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Abstract: Sunflower is an important crop, and the vitality and moisture content of sunflower seeds
have an important influence on the sunflower’s planting and yield. By employing hyperspectral tech-
nology, the spectral characteristics of sunflower seeds within the wavelength range of 384–1034 nm
were carefully analyzed with the aim of achieving effective prediction of seed vitality and moisture
content. Firstly, the original hyperspectral data were subjected to preprocessing techniques such as
Savitzky–Golay smoothing, standard normal variable correction (SNV), and multiplicative scatter
correction (MSC) to effectively reduce noise interference, ensuring the accuracy and reliability of
the data. Subsequently, principal component analysis (PCA), extreme gradient boosting (XGBoost),
and stacked autoencoders (SAE) were utilized to extract key feature bands, enhancing the inter-
pretability and predictive performance of the data. During the modeling phase, random forests (RFs)
and LightGBM algorithms were separately employed to construct classification models for seed
vitality and prediction models for moisture content. The experimental results demonstrated that the
SG-SAE-LightGBM model exhibited outstanding performance in the classification task of sunflower
seed vitality, achieving an accuracy rate of 98.65%. Meanwhile, the SNV-XGBoost-LightGBM model
showed remarkable achievement in moisture content prediction, with a coefficient of determination
(R2) of 0.9715 and root mean square error (RMSE) of 0.8349. In conclusion, this study confirms that
the fusion of hyperspectral technology and multivariate data analysis algorithms enables the accurate
and rapid assessment of sunflower seed vitality and moisture content, providing robust tools and
theoretical support for seed quality evaluation and agricultural production practices. Furthermore,
this research not only expands the application of hyperspectral technology in unraveling the intrinsic
vitality characteristics of sunflower seeds but also possesses significant theoretical and practical value.

Keywords: hyperspectral imaging technology; sunflower seed vitality; seed moisture content; feature
extraction; ensemble learning model

1. Introduction

Seed vigor [1] plays a pivotal role in agricultural production and can be defined as the
capability of seeds to maintain viability and germination potential [2]. Sunflower, being a
significant economic crop due to its abundant oil resources and nutritional value in the food
industry, livestock production, and beekeeping, holds an indispensable position in various
domains [3]. The quality of seeds directly influences the production efficiency and output
quality of sunflowers, with seed vigor and moisture content serving as crucial indicators
of seed quality. Seed vigor, a sensitive parameter that reflects the physiological status and
germination potential of seeds, not only reveals the strength of seed germination capacity
but also uncovers the early-field-growth health and anticipated performance [4,5]. On the
other hand, seed moisture content directly affects seed storage ability and germination
efficiency, and achieving an appropriate moisture level becomes paramount to ensuring
seed vitality and optimal germination performance (as mentioned above). During the
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storage stage, excessive seed moisture content stimulates enzymatic activity, intensifies
respiration, and subsequently depletes the seed’s stored resources, leading to issues such
as decay and mold [6]. Consequently, accurate determination of sunflower seed vigor and
moisture content holds decisive significance in optimizing seed quality management and
enhancing sunflower yield and quality.

Various methods are employed for the assessment of traditional seed viability and
moisture content, encompassing techniques such as germination tests, permeability tests,
color detection, conductivity determination, respiration metabolism analysis, and enzy-
matic activity analysis [7,8]. In these methods, viability assessment typically relies on the
performance of seed germination under favorable conditions or indirect evaluation through
physiological parameters such as conductivity, respiration rate, and specific enzymatic
activity. These parameters profoundly reveal the physiological condition and vitality of the
seeds. Regarding moisture content determination, commonly utilized approaches include
distillation methods, drying methods [9], Soxhlet extraction [10], and Karl Fischer titration
methods [11]. Although these conventional methods offer visual representations of seed
viability and moisture content, they still present several limitations, such as prolonged
testing cycles, low efficiency, high costs, cumbersome procedures, and even the potential
for physical damage to the seeds. Given these limitations, the development of a rapid, non-
destructive technique for assessing the viability and moisture content of sunflower seeds
holds significant value in improving the efficiency of seed quality testing and protecting
seed resources.

During the process of seed aging, changes occur in the external characteristics (such
as color, transparency, surface structure, and optical response) as well as spectroscopic
properties [12,13] due to the evolution of the internal tissue structure and chemical com-
position. Recent studies have extensively employed optical detection techniques, such
as near-infrared spectroscopy (NIR), laser-induced fluorescence (LIF), and Raman spec-
troscopy, to explore various aspects including seed variety identification [14,15], phenolic
compound content [16], mold condition [17], and vitality assessment [18,19], among oth-
ers. However, NIR technology is constrained by single-point sampling and susceptible to
the surface nonuniformity of samples. Although fluorescence spectroscopy can be used
for specific marker detection, it requires additional processing steps that may introduce
harmful substances. Raman spectroscopy is highly sensitive to humidity, especially in the
presence of water molecules, and cannot accurately determine moisture content.

Hyperspectral technology has gained extensive utilization in the field of nondestruc-
tive and rapid assessment of seed vitality owing to its inherent characteristics of rich
multispectral information, high spatial resolution, and strong detection sensitivity [20–24].
Furthermore, groundbreaking research by Wang, Zheli et al. [25] ingeniously integrated
hyperspectral imaging technology with machine learning algorithms, facilitating precise
identification and classification of deteriorated maize seeds through meticulous analysis
of surface texture features. The pioneering study provides a robust methodological foun-
dation for the innovative enhancement of seed inspection devices. However, due to the
exorbitant costs associated with collection and maintenance, the complex requirements for
data processing, and the impact of environmental factors on imaging accuracy, it confronts
inherent limitations. To surmount these constraints, it becomes imperative to address these
challenges through technological optimization, research and development of cost-effective
equipment, and the implementation of efficient algorithms.

