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Abstract: This paper aims to provide an updated review and current understanding of the impact
of extreme temperatures—focusing on heat stress (HS)—on the quality of pork and poultry meat,
particularly amidst an unprecedented global rise in environmental temperatures. Acute or chronic
HS can lead to the development of pale, soft, and exudative (PSE) meat during short transportation or
of dark, firm, and dry (DFD) meat associated with long transportation and seasonal changes in pork
and poultry meat. While HS is more likely to result in PSE meat, cold stress (CS) is more commonly
linked to the development of DFD meat. Methods aimed at mitigating the effects of HS include
showering (water sprinkling/misting) during transport, as well as control and adequate ventilation
rates in the truck, which not only improve animal welfare but also reduce mortality and the incidence
of PSE meat. To mitigate CS, bedding on trailers and closing the tracks’ curtains (insulation) are viable
strategies. Ongoing efforts to minimize meat quality deterioration due to HS or CS must prioritize
the welfare of the livestock and focus on the scaleup of laboratory testing to commercial applications.
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1. Introduction

The presence of pale, soft, and exudative (PSE)-like meat in pork and chicken meat
is a significant global food quality concern. The processing properties of PSE-like meat,
along with methods to improve the processing or mitigate the reduced functionalities, have
garnered increasing attention from processors and researchers in the meat and poultry
processing industry [1–6]. It is also valid for dark, firm, and dry (DFD)-like meat, even
though the incidence of DFD meat is less than that of PSE meat [3].

The emphasis on genetic selection has led to the reduced ability of pigs to cope with
heat stress (HS). Pigs with improved reproductive traits and lean tissue growth rates exhibit
increased metabolic heat production beyond their adaptive capacity [7,8]. According to
Mutua et al. [9], compared with pigs produced a few decades ago, current genetic pig lines
generate nearly one-fifth more heat, which disposes the animals to HS. On the other hand,
the PSE meat incidence in poultry meat results from the combined effects of genetic factors
(selection for body weight or muscle development) [10,11] and environmental factors, such
as seasonal transitions [12,13], HS [14,15], and the post-slaughter environment [16].

The inherent physiological factors responsible for HS and CS have been investigated.
The rapid growth rate of poultry, due to genetic selection, modern feeding and management
methods, and the disruption of the thermoregulatory system in birds, explains their inability
to control heat under fluctuating ambient temperatures and high metabolic rate conditions.
The situation is further exacerbated by birds being covered in feathers and having no sweat
glands [17,18]. Similarly, susceptibility to HS in pigs is due to the lack of functional sweat
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glands and the insulating skin layer of subcutaneous fat [15]. High ambient temperatures
and humidity stress cattle, pigs, and poultry [19].

Various methods are used to mitigate the consequences of HS in terms of pig and
poultry production and meat quality. These include altering the animal’s microenvironment
to increase the exchange of heat between the animal and its surroundings (cooling options)
or feeding management (changes in diet composition and distribution), genetic selection
for thermal tolerance [8], and in the case of animal and poultry transport, conducting
transportation at night or reducing the transport time [20].

An increase in global environmental temperatures and weather anomalies, which are
increasingly occurring in Europe and other continents [5], prompt an examination of how
countries with a tropical climate, such as Brazil, handle the phenomenon of meat defects.
HS is the most challenging environmental stressor that negatively impacts the quality of pig
or poultry meat. Therefore, this paper aims to present the latest state of the art knowledge
on the influence of HS during pig and poultry transportation and potential methods to
mitigate the detrimental effects on meat quality.

2. Heat Stress

As previously mentioned, the stress experienced by birds during capture and transport,
coupled with unfavorable conditions during broiler transport—such as the season of the
year and the distance between the farm and slaughterhouse—promotes the occurrence of
PSE and DFD meat.

HS occurs when the ambient temperature exceeds the animal’s thermoneutral zone
(TNZ, defined as the environmental temperature range within which animals use no
additional energy to maintain their body temperature) [21]. HS is broadly classified into
acute heat stress (AHS), characterized by intense environmental temperatures for a brief
period, and chronic heat stress (CHS), involving prolonged exposure to high temperatures.

