For thermostability, CFE was incubated at different
temperatures ranging from 24 ◦C to 57 ◦C for 1 h, 2 h, and 4 h. Subsequently, the residual
fibrinolytic activity was measured by the standard fibrin plate method. The optimal pH of
the purified enzyme was determined at 37 ◦C in 20 mM of different buffers (pH 2.8–12.4).
For pH stability, CFE was incubated at 37 ◦C for 2 h, 4 h, 6 h, and 24 h in a range of pH
buffers, and the residual fibrinolytic activity was determined.

2.8. Effects of Metal Ions, Protease Inhibitors, and Some Other Reagents on the Enzyme Activity

The effect of various metal ions (K+, Cu2+, Na+, Mg2+, Zn2+, Fe2+, Fe3+, Ca2+, Ba2+,
Mn2+, and Al2+) at a concentration of 5 mM on enzyme activity was investigated. The metal
ions and enzymes were incubated together at 37 ◦C for 12 h, followed by measurement of
residual enzyme activity.

The effects of different protease inhibitors (ethylene diamine tetraacetic acid (EDTA),
phenylmethyl sulfonyl fluoride (PMSF), aprotinine, soybean trypsin inhibitor (SBTI), N-α-
tosyl-L-phenyl alanine chloromethyl ketone (TPCK), and pepstatin) on the enzyme activity
were studied. These inhibitors were mixed with an equal volume of CFE and incubated at
concentrations ranging from 1.0 mM to 10 mM at 4 ◦C for 12 h.

The effects of some other reagents on the enzyme activity were also studied. CFE was
incubated with various additives (20 mmol/L cysteine, 5 mmol/L reduced glutathione,
5 mmol/L oxidized glutathione, 0.5% β-mercaptoethanol, 1% peptone, 1% gelatin, and 1%
bovine serum albumin), organic solvents (10% acetone, 10% glycerol), and denaturants
(urea and SDS) at 4 ◦C for 12 h. The remaining enzyme activity was measured accordingly.

2.9. Determination of Plasminogen Activator Activity

The fibrin plate method was used to analyze the plasminogen activator activity of CFE.
Generally, commercially available fibrinogen contains a limited quantity of plasminogen.
The preparation method of plasminogen-positive plates remained consistent with the
description in Section 2.4. Plasminogen-negative plates were heat-treated at 85 ◦C for 30 min
to inactivate plasminogen, ensuring the plates were devoid of any residual plasminogen
activity. A 10 µL volume of CFE was added to different plates and incubated at 37 ◦C for
6 h, with urokinase used as a control. The presence of plasminogen activator activity was
determined by observing differences in the size and clarity of the lytic zone in plasminogen-
negative and plasminogen-positive plates.

2.10. Effects of Simulated Blood and Gastric Environment on the Enzyme Activity

The blood simulation solution, used in mammalian heart perfusion tests, known as
Locke solution, consisted of 0.042% KCl, 0.9% NaCl, 0.02% NaHCO3, 0.024% CaCl2, and
0.2% glucose and was stored at a temperature of 4 ◦C. The simulated gastric juice was
prepared by autoclaving a 10% HCl solution (pH 2.0–3.0) at 121 ◦C for 15 min, followed by
cooling to 37 ◦C and mixing with 1% pepsin. The fibrinolytic activity of CFE was tested in
seven different combinations of simulated blood and artificial gastric juice (Table 1).

Table 1. The experimental method of simulated blood and gastric environment.

Group Composition

1 100 µL H2O, 50 µL CFE
2 100 µL gastric juice, 50 µL CFE
3 100 µL gastric juice with a pH of 7.4, 50 µL CFE
4 50 µL gastric juice, 50 µL of broth, 50 µL CFE
5 50 µL gastric juice, 50 µL 10% saccharose, 50 µL CFE
6 50 µL gastric juice, 25 µL broth, 25 µL 10% saccharose, 50 µL CFE
7 100 µL Locke solution, 50 µL CFE
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2.11. Analysis of Thrombin-like Activity of CFE

The thrombin-like activity of CFE was investigated by analyzing the formation of
fibrin clots in different mixtures (Table 2). The positive control group was composed of a
mixture containing human blood fibrinogen and human thrombin. The mixture of human
blood fibrinogen (1 mL, 10 mg/mL) and CFE (500 µL, 72 U/mL) was placed in a test tube
and incubated for 10 min to observe the formation of thrombosis. Subsequently, human
thrombin (500 µL, 200 U/mL) was added to the mixture and thrombosis was observed
once again. The other tube contained a combination of human blood fibrinogen and CFE,
and the production of fibrin was observed.