Conventional hyperspectral techniques primarily focus on the spectral response of
seeds, often overlooking the fundamental intrinsic physicochemical characteristics that
determine their optical properties. Recent research trends aim to integrate hyperspectral
imaging with chemometrics methods to unravel the connection between the internal
physicochemical attributes of seeds and their optical manifestations, thereby achieving a
more comprehensive understanding of seed transformation processes [26,27]. Through
a comprehensive analysis of both the internal and external features of seeds, a more
accurate assessment of their quality and characteristics can be achieved, providing a more
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scientifically informed basis for seed production and management decisions. Drawing
inspiration from such methodologies, Wang, Zheli et al. [28] successfully employed long-
wavelength near-infrared hyperspectral imaging technology (LWNIR HIS) to accurately
predict the moisture content of individual maize seeds, enabling real-time monitoring of
seed quality. This achievement holds significant implications for seed quality assessment
and agricultural production practices. It is noteworthy that the spectral range of short-
wavelength near-infrared hyperspectral imaging (SWNIR HIS) typically spans from 400 to
1600 nm, encompassing the primary absorption bands of various vital biomolecules within
the seeds, including moisture, proteins, lipids, and carbohydrates. These components
are intricately linked to seed vigor and moisture content. In comparison to LWNIR HIS,
SWNIR light exhibits greater penetration [29], thereby improving the signal-to-noise ratio
of spectral data and facilitating the deciphering of spectral characteristics. This, in turn,
enables the establishment of robust correlation models between these characteristics and
intrinsic quality parameters. Accordingly, our study seeks to utilize hyperspectral imaging
technology (HSI) to monitor the optical characteristics changes in sunflower seeds during
artificial aging. This aims to establish a model for accurately determining the moisture
content of sunflower seeds, thus deepening our understanding and evaluation of sunflower
seed quality.

This study aims to utilize hyperspectral imaging technology to explore the inherent
quality of sunflower seeds at different stages of aging and to establish a quantitative anal-
ysis model for the microscale water content of seeds. The core objectives of this research
are as follows: (1) to develop a vitality classification model for sunflower seeds based
on standard germination test data guided by hyperspectral imaging; (2) to establish a
corresponding predictive regression model for sunflower seed water content using the
classical drying method guided by hyperspectral imaging; (3) to delve into the correlation
between hyperspectral features, seed vitality indices, and water content. By achieving the
aforementioned goals, this study will further uncover the profound potential of hyperspec-
tral imaging technology in seed quality assessment and provide a more comprehensive and
precise tool for evaluating seed quality in agricultural production. The outcomes of this
research not only enrich the methodological framework for seed quality analysis but also
hold significant theoretical and practical implications for the seed industry and modern
agricultural production.

2. Materials and Methods
2.1. Seed Sample Preparation

In order to acquire sunflower seed samples exhibiting varying levels of vitality, this
research employed a methodology of artificially induced aging, given the consistency
between artificial and natural aging at the seed metabolic level [30,31]. In the year 2022,
a purchase was made of 200 g of sunflower seeds of the “Mao Hua Oil Giant” variety,
produced by “Zhongke Maohua”. From this batch, a total of 500 seeds without any signs
of mold or damage were carefully selected and divided into five batches, each containing
100 seeds. One of the groups served as the control group, labeled as fresh seeds with no
storage (NAA), and was kept in standard indoor conditions (temperature 25 °C, relative
humidity 30%). The remaining four groups of seeds were sequentially placed in a seed-
aging chamber, where they underwent graded aging treatments lasting for 2 days (1AA),
4 days (2AA), 6 days (3AA), and 8 days (4AA) under constant conditions (temperature
45 °C, humidity 90%). This process allowed the creation of a curated collection of sunflower
seed samples covering five distinct vitality gradients. Following the completion of the
aging treatments, the seeds were left to rest at room temperature for two days, ensuring a
uniform internal moisture content across all groups. Subsequently, the seeds were brought
to the laboratory for the acquisition of hyperspectral image data.
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2.2. Hyperspectral Image Data Acquisition

This study employed the GaiaSorter hyperspectral sorting system, manufactured by
Zolix Instruments Co., Ltd., Beijing, China. The system was equipped with an Image-λ
“spectral imaging” series high-spectral camera, specifically the Image-λ-V10E-LU model.
The spectral range for data acquisition covered 384–1034 nm, with a spectral sampling
interval of 2.8 nm, utilizing the built-in push-scan scanning mode. The lens of this spectral
imaging device captured the high-spectral data of seed samples along with corresponding
images for each wavelength band. The system was programmed to collect 50 seed samples
in each instance, resulting in a total of 500 samples collected throughout this study.

In order to minimize the impact of fluctuations in light source temperature on the
experimental results, the instrument was preheated for a duration of 30 min prior to the
commencement of the experiment, allowing it to attain a state of stability. Furthermore,
considering the differential light absorption characteristics associated with various colors
and the influence of background effects, an initial acquisition consisted of capturing a
reference dark-field image and an all-white calibration image, which served to correct
the spectral data. Following the completion of sample collection, the acquired data were
imported into the SpecVIEW software for grayscale calibration, employing the standardized
procedure outlined by Equation (1) in accordance with best practices.

Xref =
Xraw − Xdark

Xwhite − Xdark
(1)

In the formula, Xref represents the high-spectral data after monochrome correction,
Xraw denotes the original high-spectral image, Xdark stands for the dark background
data obtained by covering the camera lens, and Xwhite is the full white calibration image
obtained by placing a standard white board with 100% reflectance at the same distance as
the measured object.