AHS immediately before slaughter accelerates muscle glycogenolysis, elevates the
lactic acid concentration, and rapidly decreases the muscle pH while the carcass is still
hot [22]. This results in poultry, pigs, and cattle PSE meat having a lower water-holding
capacity (WHC) [23–27]. In contrast, animals subjected to CHS have low muscle glycogen
reserves, leading to lower lactic acid production. As a result, DFD meat has a high pH
and higher WHC [23,28–30]. High seasonal temperatures more significantly affect lipid
and protein oxidation and result in greater microbial susceptibility, and the meat has a
shortened shelf life [31,32]. Differently, Lu et al. [33] found that CHS (14 days of broilers’
heat exposure) affects meat quality by altering the aerobic metabolism, glycolysis, and
intramuscular fat deposition, resulting in low customer acceptability due to the pale meat
color with low WHC and increased cook and drip losses [33].

Figure 1 presents the relation between heat stress and the quality of breast muscle
broilers. Chronic heat exposure can induce oxidative stress, irreversibly damaging the
mitochondria, which are prone to oxidative damage as a result of the high content of
phospholipids and proteins in their membranes. CHS also significantly changes the mito-
chondrial morphology [34] and structure [35]. Mitochondrial dysfunction leads to a decline
in the mitochondrial oxidation of energy substrates, such as lipids and carbohydrates,
resulting in metabolic changes that affect the meat quality by decreasing the pH45min and
shear force (SF) and increasing the L* value and drip loss.
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sory color scores. Additionally, these pigs had the highest initial temperature and a prev-
alence of PSE (66.7%) pork [15,41]. The incidence of PSE pork decreased 5-fold during hot 
weather conditions when the pigs experienced longer transportation durations (approxi-
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novic et al. [40], the weather conditions and loading density play a more crucial role in 
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Gajana et al. [41] (South Africa) found that pigs transported on a lorry for a longer 
duration (>2 h) in a smaller floor area (0.35 m2/100 kg) were more likely to develop PSE 
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Figure 1. Mechanisms by which HS impairs meat quality by affecting the metabolism of energy
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Source: Lu et al. [33].

During stress, the depletion of the muscle glycogen reserves induces significant alter-
ations in the final meat pH. Stress during a short pre-slaughter period results in PSE meat,
while prolonged stress leads to DFD meat [23,25]. Neither PSE meat with higher exudate
and lower texture quality as a result of protein denaturation caused by rapid post-mortem
muscle glycolysis nor DFD meat with a dry appearance (water firmly adheres to muscle
proteins) are not acceptable [1,3,36–39].

Zaboli et al. [18] identified three mechanisms explaining AHS or CHS: (1) a rapid
pH drop during and after slaughter due to glycogen conversion, leading to increased
lactic acid accumulation, especially when the muscle temperature is high, resulting in
lower WHC of muscle; (2) acceleration of panting (open-mouth breathing) to dissipate
body heat, increasing CO2 exhalation and the pH drop in the blood, initiating metabolic
acidosis in skeletal muscle; and (3) the reactive oxygen species produced by HS increase
oxidative stress in birds, damaging the structure and functions of enzymes that regulate
sarcoplasmic calcium levels in muscles, accentuating energy expenditure due to constant
muscle contractions.

3. Effect of Heat Stress and Transport Time on the Quality of Pork

Čobanovic et al. [40] (Serbia) found that pigs exposed to short transportation durations
(approximately 20 min) at a high loading density (0.29 m2/100 kg) during hot weather
conditions (summer temperatures ranging from 34.5 to 35.2 ◦C with humidity levels of
87.3–88.8%) produced meat with the lowest initial and ultimate pH values, as well as
sensory color scores. Additionally, these pigs had the highest initial temperature and a
prevalence of PSE (66.7%) pork [15,41]. The incidence of PSE pork decreased 5-fold dur-
ing hot weather conditions when the pigs experienced longer transportation durations
(approximately 210 min) and a low loading density (0.53 m2/100 kg). Conversely, pigs
exposed to short transportation durations (approximately 20 min) at a high loading density
(0.41 m2/100 kg) during cold weather conditions produced higher quality pork, charac-
terized by the highest percentage of red, firm, and non-exudative pork. This pork also
showed the lowest drip loss and b* values and the highest sensory color scores. According
to Čobanovic et al. [40], the weather conditions and loading density play a more crucial
role in carcass damage and pork quality variations than the transportation time.

Gajana et al. [41] (South Africa) found that pigs transported on a lorry for a longer
duration (>2 h) in a smaller floor area (0.35 m2/100 kg) were more likely to develop PSE
meat during the summer (43%) and fall (68%), which are considered hot and humid seasons.
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Similar observations were made by Küchenmeister et al. [42] and Dalla Costa et al. [43],
who noted that temperatures >35 ◦C had an adverse effect on HS, causing increased PSE
meat in pork.