Table 2. The experimental method for the analysis of thrombin-like activity.

Group Composition

1 Human blood fibrinogen (10 mg/mL), human thrombin (200 U/mL)
2 Human blood fibrinogen (10 mg/mL), human thrombin (200 U/mL), CFE (72 U/mL)
3 Human blood fibrinogen (10 mg/mL), CFE (72 U/mL)

2.12. Dissolution of Blood Clots by CFE In Vitro

The dissolution effect of CFE on blood clots was determined according to the method
of Zhou et al. [24] with minor modifications. CFE (500 µL, 72 U/mL) was co-incubated with
whole blood clots (0.5049 g, 0.5065 g, 0.5059 g) obtained from healthy volunteers at 37 ◦C
for 24 h. The samples were centrifuged at 3000 r/min for 30 s at various time intervals
(10 min, 20 min, 40 min, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, 12 h, and 24 h), and the supernatant was
discarded. The residual clot was weighed to determine the clot dissolution rate.

Clot dissolution rate = [
(clot weight before dissolving − clot weight after dissolving)

clot weight before dissolving
]× 100%

2.13. Fibrin(ogen)olytic Activity of CFE

The fibrinogenolytic activity of the purified enzyme was estimated according to the
method of Liu [13]. A 20 µL (20 mg/mL) volume of human blood fibrinogen and 20 µL
(72 U/mL) of CFE were mixed and incubated at 37 ◦C. Samples were collected at different
time intervals, specifically 1 min, 5 min, 15 min, 30 min, 1 h, 1.5 h, 2 h, 3 h, 4 h, and 5 h.
Cleavage patterns of fibrinogen were analyzed by SDS-PAGE.

To analyze the fibrinolytic activity of CFE, 20 µL of 2% fibrinogen was mixed with
10 µL of thrombin and allowed to clot. After clot formation, 30 µL CFE (72 U/mL) was
added and incubated at 37 ◦C for different time intervals (1 min, 5 min, 15 min, 30 min, 1 h,
2 h, 3 h, and 4 h). The cleavage patterns of fibrin were analyzed by SDS-PAGE.

2.14. Effects of CFE on Some Blood Proteins

The influence of CFE on specific protein components in the bloodstream was also
examined. A 20 µL solution of CFE (72 U/mL) was combined with equal volumes of
human thrombin (15 mg/mL), immunoglobulin G (IgG, 15 mg/mL), and human serum
albumin (HSA, 15 mg/mL), respectively, followed by incubation at a temperature of 37 ◦C
for 4 h. Subsequent to incubation, the samples underwent analysis by SDS-PAGE.

2.15. Analysis of Anticoagulant Activity of CFE In Vitro

Platelet-poor plasma (PPP) was prepared from the blood of healthy volunteers (n = 6)
by centrifuging the blood twice at 3000 r/min for 20 min at 4 ◦C, and the plasma in the
supernatant was collected for use [25]. The reactants of different groups (Table 3) were
incubated at 37 ◦C for 3 min. An automatic thrombin analyzer was used to determine five
coagulation indexes in vitro, including prothrombin time (PT), fibrinogen content (FIB),
activated partial thrombin time (APTT), thrombin time (TT), and prothrombin activity (PA).
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Table 3. The experimental method for the analysis of anticoagulant activity.

Group Composition

Blank control group 500 µL PPP
Negative control group 500 µL PPP, 500 µL normal saline
Positive control group 500 µL PPP, 500 µL heparin sodium (30 U/mL)
CFE low-dose group 500 µL PPP, 500 µL CFE (10 U/mL)
CFE high-dose group 500 µL PPP, 500 µL CFE (30 U/mL)

The in vitro anticoagulant effect of CFE was also analyzed. Fresh human blood (1 mL)
was mixed with CFE in sterilized centrifuge tubes. In separate tubes, the blood was mixed
with normal saline (as a negative control) or heparin sodium (as a positive control). The
experiment took place at 37 ◦C, and the process of blood clot formation was visually
monitored continuously. To evaluate the anticoagulant activity, the tubes were inverted
periodically every 5 s to observe any movement of blood along the tube and determine
when coagulation occurred, indicating the external coagulation time.