The calibrated hyperspectral image data were subjected to spectral analysis using
the professional software ENVI 5.3, as depicted in Figure 1. To mitigate the influence of
the background on the spectral reflectance of sunflower seeds, the region of interest (ROI)
technique was employed, whereby the overall area of each individual sunflower seed sample
was precisely extracted to calculate the average spectral reflectance. By analyzing the full
spectral range image, a single-band grayscale image (814.17 nm) was carefully selected for its
distinctive spectral reflectance contrast between the seeds and the background. Subsequently,
the image was converted into a binary format through thresholding, yielding a black-and-
white representation. Employing the threshold segmentation method, the seed contours
were accurately extracted from the binary image, resulting in the successful acquisition of
500 distinct regions of interest (ROIs) encompassing individual sunflower seeds.

Figure 1. Flow chart of extracting spectral curves from hyperspectral images of sunflower seeds.
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2.3. Standard Germination Test

To evaluate the vitality of sunflower seeds based on high-spectral imaging data,
this study strictly followed the standardized germination test procedure established by
the International Seed Testing Association (ISTA) [32]. At the outset of the experiment,
thorough cleaning and disinfection of the seeds and germination plates were performed
using a 3% hypochlorous acid solution, followed by natural air drying at room temperature.
The experiment utilized filter paper with a pH range of 6.0 to 7.5 as the germination medium,
employing the method of double-layered paper germination (BP), wherein the seeds were
placed in the center between two layers of filter paper. Following the sequence of numbering
during high-spectral data collection, the sunflower seeds were individually arranged in
their corresponding germination plates, which were then placed in an intelligent constant
temperature and humidity chamber for germination under constant conditions of 25 °C
temperature and 40% humidity. Throughout the germination period, water was replaced
every 6 h to ensure that the filter paper remained suitably moist. On the fourth day of
germination, the initial sprouting quantity was recorded, and on the tenth day, the final
counting was performed, thereby determining key indicators such as germination rate
and seedling length for each vitality gradient of sunflower seeds. Data processing was
conducted using the following calculation formula:

Germination potential (GP) =
n1

N
× 100% (2)

Germination rate(GR) =
n2

N
× 100% (3)

Germination index (GI) = ∑
Gt

Dt
(4)

Vigor index (VI) = GI × S (5)

In the aforementioned equations, n1 denotes the number of germinated sunflower
seeds on the 4th day, n2 represents the number of germinated sunflower seeds on the
10th day, Gt signifies the daily germination count within the first 10 days of the germination
test, Dt indicates the number of germination days, and S denotes the average shoot length
(cm) of the seedlings on the 10th day.

2.4. Moisture Content Determination

Sunflower seeds, from which hyperspectral image data were collected, were weighed
using a high-precision electronic balance (FA1004, Qun ’an Scientific Instruments (Zhejiang)
Co., Ltd., Huzhou, China) with an accuracy of 0.1 mg. The weighed seeds were then
labeled and placed into an aluminum container, which was subsequently transferred to a
drying oven set at a temperature of 103 °C ± 1 °C for a period of 48 h until a constant mass
was achieved. The moisture content of the seeds was subsequently calculated based on
Equation (6).

Moisture content (MC) =
m0 − m1

m0 − m
× 100% (6)

where m0 represents the mass of an individual seed with the aluminum shell before drying,
m1 represents the mass of an individual seed with the aluminum shell after drying, and m
represents the mass of the aluminum box.

2.5. Data Analysis Method
2.5.1. Spectral Preprocessing

The raw hyperspectral data are susceptible to various disturbances, such as environ-
mental interference and instrument instability, which introduce noise and outliers. To
enhance the quality and reliability of the data, this study employed a suite of preprocessing
techniques for data purification. Specifically, we employed the Savitzky–Golay smooth-
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ing technique (SG) [33], renowned for its inherent ability to effectively smooth spectral
curves while efficiently mitigating high-frequency noise interference. Compared to conven-
tional moving-average smoothing methods, the SG technique has exhibited remarkable
advantages in preserving crucial data features, such as peaks and valleys, thereby being
particularly well suited for meticulous analysis of agricultural characteristics, including
seed viability and moisture content. Simultaneously, we utilized the standard normal vari-
ate correction method (SNV) [34] to rectify systematic errors and normalize the distribution
of the data. Furthermore, the multiscatter correction (MSC) technique [35] was employed
to effectively eliminate scattering effects in the spectral data, thereby ensuring the precision
and credibility of the original hyperspectral image data.

2.5.2. Sample Partition

Segmenting hyperspectral data into training and testing sets allows for model training
and performance evaluation. In this study, the SPXY (sample set partitioning based on joint
x–y distances) algorithm [36] was employed. This approach is an exemplary method for
sample set partitioning, as it utilizes the joint x–y distance measure based on the Euclidean
distance (Equation (7)) to quantify the distances between samples.

dx(p, q) =

√
n

∑
i=1

(
xp(i)− xq(i)

)2 (7)

In the equation, xp and xq represent two distinct sample datasets, while n denotes the
quantity of spectral bands.

Subsequently, the algorithm partitions the sample set into different subsets based on
the distances between samples. The principle of partitioning is to assign adjacent samples
to the same subset, ensuring that the samples within each subset are closer to each other in
the x–y plane. The calculation formula is as follows:

dy(p, q) =
∣∣yp − yq

∣∣ (8)

dxy(p, q) =
dx(p, q)

maxp,qdx(p, q)
+

dy(p, q)
maxp,qdy(p, q)

(9)

In the formula, dx(p, q) represents the Euclidean distance between spectra, while
dy(p, q) represents the Euclidean distance between physical and chemical measurement
values. The objective of this approach is to preserve the structural features of the original
data as much as possible, thereby ensuring that the distribution of the partitioned subsets
on the x–y plane becomes more uniform and compact.