Conversely, high pH values occur when animals experience chronic stress, depleting
muscle glycogen rapidly during the pre-slaughter period and after slaughter. This leads
to insufficient lactic acid production, resulting in DFD meat [41,44]. Low temperatures
during the winter negatively impact meat quality parameters and the incidence of DFD
meat. Arduini et al. [45] and Scheeren et al. [46] found that the interaction between longer
transportation durations (>2 h) and winter conditions contributed to an increased frequency
of occurrence of carcass damage and a higher occurrence of DFD pork (abnormally high
ultimate pH, dark color, and increased WHC).

Acute temperature stress is typically induced to mimic the effect of temperature
during short-term or daily fluctuations shortly before slaughter (i.e., during transportation
or lairage). In contrast, chronic temperature stress simulates the effect of temperature
during long-term or seasonal changes that occur during production [47].

4. Effects of Heat Stress and Transportation Time on Poultry Meat Quality

Temperature stress, encompassing both hot (HS) and cold conditions (CS), is associated
with an increased occurrence of meat quality defects, such as PSE and DFD meat, costing
the poultry industry millions of dollars annually. Elevated temperatures lead to increased
glycogen breakdown, subsequent acidification, and degradation of muscle protein. In
contrast, lower temperatures counteract this effect by depleting glycogen stores before
slaughter. Leishman et al. [47] explained that the heightened metabolic demand required
to maintain the core body temperature during cold conditions results in the utilization of
muscle glycogen as an energy source. The depletion of muscle glycogen before slaughter
reduces the pectoralis major (PM) muscle potential for lactate formation in the meat,
resulting in a higher muscle pH.

According to Leishman et al. [47], not all birds are susceptible to PSE meat under HS
conditions. Although stress susceptibility is well documented in pigs, where susceptible
pigs are more likely to develop PSE meat than non-sensitive animals, the genetic cause
remains unknown for poultry. In pigs, a point mutation in the ryanodine receptor 1 (RYR1)
gene has been determined to be the genetic cause of malignant hyperthermia resulting
in PSE meat. In pigs, this gene is sometimes known as the halothane gene (or “HAL”
gene) due to the association between porcine stress syndrome and halothane sensitivity. In
chickens and turkeys, RYR1 polymorphisms and variants in the RYR1 transcripts have been
discovered but not found to be associated with the development of PSE meat. Therefore,
the genetic cause of this myopathy in poultry remains unknown. Although the cause has
not been pinpointed, it is possible that some birds within a given study treatment are
susceptible to PSE meat, while others are not, leading to variation in the effect magnitude
between studies. Ensuring effective stress response control during broiler transportation is
critical for both animal welfare and meat quality [48,49].

Gonzalez-Rivas et al. [15] explained the stress responses to high ambient tempera-
tures and humidity (Figure 2). These responses primarily involve autonomic reactions
through activating the autonomic nervous system (ANS) mediated by catecholamines
(adrenaline/epinephrine and noradrenaline/norepinephrine). They include increases in
the respiration rate and heart rate, panting, elevated body temperature, redistribution of
blood flow from the viscera to the skin for thermoregulation, and promotion of energy uti-
lization from body reserves. This process accelerates muscle glycogenolysis and suppresses
energy storage. The authors also reported that AHS and CHS also increase the plasma glu-
cocorticoid concentrations (cortisol) via activation of the hypothalamic–pituitary–adrenal
(HPA) axis, which improves heat loss (via vasodilation, increased proteolysis, and changes
in lipid metabolism).
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Figure 2. Relationship between HS and the autonomic nervous system (ANS) and the hypothalamic–
pituitary–adrenal (HPA) axis. (GIT: gastrointestinal tract). Source: Gonzalez-Rivas et al. [15].

Kim and Lee [50] presented a sequence of changes causing the harmful effect of HS
in a hen’s intestine, blood vessels and reproductive organs. According to these authors,
HS triggers the hypothalamic–pituitary–adrenal (HPA) cortical system, which releases a
corticotrophin-releasing factor/hormone (CRH) from the hypothalamus. The hypothala-
mus sends a message to the pituitary to release an adrenocorticotropic hormone (ACTH),
which stimulates the synthesis and leads to an increase in the corticosterone level (CORT).

Genetic selection for rapid muscle growth in poultry has altered the ability of animals
to respond and adapt to environmental stressors [15]. Commercial poultry lines could ex-
hibit PSE meat due to muscle hyper-metabolism mediated either by increased Ca2+ release
from the sarcoplasmic reticulum or by direct action on RYR1, increasing the open state of
the channel [15]. HS increases the production of mitochondrial reactive oxygen species in
the skeletal muscle of chickens, causing oxidative damage, inducing lipid peroxidation,
and leading to oxidative modification of proteins [15].