3. Results and Discussion
3.1. Purification of a Fibrinolytic Enzyme from Culture Supernatant

The fibrinolytic enzyme was extracted from the supernatant of the liquid fermentation
culture of Coprinus comatus. Under the optimized fermentation conditions, the enzyme
activity reached 136.89 U/mL after fermentation for 6 days. The fermentation supernatant
was collected as a crude enzyme solution. The fibrinolytic enzyme from Coprinus comatus
was purified by ammonium sulfate precipitation, Octyl-Sepharose FF (Figure 1A), Sephadex
G-25 column, SP-Sepharose HP (Figure 1B), and Source 15PHE (Figure 1C). The summaries
of the recovery and purification folds for each step are shown in Table 4. The fibrinolytic
enzyme from Coprinus comatus was purified by a fold of 241.02, with a specific activity of
3619 U/mg and an overall yield of 10.02%.

Table 4. Purification steps of the fibrinolytic enzyme from Coprinus comatus.

Purification Steps Volume Protein Activity Recovery Specific
Activity

Purification
Fold

mL mg U % U·mg−1

Crude enzyme 200.00 1684.00 25,286.00 100.00 15.02 1.00
60% (NH4)2SO4 50.00 293.00 21,847.00 86.40 74.56 4.97
Octyl-FF 69.00 40.02 18,415.41 72.83 460.16 30.65
G-25 120.00 27.60 16,098.00 63.66 583.26 38.84
SP-HP 28.00 4.48 6943.44 27.46 1907.54 127.04
Source 15PHE 7.00 0.69 2533.30 10.02 3619.00 241.02

3.2. Molecular Weight and Purity Analysis of CFE

The purity of CFE was verified by SDS-PAGE, Native-PAGE, and fibrin zymography
electrophoresis. The purified fibrinolytic enzyme from Coprinus comatus appeared as a
single protein band on SDS-PAGE (Figure 2). It indicated that the fibrinolytic enzyme was a
single-subunit protein with a molecular weight of 19.5 kDa. CFE also showed a single band
in both Native-PAGE electrophoresis and fibrin zymography electrophoresis (Figure 3),
indicating that the sample had reached electrophoretic purity. The band was placed on
the fibrin plate and incubated at 37 ◦C; it was found that transparent areas appeared at
the corresponding gel band in the fibrin plate, indicating that the band had fibrinolytic
activity and was the target protein. It was worth noting that the molecular weight of CFE
was smaller than that of fibrinolytic enzymes reported from mushrooms such as Boletus
pseudocalopus (63.5 kDa) [26], Hericium erinaceum (51 kDa) [27], and Tremella fuciformis
(38 kDa) [28]. It was similar to fibrinolytic enzymes from Pleurotus ferulae (20 kDa) [15],
Tricholoma saponaceum (18.1 kDa) [29], Armillaria mellea (21 kDa) [30], and Schizophyllum
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commune (17 kDa) [31]. Enzymes with smaller molecular weights confer the advantage of
lower immunogenicity, making them more suitable for drug or health food development.
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3.3. Determination of the N-Terminal Amino Acid Sequence

The N-terminal sequences of CFE were determined by Edman degradation. The
first nine amino acids of the purified enzyme were A-T-Y-T-G-G-S-Q-T. By analyzing this
sequence with the UniProt-BLAST database, we found that a portion of the N-terminal se-
quence of the purified enzyme shares homology with those of previously reported enzymes
(Table 5). It was similar to Prevotella sp. (88%, MBP1540255.1), Mytilus galloprovincialis (88%,
VDI71986.1), Clostridium saccharoperbutylacetonicum (89%, WP_015393369.1), and Prolixibac-
teraceae bacterium (89%, HBL77885.1). It is worth noting that the sequence of CFE does
not exactly match the N-terminal sequence of any known protease, indicating that it is a
novel enzyme.
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Table 5. Comparison of N-terminal sequence of CFE.

Source Position of First
Amino Acid Sequence Identity (%) Accession Number

Coprinus comatus ATYTGGSQT This study
Prevotella sp. 90 TYTGGSQT 88% MBP1540255.1
Mytilus galloprovincialis 536 TYTGGSQT 89% VDI71986.1
Clostridium
saccharoperbutylacetonicum 205 ATYTGGAQT 89% WP_015393369.1

Prolixibacteraceae bacterium 321 ATYTGGTQT 88% HBL77885.1

3.4. Effects of Temperature and pH on the Activity of CFE

Temperature exerts a significant impact on enzymes, primarily influencing their stabil-
ity and susceptibility to thermal denaturation. Additionally, it can affect both the rate of
enzymatic reaction and lead to enzyme inactivation. The activity of enzymes is also influ-
enced by pH. Changes in pH not only impact the spatial conformation of enzyme molecules
but also affect the ionization and affinity between enzyme and substrate molecules [31–33].