2.5.3. Feature Dimension Reduction Algorithm

Due to the multitude of spectral bands (256 in total) present in the acquired hyper-
spectral data, there exists a considerable level of intrinsic redundancy. This consequently
leads to lengthy processing times and high computational complexity. Therefore, prior to
constructing classification and regression models, it is imperative to effectively extract and
optimize the hyperspectral features, with the aim of eliminating redundant information
and reducing data dimensions. By doing so, we can circumvent the challenges associ-
ated with the subsequent model construction and analysis, including prolonged training
times, prediction delays, and limited generalization performance arising from the high-
dimensional nature of the data. In this paper, we employ principal component analysis
(PCA), extreme gradient boosting (XGBoost), and stacked autoencoder (SAE) algorithms to
refine the wavelength dimensions of the features, thereby mitigating the computational
complexity of the models.

Principal component analysis (PCA), an extensively employed unsupervised linear
dimensionality reduction technique [37], operates on the fundamental principle of trans-
forming correlated variables within the original dataset into a set of mutually orthogonal
principal components. These principal components are ranked in descending order based
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on their respective abilities to explain variance; while preserving the essential characteris-
tics of the data, PCA strives to maximize the projected variance in the reduced subspace.
This effectively compresses redundant data and unveils pivotal information.

Extreme gradient boosting (XGBoost), a powerful gradient boosting algorithm, show-
cases efficient, precise, and highly scalable feature dimension reduction performance
through the integration of gradient optimization principles, regularization techniques, and
parallel tree model construction mechanisms [38,39]. With its outstanding practicality, this
algorithm has played a crucial role in feature selection, dimension reduction, classifica-
tion, regression analysis, and feature ranking, making it widely employed in the feature
dimension reduction phase of multidimensional data mining tasks.

The autoencoder (AE), serving as a neural network model, primarily focuses on the
encoding and decoding processes of data, emulating the intricacies of data compression and
reconstruction. This model encompasses an encoder component that maps input data into
a lower-dimensional latent space representation, thereafter utilizing a decoder component
to reconstruct the original input from this lower-dimensional representation [40]. The
fundamental concept of the AE lies in the pursuit of learning the most discriminative
compressed representation of the input data, thereby offering an effective tool for tasks
such as dimensionality reduction, denoising, and feature learning.

In the process of dimensionality reduction in an SAE, as shown in Figure 2, there are
typically two crucial steps: Firstly, the pretraining phase is where each layer is individ-
ually trained as a single-layer autoencoder, serving to initialize weights and biases and
to learn preliminary meaningful feature representations. Secondly, the fine-tuning phase
involves consolidating the pretrained layers into a stacked autoencoder, optimizing the
entire network using backpropagation and gradient descent algorithms, aiming to mini-
mize reconstruction errors, thus ensuring the effective acquisition of hierarchical feature
expressions from the data.

Figure 2. Schematic diagram of stacked autoencoder.

2.5.4. Modeling Method

Random forest (RF) is an ensemble learning technique that leverages the construction
and integration of multiple decision trees to facilitate predictions. By employing a voting or
averaging strategy to amalgamate the outputs of individual decision trees, RF enhances the
precision of model predictions. During the construction of each decision tree, the random
forest method incorporates a random sampling mechanism involving nonreplacement
sampling of training samples and features. This process effectively mitigates the risk of
overfitting and bolsters the generalization capabilities of the model [41].
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Light gradient boosting machine (LightGBM), a decision tree ensemble model built
on a gradient boosting framework, employs the histogram-based tree learning algorithm
to significantly enhance training efficiency [42]. This algorithm introduces the leaf-wise
growth strategy, also known as the best–first strategy, with the aim of optimizing the
balance between model complexity and predictive accuracy [43]. Furthermore, LightGBM
integrates gradient-based one-sided sampling and feature parallel learning techniques,
aiming to further accelerate model training speed and enhance model predictive precision.

2.5.5. Model Evaluation Metrics

This study employs a series of widely recognized performance evaluation metrics to
assess the predictive capabilities of the model. These metrics include accuracy, training
set coefficient of determination (R2

c ), root mean square error of the training set (RMSEC),
testing set coefficient of determination (R2

p), and root mean square error of the testing set
(RMSEP) [44,45]. Accuracy measures the proportion of correctly classified samples out of
the total number of samples, reflecting the model’s precision in classification tasks. The
coefficient of determination (R2) is used to indicate the correlation between the model’s
predicted values and the actual observed values, ranging from 0 to 1. A higher value
signifies superior predictive performance of the model. Root mean square error (RMSE),
on the other hand, is employed to evaluate the disparity between the model’s predicted
values and the actual values. A smaller RMSE indicates a smaller prediction deviation and
thus a more optimal performance of the model.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (10)

R2
c = 1 − ∑nc

i=1 (yi,c − ŷi,c)
2

∑nc
i=1 (yi,c − ȳc)

2 (11)

R2
p = 1 −

∑
np
i=1 (yi,p − ŷi,p)

2

∑
np
i=1 (yi,p − ȳp)

2 (12)

RMSEC =

√
1
nc

∑nc
i=1 (yi,c − ŷi,c)

2 (13)

RMSEP =

√
1

np
∑np

i=1 (yi,p − ŷi,p)
2 (14)

In the equations, true positive (TP) represents the quantity of positively classified
samples that the model accurately predicts as positive, true negative (TN) represents the
quantity of negatively classified samples that the model accurately predicts as negative,
false positive (FP) represents the quantity of negatively classified samples that the model
inaccurately predicts as positive, and false negative (FN) represents the quantity of posi-
tively classified samples that the model inaccurately predicts as negative. nc is the number
of samples in the training set, np is the number of samples in the prediction set, yi,c is
the measured value of the i sample in the training set, ŷi,c is the predicted value of the i
sample in the training set, yi,p is the measured value of the i sample in the test set, ŷi,p is
the predicted value of the i sample in the test set, ȳc is the mean value of the training set
samples, and ȳp is the mean value of the test set samples.

3. Results and Discussion
3.1. Standard Germination Test Results

Table 1 presents the vitality indicators of sunflower seeds at different stages of aging.
It is evident that as the aging time increases, the quantity of sprouted samples significantly
exhibits a diminishing trend. Correspondingly, the germination potential, germination
rate, germination index, and vitality index also display a declining pattern. These findings
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elucidate that the artificial aging treatment alters certain physicochemical parameters
within the seeds, leading to the loss of vitality in a subset of sunflower seeds.

Table 1. Results of seed vigor index test.

Aging
Class Sample Count Seed Vigor Seed Inviability GP GR GI VI

NAA 49 43 6 81.63% 87.76% 14.510 120.433
1AA 47 33 14 59.57% 70.21% 9.641 53.026
2AA 50 25 25 40.00% 50.00% 5.996 28.781
3AA 50 18 32 20.00% 36.00% 3.769 14.699
4AA 50 10 40 8.00% 20.00% 1.926 6.934

In this study, it was observed that due to the artificial experimental conditions, one
seed in the NAA group and three seeds in the 1AA group suffered damage. The NAA
group consisted of helianthus seeds that had not undergone an aging process, while the
1AA group comprised helianthus seeds aged for 2 days. Additionally, aging durations of 4,
6, and 8 days were associated with the 2AA, 3AA, and 4AA groups, respectively.

3.2. Results of Moisture Content Determination

We used box plots for outlier detection of sunflower seeds in five groups, with the
detection results shown in Figure 3.

Figure 3. Box plot for outlier detection of moisture content in sunflower seeds.

The box plot, a visual representation of the distribution characteristics of moisture
content, showcases the median, quartiles, and extreme values of five different groups. It
unveils the nuanced variations in moisture content across these groups. Any data points
surpassing 1.5 times the interquartile range are considered outliers and subsequently
excluded from further analysis. After excluding 14 such outliers, the revised statistical data
on sunflower seed moisture content are succinctly summarized in Table 2.
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Table 2. Statistical summary of moisture content in sunflower seeds after the removal of outliers.

Sample Type Sample Size
Moisture Content (%)

Minimum Maximum Mean Standard
Deviation

Moisture
content deter-

mination
236 grains 4.4799 24.6695 14.8082 4.9405

3.3. Original Spectrum and Pretreatment Results

Due to the influence of instrumental noise, systematic biases, and other adverse factors
during the process of hyperspectral measurement, the original spectra commonly exhibit
significant noise in the short- and long-wave regions. Hence, for analysis purposes, this
study selectively utilized 232 effective spectral bands ranging from 421.87 nm to 1009.44 nm.
Figure 4 depicts the original average spectra and the preprocessed spectra of sunflower seed
samples from different aging levels. It can be observed that after the application of SNV
and MSC preprocessing techniques, the spectral differences among seed categories were
somewhat reduced, suggesting that these two preprocessing methods may not effectively
emphasize classification boundaries in the task of seed vitality classification. Conversely, the
SG preprocessing method successfully maintained the spectral distinctiveness of different
aging levels, potentially enhancing performance in seed vitality classification.

Figure 4. Average spectra of sunflower seed samples of different aging categories: (a) original average
spectra; (b) SG smoothing pretreatment average spectrum; (c) SNV pretreatment average spectrum;
(d) MSC pretreated mean spectrum.

In the natural senescence process of sunflower seeds, the internal nutritional compo-
nents undergo lipid oxidation, leading to an intensified rate of degradation of nutrient
substances as aging time prolongs. As depicted in Figure 4, an exploration of the average
spectral curves of sunflower seeds at different stages of aging reveals a consistent increasing
trend with the progression of senescence. Substantial differences in spectral curves between
newly formed seeds and those with varying degrees of aging are likely attributable to
the ongoing decomposition of fatty acids, proteins, and carbohydrates within the seeds,
resulting in the generation of free radicals and oxidation products. These changes manifest
as significant enhancements in spectral reflectance [46].
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3.4. Feature Dimension Reduction Results
3.4.1. PCA

Utilizing principal component analysis (PCA), an in-depth analysis was conducted
on the average spectral reflectance data of sunflower seeds’ raw spectral data within the
wavelength range of 420 to 1010 nm. This analysis aimed to extract the top three principal
components that contribute significantly to the overall variability. As depicted in Figure 5,
the three-dimensional PCA score plot visually portrays the comprehensive representation
of these principal components in capturing the essence of the original spectral information.

Figure 5. (a) PCA 3D distribution of sunflower seed vigor; (b) PCA 3D distribution of moisture
content of sunflower seeds.

Upon analysis of Figure 5, it becomes evident that the first three principal components
succinctly encapsulate the vast majority of the spectral information pertaining to sunflower
seeds. In particular, Figure 5a depicts the concentration of vitality data, wherein the
cumulative contribution of the top three principal components amounts to an impressive
99.90%, with PC1 accounting for 97.65%, PC2 for 1.96%, and PC3 for 0.29%. Despite the
subtle overlap between vital and nonvital seeds within the principal component space, the
existing classification tasks are confronted with a certain level of challenge.

On the other hand, Figure 5b showcases the moisture content dataset, whose top
three principal components cumulatively contribute to 99.86%, specifically corresponding
to 94.69% for PC1, 4.35% for PC2, and 0.82% for PC3. Similarly, employing analogous
methods, one can conduct principal component analysis on the preprocessed spectral
curves, thus extracting the corresponding weight coefficients.

3.4.2. XGBoost

After performing feature extraction using the XGBoost algorithm on the dataset of
sunflower seed vitality classification and water content regression, the distribution of
importance for the top 20 feature bands is extensively depicted in Figure 6. It is notewor-
thy that when only the top 20 feature bands with the highest contribution are selected,
the cumulative contribution rate of these bands has already reached 99.97%. This im-
plies that the extracted key features encompass nearly all vital information, exemplifying
their eminence.