The optimum temperature, pH, thermal stability, and pH stability of CFE were studied
by measuring the residual enzyme activity with the fibrin plate method. The effect of
temperature on the fibrinolytic activity of the enzyme was examined within a temperature
range of 22 ◦C to 67 ◦C, revealing an optimal temperature of 42 ◦C (Figure 4A). The thermal
stability of CFE was measured in the range of 24 ◦C to 57 ◦C. The results showed that
the enzyme exhibited good thermal stability within the temperature range of 24 ◦C to
42 ◦C, with the fibrinolytic activity remaining above 80% after incubation for 1–2 h at
these temperatures. Even after a prolonged incubation period of 4 h at these temperatures,
the enzyme maintained an activity level exceeding 71.32% (Figure 4B). However, the
relative enzyme activity and thermal stability of the enzyme decreased significantly when
the temperature exceeded 47 ◦C. Optimal temperatures for the majority of fibrinolytic
enzymes derived from mushrooms typically fall within the temperature range of 20 ◦C
to 60 ◦C [29–35]. The optimal temperature of CFE was similar to that of the fibrinolytic
enzymes from Bacillus amyloliquefaciens GUTU06 [32] and Coprinopsis atramentaria [33],
which exhibited optimal temperatures of 45 ◦C and 50 ◦C, respectively. However, it was
higher than that of the fibrinolytic enzymes from Hericium erinaceum [27] and Cordyceps
militaris [13], which exhibited optimal temperatures of 30 ◦C and 37 ◦C, respectively.

The effect of pH on fibrinolytic activity was examined at different pH levels. Optimal
fibrinolytic activity was observed at pH 7.6 (Figure 4C), which corresponds to the physio-
logical pH of humans. The enzyme exhibited favorable stability within the pH range of 6.6
to 8.2 for 6 h. In this stable pH range, the enzyme activity remained above 80% after 4 h of
incubation and still exceeded 71.2% after 6 h. However, following a 24 h incubation period,
the residual enzyme activity was observed to be greater than 60.2% (Figure 4D). As already
reported, the optimal pH for mushroom fibrinolytic enzymes was within a pH range of 4 to
9, although most of them had an optimal pH between 7 and 7.8 [14,16,29–35]. Fibrinolytic
enzymes, such as those from Neurospora sitophila [36] and Pleurotus ostreatus [14], showed
similar results with an optimal pH value of 7.4. However, it differs from the fibrinolytic
enzymes extracted from Flammulina velutipes [10] and Pleurotus eryngii [16], as they had
optimal pH values of 5.0 and 6.0.
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Figure 4. Effects of temperature and pH on fibrinolytic activity of CFE. (A) Optimal temperature.
(B) Temperature stability. (C) Optimal pH. (D) pH stability.
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3.5. Effects of Metal Ions, Protease Inhibitors, and Some Reagents on Fibrinolytic Activity of CFE

Metal ions as components of enzymes or activators affect enzymatic reactions. The
fibrinolytic activity of CFE was influenced by the presence of metal ions. It was found
that Zn2+, K+, Ca2+, Mn2+, and Mg2+ stimulated fibrinolytic activity, whereas Fe2+, Fe3+,
Al2+, and Ba2+ inhibited fibrinolytic activity as shown by the residual enzyme activity
(Table 6). The results indicated that Zn2+, K+, Ca2+, Mn2+, and Mg2+ might serve as the
active central components or activators of CFE. The results were similar to those previously
reported fibrinolytic enzymes, such as the enzyme from Pleurotus ostreatus [14], which
exhibited activation in the presence of Ca2+ and K+ while being inhibited by Fe2+ and Fe3+.
The protease with fibrinolytic activity from Coprinopsis atramentaria [33] was activated by
Mg2+ and inhibited by Al2+, whereas the fibrinolytic enzyme from Hericium erinaceum [27]
showed activation in the presence of Ca2+, Mg2+, and Mn2+ but inhibition in the presence
of Cu2+ and Fe2+.

Table 6. Effects of some metal ions on the fibrinolytic activity of CFE.