An analysis of Figure 6a,c reveals that the XGBoost algorithm extracts significant
spectral bands primarily concentrated within the ranges of 420–600 nm and 700–1010 nm
for vitality classification and moisture content prediction datasets of sunflower seeds. Of
particular interest, as depicted in Figure 6b, the top five contributing feature bands for
vitality classification are 945.38 nm, 977.32 nm, 942.73 nm, 953.35 nm, and 937.42 nm,
primarily located within the 900–1010 nm range. It is worth noting that the spectral
reflectance within this range exhibits a close correlation with biologically active substances
such as amino acids, lactose, and enzymes [47].
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Similarly, insights from Figure 6d demonstrate that the five key feature bands for
moisture content prediction are 785.71 nm, 811.58 nm, 752.27 nm, 1004.07 nm, and 814.17
nm, mainly distributed within the 700–900 nm range. This spectral band exhibits significant
correlations with pigments, water content, and protein levels [48,49].

Figure 6. Top 20 feature wavelengths extracted by XGBoost algorithm: (a) feature bands extracted by
classification model; (b) XGBoost feature band extraction weight map; (c) feature band extraction
diagram of regression model; (d) XGBoost feature band extraction weight map.

3.4.3. Stacked Autoencoder

By employing the stack autoencoder (SAE) algorithm, the average spectra of the
classification of sunflower seed vitality and regression of moisture content were subjected
to a feature dimension reduction, as depicted in Figure 7. This study revealed that by
reducing the dimensions to 20, after 150 training iterations, the reconstructed spectral
features from the encoding process demonstrated an almost flawless restoration to their
original counterparts. The loss, which measures the discrepancy between the encoded and
original spectral features, was observed to be lower than 0.005. Such outcomes undeniably
underscore the remarkable efficacy and potential of the stack autoencoder in the realm of
spectral data dimensionality reduction.

Through a progressive greedy training process, the unsupervised learning framework
of stacked autoencoders gradually uncovers and captures the deep-seated and intricate
structural features within the dataset, facilitating the approximate reconstruction of the
original data. In the context of spectral data analysis, this dimensionality reduction tech-
nique exemplifies both efficiency and rationality. By reducing the data dimensionality, it
successfully distills crucial feature information while preserving essential data essence.
Consequently, it offers a compact yet information-rich data representation, serving as a
valuable prerequisite for subsequent analysis and processing procedures.
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Figure 7. Loss diagram after extraction of 20 dimensions by SAE algorithm: (a) original spectra of
sunflower seed vitality; (b) original spectra of moisture content of sunflower seeds.

3.5. Classification Results of Seed Vigor

Table 3 presents the modeling accuracy results of various models after preprocessing
and feature wavelength extraction. In this study, we employed a criterion for determining
the vitality of sunflower seeds, which considers embryos with a length exceeding 2 centime-
ters within a 10-day period as vigorous and those falling short as nonvigorous. Utilizing
the SPXY algorithm, a total of 246 sunflower seeds that successfully completed germination
tests were allocated to training and prediction sets in a 7:3 ratio to assess the performance of
the models in both training and prediction. The training set consisted of 172 seeds, among
which 93 were classified as vigorous and 79 as nonvigorous. Conversely, the prediction set
consisted of 74 seeds, with 36 classified as vigorous and 38 as nonvigorous.

Table 3. Accuracy of sunflower seed vigor classification model.

Pretreatment Feature Dimension Reduction
RF LightGBM

Train Test Train Test

RAW

All band 98.84% 91.89% 94.77% 94.59%
PCA 95.93% 85.14% 97.67% 95.95%

XGBoost 99.42% 90.54% 94.77% 95.95%
SAE 97.09% 86.49% 97.09% 95.95%

SG

All band 99.42% 93.24% 94.19% 95.95%
PCA 95.35% 86.49% 94.19% 95.95%

XGBoost 98.84% 97.30% 95.35% 93.24%
SAE 98.26% 87.84% 97.67% 98.65%

SNV

All band 97.09% 63.51% 89.53% 63.51%
PCA 88.37% 64.86% 80.81% 60.81%

XGBoost 95.93% 66.22% 86.63% 68.92%
SAE 93.02% 47.30% 88.37% 60.81%

MSC

All band 96.51% 62.16% 88.37% 63.51%
PCA 87.21% 67.57% 83.14% 60.81%

XGBoost 94.19% 60.81% 87.79% 67.57%
SAE 93.60% 51.35% 85.47% 62.16%

By comparing and analyzing the original spectra with the modeling results obtained
through different preprocessing algorithms, it becomes evident that the original spectra
and SG smoothing preprocessing, due to their minimal transformation of the hyperspectral
curves of seeds, do not alter the separability of spectral curves among different aging classes.
Consequently, they demonstrate superior classification performance. On the other hand,
the SNV and MSC preprocessing algorithms excessively correct the signals associated with
seed biochemical properties. Although they eliminate overall spectral tilt and amplitude
variations, they diminish the separability of characteristic peaks that initially exhibited
significant intensity differences. Therefore, the performance of SNV and MSC preprocessing
algorithms on the seed vitality classification dataset is less satisfactory.
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Upon comparing the modeling results of the unprocessed full-spectrum data and the
model utilizing feature dimensionality reduction, it becomes apparent that while the full-
spectrum modeling captures effective information characteristics, the high-dimensional
attributes of the original spectral data can lead to a propensity for model overfitting,
thereby limiting its generalization performance on unknown test sets. In contrast, feature
dimensionality reduction techniques significantly reduce the complexity of the dataset,
thus facilitating the construction of more concise and easily generalizable classification
models.

On the training set, both the XGBoost and SAE algorithms, after implementing feature
dimensionality reduction, manage to preserve the effectiveness of the original spectral infor-
mation to a certain extent, but they also exhibit a potential inclination toward overfitting the
training data. Conversely, the PCA algorithm maximally reduces the data dimensionality,
yet it may fail to fully elucidate the complete information content of the original spectra,
resulting in a lack of significant advantage in classification performance.

Hence, the quest for feature selection or dimensionality reduction methods that effec-
tively reduce dimensionality while preserving the crucial information becomes crucial. By
doing so, we can prevent overfitting and simultaneously enhance the classification efficacy
of the models on new samples.

In the experimental observation of the RF model, the inherent complexity of the model
manifests in pronounced overfitting tendencies. This is evidenced by the remarkably
high training accuracy of 99.42%, contrasted by a substantial decline to 90.54% in testing
accuracy. Furthermore, the prolonged training time further corroborates the increased
computational complexity of the model. In contrast, the LightGBM model effectively
mitigates the overfitting issue through optimization algorithms, thereby demonstrating
enhanced generalization performance.

Empirical evidence confirms that by employing the SG preprocessing technique and
SAE feature dimensionality reduction strategy, LightGBM achieves an accuracy of 97.67%
on the training set, which further improves to 98.65% on the testing set. The confusion ma-
trix of the SG-SAE-LightGBM algorithm, as depicted in Figure 8, reveals that it accurately
classifies 73 instances of sunflower seed vitality, with only one misclassification. This phe-
nomenon not only indicates LightGBM’s precise prediction capabilities in sunflower seed
vitality classification tasks but also effectively reduces model complexity and overfitting
risks. Consequently, it enhances predictive stability on unknown samples.

Figure 8. SG-SAE-LightGBM confusion matrix: (a) training set confusion matrix; (b) test set confusion
matrix.

3.6. Prediction Results of Seed Moisture Content

This study employed a sample set of 236 sunflower seeds, using their moisture content
data. The SPXY algorithm was utilized to allocate the training set (166 seeds) and the
prediction set (70 seeds) in a 7:3 ratio. The full-spectrum data, along with the feature
variables obtained through three feature extraction algorithms, were inputted separately
into the RF (random forest) and LightGBM models. This allowed for the evaluation and
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comparison of the models’ performance in predicting seed moisture content. The modeling
results are meticulously documented in Table 4.

Table 4. Modeling results of sunflower seed moisture content regression model.

Pretreatment Reduction Dimension
RF LightGBM

R2
c RMSEC R2

p RMSEP R2
c RMSEC R2

p RMSEP

RAW

All band 0.9183 1.4063 0.8644 1.8226 0.9415 1.1894 0.9416 1.1952
PCA 0.9325 1.2778 0.8878 1.6572 0.8889 1.6394 0.9047 1.5271

XGBoost 0.9344 1.2601 0.9012 1.5554 0.9320 1.2830 0.9438 1.1735
SAE 0.8936 1.6044 0.8354 2.0075 0.9403 1.2016 0.9515 1.0889

SG

All band 0.9151 1.4335 0.8699 1.7847 0.9345 1.2591 0.9383 1.2285
PCA 0.9275 1.3247 0.8824 1.6969 0.8889 1.6394 0.9031 1.5401

XGBoost 0.9283 1.3171 0.8888 1.6498 0.9358 1.2458 0.9401 1.2111
SAE 0.9164 1.4222 0.8684 1.7950 0.9210 1.3826 0.9191 1.4072

SNV

All band 0.8849 1.6692 0.9080 1.5004 0.9213 1.3803 0.9476 1.1319
PCA 0.8650 1.8075 0.8790 1.7208 0.8458 1.9320 0.8515 1.9067

XGBoost 0.8903 1.6293 0.9071 1.5082 0.9605 0.9776 0.9715 0.8349
SAE 0.8569 1.8607 0.8688 1.7921 0.9156 1.4291 0.9321 1.2891

MSC

All band 0.8903 1.6297 0.9043 1.5306 0.9221 1.3727 0.9348 1.2633
PCA 0.8684 1.7847 0.8874 1.6605 0.8452 1.9355 0.8548 1.8857

XGBoost 0.8855 1.6645 0.9109 1.4769 0.9547 1.0468 0.9521 1.0058
SAE 0.8803 1.7023 0.8911 1.6328 0.9166 1.4208 0.9392 1.2192

The data presented in Table 4 exemplify the substantial enhancement of the perfor-
mance of the regression model on the test set due to the implemented preprocessing steps.
These findings shed light on the advantageous role of preprocessing methods in reducing
spectral data noise and improving data purity. Notably, the SNV and MSC preprocessing
algorithms demonstrate remarkable efficacy in this regard, underscoring their ability to ef-
fectively separate nonchemometric variations within the spectral data and thus accentuate
the chemical information attributes closely linked to seed moisture content.

Comparatively, the RF model without preprocessing achieved a maximum coefficient
of determination (R2

p) of 0.8644 on the test set, as depicted in Figure 9a within the predictive
scatter plot. However, applying the MSC preprocessing technique further elevated the
model’s performance, as evidenced by an increased R2

p value of 0.9109. The corresponding
predictive scatter plot is illustrated in Figure 9b. These outcomes robustly validate the
indispensability of preprocessing in enhancing both the accuracy and the stability of seed
moisture content prediction.