Metal Ions Residual Fibrinolytic Activity (%)

Control 100
Zn2+ 154.51 ± 2.21
Fe2+ 11.75 ± 0.53
Cu2+ 95.74 ± 0.93
Fe3+ 40.45 ± 0.64
K+ 110.89 ± 3.63
Ca2+ 173.20 ± 1.17
Na+ 97.85 ± 2.93
Mn2+ 146.33 ± 3.01
Al2+ 30.28 ± 0.87
Mg2+ 108.50 ± 3.16
Ba2+ 76.18 ± 3.27

Protease inhibitors can interact with specific groups on the active site of the protease,
leading to a reduction in protease activity without inducing denaturation of the enzyme
proteins. According to the inhibitor specificity of the protein, PMSF is a typical inhibitor of
both serine proteases and cysteine proteases, effectively inhibiting the activity of serine pro-
teases as well as sulfhydryl protease. EDTA inhibits metalloproteinases, aprotinine inhibits
serine proteases, TPCK inhibits chymotrypsin, SBTI is a soybean trypsin inhibitor, and
pepstatin is a pepsin inhibitor [28,31]. The activity of fibrinolytic enzymes was examined
in the presence of some protease inhibitors (Table 7). The enzyme was completely inhib-
ited by 1–10 mM EDTA, and it was also partially inhibited by PMSF and SBTI, resulting
in inhibitions of 12.98% and 47.19%, respectively, at a concentration of 10 mmol/L. The
enzyme activity was mildly inhibited by a high concentration of aprotinin. It was implied
that CFE might be a serine-like metalloproteinase, potentially containing active centers
similar to those found in soybean trypsin. The effects of TPCK and pepstatin on the enzyme
activity were found to be insignificant. The observation suggested that the enzyme did
not have a similar active center to chymotrypsin and pepsin. Fibrinolytic enzymes from
Tremella fuciformis [28] and Schizophyllum commune [31] were also found to be inhibited by
EDTA. The fibrinolytic enzyme produced by Bacillus licheniformis KJ-31 [37] was completely
inhibited by a low concentration of PMSF, while EDTA did not affect its activity.
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Table 7. Effects of protease inhibitors on the fibrinolytic activity of CFE.

Inhibitor Concentration (mmol/L) Residual Fibrinolytic Activity (%)

Control 100

Aprotinine

10 85.53 ± 1.27
5 97.89 ± 2.26
2.5 104.88 ± 1.63
1 107.03 ± 1.81

PMSF

10 12.98 ± 2.11
5 24.26 ± 1.82
2.5 30.46 ± 3.21
1 39.12 ± 2.93

TPCK

10 87.21 ± 1.39
5 90.03 ± 2.22
2.5 105.76 ± 2.31
1 98.11 ± 1.97

Pepstatin

10 92.37 ± 1.34
5 94.82 ± 1.41
2.5 97.20 ± 1.68
1 98.32 ± 2.08

EDTA

10 0.00
5 0.00
2.5 0.00
1 0.00

SBTI

10 47.19 ± 2.36
5 58.42 ± 1.83
2.5 79.46 ± 1.96
1 91.67 ± 2.21

The impact of some protective agents, protein denaturants, and organic solvents on
the enzyme activity was investigated (Table 8). Based on the relative enzyme activity, it was
observed that SDS and urea exhibited inhibitory effects on fibrinolytic activity, suggesting
that these reagents could potentially cause denaturation of the enzyme. The fibrinolytic ac-
tivity was not significantly affected by reduced glutathione, oxidized glutathione, cysteine,
or β-mercaptoethanol. These findings indicated that the presence of a sulfhydryl group did
not have a significant impact on the activity of CFE. The activity of the enzyme was slightly
inhibited by BSA, and acetone also had an inhibitory effect on enzyme activity. Gelatin,
peptone, and glycerin were found to enhance the activity of the enzyme, suggesting their
protective effect on CFE.

Table 8. Effects of some reagents on the fibrinolytic activity of CFE.

Reagent Concentration Residual Fibrinolytic Activity (%)

Control 100
Cysteine 20 mmol/L 97.85 ± 3.27
Reduced glutathione 5 mmol/L 92.62 ± 2.83
Oxidized glutathione 5 mmol/L 96.34 ± 2.75
β-mercaptoethanol 0.50% 97.02 ± 2.48
Peptone 1% 103.08 ± 2.74
Gelatin 1% 149.91 ± 1.29
Bovine serum albumin 1% 80.61 ± 2.39
Acetone 10% 89.95 ± 1.86
Glycerol 10% 168.78 ± 1.95
SDS 0.30% 4.64 ± 0.22
Urea 8 mol/L 45.33 ± 3.08
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3.6. Plasminogen Activator Activity of CFE