By comparing the analysis of full spectral data with the modeling results after dimen-
sionality reduction, it was observed that although the full spectral modeling performed
exceptionally well on the training set, as depicted in Figure 9c, with higher values of cor-
relation coefficient (R2

c ) and root mean square error (RMSEC) compared to the validation
set’s correlation coefficient (R2

p) and test set root mean square error (RMSEP), this also
revealed a significant risk of overfitting in the full spectral model. Conversely, the regres-
sion model using dimensionality reduction algorithms effectively addressed the issue of
overfitting. However, the performance of the model after applying the PCA algorithm for
dimensionality reduction was not satisfactory, as shown in Figure 9d, indicating that PCA
to some extent failed to adequately preserve the original spectral information, leading to
a significant loss of data information. In contrast, employing the XGBoost and SAE algo-
rithms for dimensionality reduction of the spectral data not only reduced model complexity
and improved training efficiency but also maximized the retention of the original spectral
information, effectively mitigating the risks associated with overfitting.

Upon comparing the disparities in predictive performance between the RF and Light-
GBM models, it becomes evident that the RF model, owing to its heightened model com-
plexity and potential for overfitting, coupled with its substantial resource requirements,
struggles to achieve efficient and precise predictions. Conversely, the LightGBM model
thrives on its lightweight characteristics, effortlessly achieving rapid regression predictions
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with fewer training parameters. Notably, on the unprocessed full-band original dataset,
the LightGBM model has already showcased superior performance compared to the RF
model, as depicted in Figure 9e. The correlation coefficients (R2

c , R2
p) for the training

and validation sets are 0.9415 and 0.9416, respectively, while the root mean square errors
(RMSEC, RMSEP) for the training set and testing set are 1.1894 and 1.1952, respectively.
Furthermore, with the implementation of SNV preprocessing and XGBoost dimensionality
reduction techniques, the predictive capabilities of the LightGBM model are significantly
amplified. Notably, in Figure 9f, the correlation coefficients and root mean square errors
achieve remarkable values of 0.9605, 0.9715 (R2

c , R2
p), and 0.9776, 0.8349 (RMSEC, RMSEP),

respectively. Consequently, the LightGBM model demonstrates a striking advantage over
the RF model in the prediction of sunflower seed moisture content, elevating not only the
accuracy of predictions but also its practicality and reliability.

Figure 9. Sunflower seed moisture content prediction scatter plot: (a) Raw-All Bands-RF model;
(b) MSC-XGBoost-RF model; (c) SG-All Bands-RF model; (d) MSC-PCA-LightGBM model; (e) Raw-
All Bands-LightGBM model; (f) SNV-XGBoost-LightGBM model.

3.7. Correlation Analysis

In this study, the XGBoost algorithm was utilized to discern the top five key feature
bands from the dataset analyzing sunflower seed vitality classification and moisture pre-
diction. Within the vitality classification model, the most influential bands were identified
as 945.38 nm, 977.32 nm, 942.73 nm, 953.35 nm, and 937.42 nm, while the crucial bands for
moisture prediction were 785.71 nm, 811.58 nm, 752.27 nm, 1004.07 nm, and 814.17 nm. Fur-
thermore, employing the PCA technique, the first principal components for each respective
task, PC1-classify and PC1-moisture, were extracted.

Subsequently, five distinct aging levels of sunflower seeds (NAA, 1AA, 2AA, 3AA, and
4AA) were examined, calculating their average spectral reflectance and moisture content.
Correlation analysis was then conducted to explore the relationships between sunflower
seed vitality indices (including GP, GR, GI, and VI), average spectral reflectance, average
moisture content, the top five feature band weights for vitality classification and moisture
prediction, and their corresponding first principal components. Figure 10 illustrates a
correlation heat map, which clearly displays highly positive correlations between seed
vitality and growth indices, with correlation coefficients exceeding 0.9. Additionally, notable
associations were found between bands such as 752.27 nm, 937.42 nm, 942.73 nm, 945.38 nm,
953.35 nm, and 977.32 nm with sunflower seed vitality indices, exhibiting a correlation
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coefficient of approximately 0.5. This aligns with prior discussions on feature bands
relevant to sunflower seed vitality classification. Furthermore, significant correlations were
observed between different feature bands and sunflower seed moisture content, with the
highest correlation coefficient reaching 0.91, consistent with earlier results from moisture
content regression analysis. Of particular significance is the remarkably strong correlation
(0.88) between sunflower seed moisture content and vitality indices, highlighting the
fundamental connection between moisture levels and seed vitality.

Figure 10. Characteristic band, activity index, and moisture content heat map.

4. Conclusions

Seed vitality plays a pivotal role throughout the life cycle of crops, and its close associ-
ation with seed moisture content is well recognized. In this study, leveraging the potential
of hyperspectral imaging technology, we successfully evaluated the vitality of sunflower
seeds and made accurate predictions regarding their internal moisture content. Following
the completion of standard germination tests on sunflower seeds, relevant features, spectral
bands, moisture content, and vitality indicators were meticulously collected for subsequent
correlation analysis.

By comparing the performance of various classification models, the SG-SAE-LightGBM
model stands out as the optimal choice for categorizing sunflower seed vitality, exhibiting
an impressive accuracy of 97.67% on the training set and an outstanding 98.65% on the test
set. Regarding the analysis of moisture content regression, the SNV-XGBoost-LightGBM
model showcases remarkable results, with a correlation coefficient (R2

c ) of 0.9605 and a
root mean square error of calibration (RMSEC) of 0.9776 on the training set, along with a
correlation coefficient (R2

p) of 0.9715 and a root mean square error of prediction (RMSEP)
of 0.8349 on the prediction set.

The correlation analysis reveals a significant association between sunflower seed
moisture content and vitality index, as demonstrated by the considerably high correlation
coefficient of 0.88. These findings emphasize the influential role of moisture content on
seed vitality.

In conclusion, this study successfully employs hyperspectral imaging technology to
not only precisely discriminate vitality indicators of sunflower seeds but also effectively
predict their internal moisture content. Moreover, it sheds light on the strong correlation
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between moisture content and vitality index, thereby providing a novel research perspective
and methodology for future seed quality assessments.
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