The degradation of thrombus by fibrinolytic enzymes involves two pathways: one
directly degrades coagulation, and the other one indirectly degrades fibrin by activating
plasminogen into plasmin. The plasminogen activator activity of CFE was examined on
plasminogen-negative and plasminogen-positive fibrin plates. The clarity and size of the
lysis zones in plasminogen-negative and plasminogen-positive fibrin plates were signif-
icantly different (Figure 5A,B). The hydrolytic circles on the plasminogen-positive fibrin
plate were larger and clearer than those on the plasminogen-negative fibrin plate, while
urokinase only showed lysis zones on the plasminogen-positive fibrin plate, indicating that
CFE could not only directly degrade fibrin, but also activated the conversion of plasmino-
gen into plasmin. These results suggested that CFE could act as a plasminogen activator.
The enzyme was similar to fibrinolytic enzymes from Cordyceps militaris, Agrocybe aegerita,
and Sipunculus nudus [13,23,38], which exhibited dual fibrinolytic effects. In contrast, the
fibrinolytic enzyme from Lyophyllum shimeji [39] could only indirectly contribute to the
dissolution of fibrin.
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3.7. Effects of Simulated Gastric and Blood Environment on the Fibrinolytic Activity of CFE

Research the tolerance of CFE to some human environments, the residual enzyme
activity was measured in simulated human gastric juices and blood (Table 1 and Figure 6).
The fibrinolytic activity of CFE was inhibited by gastric juice and showed 42.5% residual
activity in artificial gastric juice after a 4 h incubation period (gastric emptying time). The
enzyme activity remained at 57.36% after a 4 h incubation when the pH of simulated gastric
juice was adjusted to 7.4, indicating that the fibrinolytic activity of CFE might be inhibited
in a short time but not deactivated. When broth or sucrose was added to gastric juice as
a protective agent, the residual enzyme activities were 64.27% and 63.47%, respectively,
after a 4 h incubation period. However, when both carbohydrates and broth were present
simultaneously, the residual enzyme activity was 77.49%, indicating that the presence of
both carbohydrates and proteins exerted a synergistic protective effect on the activity of
CFE. Therefore, taking the enzyme after meals could help maintain some of its activity.
However, the absorption process in the small intestine further reduced the activity. The
enzyme also exhibited tolerance to the simulated blood environment and maintained a
relative activity of 72.11% after being incubated in Locke solution for 4 h. Based on the
above results, the enzyme has demonstrated its ability to withstand both the physiological
conditions of the digestive system and the human blood environment. Therefore, it is
recommended to be taken after a meal or administered intravenously. Similarly, fibrinolytic
enzymes purified from Agrocybe aegerita [23] and Cordyceps militaris [40] exhibited inhibitory
effects on enzyme activity in gastric juices, while protein solution and saccharose exerted a
protective effect on enzyme activity, resulting in the maintenance of approximately 60%
residual enzyme activity through intravenous administration.
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Figure 6. Effect of simulated gastric and blood environments on the CFE. Sample 1, CFE in water
(control); sample 2, CFE in artificial gastric juice; sample 3, CFE in gastric juices with a pH of
7.4; sample 4, CFE in artificial gastric juice and broth; sample 5, CFE in artificial gastric juice and
saccharose; sample 6, CFE in artificial gastric juice, saccharose, and protein broth; sample 7, CFE in
Locke solution. Different letters indicate significant differences (p < 0.05).

3.8. Analysis of Thrombin-like Activity of CFE

The thrombin-like activity of CFE was analyzed by comparing clot formation in
different mixtures (Table 2). The results are shown in Figure 7. The formation of a blood clot
was induced in test tube 1 by mixing human thrombin and human blood fibrinogen, serving
as a positive control. The combination of CFE and human blood fibrinogen in test tube 2
displayed a distinct absence of fibrin clots, even after the addition of human thrombin to
the mixture. The findings revealed that CFE disrupted the structure of fibrinogen, thereby
impeding the conversion into fibrin by thrombin. The absence of fibrin clot formation in
the mixture of human blood fibrinogen and CFE, as observed in test tube 3, indicates that
CFE did not have thrombin-like activity. Li et al. [23] also observed a similar result for a
fibrinolytic enzyme from Agrocybe aegerita. The findings suggest that CFE has the potential
to serve as an effective anticoagulant for the prevention of fibrin clot formation.
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3.9. In Vitro Fibrinolytic Effect of CFE on Blood Clots

The fibrinolytic effect of CFE in vitro was evaluated with whole blood clots of healthy
volunteers. The dissolution rate of CFE in blood clots was determined at different time
intervals. The results, presented in Table 9, demonstrated the ability of CFE to dissolve
blood clots with a significant increase in dissolution rate over time. The rate of blood clot
dissolution exceeded 50% within 150 min and surpassed 80% within a period of 24 h. The
results of in vitro clot lysis indicated that CFE exhibits significant thrombolytic activity.
CFE exhibited similar activity to fibrinolytic enzymes from Cochliobolus hawaiiensis [41] and
Bacillus subtilis DC33 [42], which have previously been reported to possess the ability to
dissolve blood clots.

Table 9. Analysis of dissolution of blood clots by CFE at different time intervals.

Time Weight (g) Dissolution Rate (%)

0 0.5058 ± 0.0062 0.00
10 min 0.4713 ± 0.0058 6.82
20 min 0.4082 ± 0.0047 19.30
40 min 0.3647 ± 0.0039 27.90
60 min 0.3329 ± 0.0042 34.18
90 min 0.3183 ± 0.0028 37.07
120 min 0.2803 ± 0.0036 44.58
150 min 0.2436 ± 0.0048 51.84
180 min 0.2229 ± 0.0052 55.93
12 h 0.1728 ± 0.0041 65.84
24 h 0.0882 ± 0.0032 82.56

3.10. Fibrin(ogen)olytic Activity of CFE

The fibrin(ogen)olytic activity of CFE and the cleavage pattern of fibrin(ogen) chains
were analyzed (Figure 8A,B). Fibrinogen and fibrin both consist of Aα, Bβ, and γ chains.
The degradation mode of fibrinogen and fibrin was confirmed by analyzing the disappear-
ance order of those bands. The fibrinogen degradation activity of CFE was verified by
SDS-PAGE (Figure 8A). Under the action of CFE, the Aα chain of fibrinogen was degraded
first, followed by the Bβ chain and γ chain. It was noteworthy that the Aα chain was
degraded by CFE within 1 min, whereas the Bβ chain was degraded within 1 h, and the
γ chain underwent slow degradation for 3 h. According to previous reports, the fibri-
nolytic enzyme from Hericium erinaceum [27] caused rapid degradation of the Aα chain of
fibrinogen and slower degradation of the γ chain, but it did not hydrolyze the Bβ chain
of fibrinogen. According to the study conducted by Kim et al. [43], it was observed that
the fibrinolytic enzyme derived from Cordyceps militaris initially targeted the Aα chains of
fibrinogen for hydrolysis, followed by subsequent hydrolysis of the γ and Bβ chains. A
fibrinolytic enzyme, MA-1, purified from Mycoleptodonoides aitchisonii [44] first hydrolyzed
the Aα chain of fibrinogen, then the γ and Bβ chains.

The cleavage effects of CFE on fibrin (Figure 8B) were also investigated. The degra-
dation patterns of fibrin were different from those of fibrinogen. The β and γ chains were
simultaneously hydrolyzed, resulting in the complete degradation of both chains within
2 h of incubation. The Aα chain of fibrin was hydrolyzed quite slowly and was completely
degraded in 5 h. Its degradation pattern differed from that of fibrinolytic enzymes found in
Flammulina velutipes [10] and Pleurotus ostreatus [14], which could sequentially degrade the
Aα, Bβ, and γ chains of fibrin. The Aα chain was rapidly hydrolyzed by the fibrinolytic
enzyme derived from Cordyceps militaris [13] fruiting bodies, while the hydrolysis of the γ

chain and Bβ chain was slow.
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are shown in Figure 9. The enzyme exhibited slight hydrolysis of Ighasnd HSA, indicating 
that it has some adverse effects on the immune system. CFE also exhibited partial degra-

Figure 8. Cleavage pattern of fibrin(ogen) by CFE; (A) SDS-PAGE analysis of human blood fibrinogen
hydrolyzed by CFE. Lane C, control; Lanes 1–10, degradation pattern of fibrinogen at different time
intervals of 1 min, 5 min, 15 min, 30 min, 1 h, 1.5 h, 2 h, 3 h, 4 h, and 5 h, respectively. (B) SDS-PAGE
analysis of human fibrin hydrolyzed by CFE; Lane C, control; Lanes 1–9, degradation pattern of fibrin
at different time intervals of 1 min, 5 min, 15 min, 30 min, 1 h, 2 h, 3 h, 4 h, and 5 h, respectively.

3.11. Effects of CFE on Some Blood Proteins

The effect of CFE on some typical human blood proteins such as human serum albumin
(has), immunoglobulin G (IgG), and human thrombin was studied by SDS-PAGhasHSA
plays a crucial physiological role in the body, serving a pivotal function in enlarging blood
volume and maintaining plasma osmotic pressure. IgG accounts for about 70% of human
plasma globulin and has the dual role of immune regulation and immune enhancement.
As a coagulation factor, thrombin plays a key role in the process of thrombosis. The blood
proteins were incubated with CFE for 4 h, and the degradation patterns are shown in
Figure 9. The enzyme exhibited slight hydrolysis of Ighasnd HSA, indicating that it has
some adverse effects on the immune system. CFE also exhibited partial degradation of
human thrombin, thereby demonstrating its potential to inhibit fibrin clot formation and
consequently prevent thrombosis. Liu et al. [13] found that the enzyme from Cordyceps mili-
taris could partially hydrolyze human thrombin and serum albumin but had no significant
effect on IgG.

3.12. Analysis of Anticoagulation Activity of CFE In Vitro

The assessment of anticoagulant activity involves evaluating the coagulation screen
and the inhibitory effect of CFE on blood clot formation in vitro. The coagulation screen,
which includes activated partial thromboplastin time (APTT), prothrombin time (PT), and
prothrombin activity (PA), thrombin time (TT), and fibrinogen (FIB) assays, is a crucial
clinical diagnostic index commonly employed for identifying fibrinolysis or coagulation
disorders in vitro [45–47]. APTT and PT are used to measure the activity of the extrinsic
and intrinsic pathways of the clotting cascade, respectively. PA can more precisely reflect
the activity of coagulation factors. TT represents the time required for the conversion of
fibrinogen into fibrin, and FIB indicates the concentration of fibrinogen in a sample.
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CFE was incubated with the plasma of healthy volunteers at 37 ◦C for 3 min, followed
by the detection of its impact on coagulation screening indexes using an automatic coag-
ulation analyzer. The results are shown in Figure 10. The results demonstrated that, in
comparison to the blank group and negative control group, both the high- and low-dose
groups of CFE exhibited significantly increased levels of APTT, PT, and TT and simulta-
neously decreased levels of FIB and PA. Moreover, the high-dose CFE group exhibited a
more pronounced effect compared to that of the positive control group, while the effect ob-
served in the positive control group surpassed that of the low-dose CFE group. On the one
hand, the increase in the APTT and PT levels (Figure 10A,B) indicated that CFE inhibited
the coagulation cascade in both the intrinsic and extrinsic pathways of coagulation. The
speculation was that CFE might impede coagulation factors XII, XI, V, and VII in both the
endogenous and exogenous coagulation pathways, hinder the activation of coagulation
factor X to Xa, inhibit the conversion of prothrombin to thrombin, and result in a reduction
in PA levels (Figure 10C). Meanwhile, Section 3.11 demonstrated that CFE could hydrolyze
thrombin. As a result, a reduction in thrombin leads to an extended conversion time for
fibrinogen into fibrin, which was reflected in the improvement of TT levels (Figure 10D).
On the other hand, as depicted in Figure 10E, CFE could reduce the content of FIB. This
result also confirmed the experimental results of Section 3.10, which demonstrated that
CFE possesses the capacity to hydrolyze and disrupt the structural integrity of fibrinogen,
thereby impeding its conversion into fibrin and resulting in a reduction in FIB content.
The experimental results of the coagulation index demonstrate that CFE could serve as a
potent plasma anticoagulant or fibrinolytic agent to prevent thrombosis effectively. How-
ever, administering anticoagulants requires a delicate equilibrium between under- and
over-treatment. Choi et al. [15] found that the fibrinolytic enzyme from Pleurotus ferulae
significantly prolonged the levels of APTT and PT in vitro. Yang et al. [45] discovered that
the protease with fibrinolytic activity could increase the levels of APTT and PT in plasma.
The fibrinolytic enzyme from Petasites japonicus [46] significantly increased the APTT level
but had no notable impact on PT.
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Figure 10. Effects of CFE on coagulation index in vitro. The levels of (A) APTT, (B) PT, (C) PA,
(D) TT, and (E) FIB in different experimental groups. Different letters indicate significant differences
(p < 0.05).

The anticoagulant property of CFE in vitro was also researched. With normal saline as
a negative control and heparin sodium as a positive control, the coagulation of blood in
different groups of centrifuge tubes was observed. The coagulation time of fresh blood was
292 s, and the coagulation time of blood in normal saline was 768 s. As shown in Figure 11,
samples with heparin and CFE did not coagulate even after 4 h. After incubation for 24 h,
the blood in the heparin group became viscous and its flow state was blocked, whereas the
blood in the CFE group remained non-coagulated and retained its free-flowing state. The
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results showed that CFE could be used as an anticoagulant, and its anticoagulant activity
was slightly better than heparin.
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