According to Nawaz et al. [5], high temperatures (exceeding the TNZ, the appropriate
temperature for broilers is between 18 and 22 ◦C [51]) during poultry production phases
generate physiological, metabolic, and genetic changes in birds due to HS and harm
breeding efficiency and meat quality (Figure 3). Maintaining homeostasis in bird-rearing
conditions should be a primary goal, but it is not—that goal is high commercial poultry
production. When the temperature rises, the birds maintain homeostasis and need more
energy to maintain their body temperature. As previously mentioned, birds do not have
sweat glands, and their skin is covered with feathers, so to cope with the heat, birds increase
their number of breaths, pant, and raise their wings. However, unable to ensure proper
thermoregulation, birds succumb to hyperthermia, which ultimately translates to a loss of
production and poorer-quality meat.
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5. Methods to Mitigate Defects in Pork and Poultry Meat during Transportation in
Hot/Ambient Temperatures and Before Slaughter

In pigs, compared to poultry, it is much more difficult for the animal to maintain home-
ostasis under conditions of high temperature and humidity. In addition to an increased
metabolic rate due to genetic selection, there is a thick layer of subcutaneous adipose
tissue and relatively small lungs, limiting the effect of getting rid of excess heat through
panting [52–54].

Interesting observations were made by Machado et al. [55,56] while transporting pigs
(weaner pigs) on a 170 km/70 km route in Brazil (ambient temperature 26.8–31.0 ◦C/
28.2–31.2 ◦C, humidity from 66–72%/62–68%). These authors found that animals located
in the lowest part of the vehicle (a vehicle with a trailer) were most vulnerable to heat
stress due to the ventilation dynamics, with the front part of the vehicle being the most
detrimental to animal welfare. In contrast, pigs transported at the very top of the vehicle
were subject to physical stress due to sun exposure and trailer vibration. The authors
pointed out that in tropical regions, the practice of “wetting the load” when loading pigs
into the lower part of the vehicle due to insufficient ventilation is unfavorable.

In another study, Machado et al. [57] observed higher production losses due to heat
stress during pig transport (semiarid region, afternoon) over a short distance (30 km) than
during transport over a longer distance (170 km). In this situation, the animals had time
to adjust to the social and physical environment. Therefore, travel planning to determine
the coolest hours (e.g., early morning or evening), depending on the vehicle and animal
parameters and environmental conditions, is crucial to minimize the HS risk and associated
production losses during pig transport.

Only limited information exists regarding the HS experienced by various categories of
pigs during transport. Thodberg et al. [58,59] emphasized that in a moderate climatic zone
like Denmark, the temperatures in trucks during summer and autumn when transporting
sows to slaughter were not maintained within the upper limit of the TNZ appropriate for
sows (16–22 ◦C). Therefore, future studies on the optimization of transport management,
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ventilation, and logistics should be focused on maintaining temperatures within the comfort
zone to mitigate adverse effects on sow welfare during transport.

Various means and tools have been suggested to mitigate HS and CS during animal
transportation. Figure 4 presents some common and potential methods to reduce the
incidence of PSE meat in pork and chicken. The exact method to adopt depends on
the species (pig or bird), and the cost of a preventative measure is a significant factor.
For example, showering, misting, and bathing may be more suitable for poultry due to
their small size, while maintaining a relatively low load density and a well-functioning
ventilation system are more important for swine species. Often, a combination of different
methods, as listed in Figure 4, is applied to reduce extreme temperature stresses and, hence,
the PSE and DFD meat incidences.
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Figure 4. Possible methods to mitigate HS and CS in pigs and poultry during transportation.

Rioja-Lan et al. [60] studied the effects of environmental factors on the welfare of
transported pigs (100–135 kg) in Canada under conditions of wide temperature fluctuations
during the winter (−28.8–1.9 ◦C) and summer (9.1–40.1◦ C), which are often outside their
thermal comfort zone (10–24 ◦C). These authors [60] confirmed that the temperatures,
air velocities, and humidity in warmer months increase the frequency of HS indicators
(e.g., panting, skin discoloration), mortality losses (heart failure), and behavioral and
physiological changes in pigs, resulting in poor meat quality. The suggested solutions to
reduce the effects of HS or CS are as follows: panting, water sprinkling/misting during
transport and lairage, ventilation rates on trucks, night transportation, the amount and type
of bedding material used in trailers adjusted according to the season, the use of bedding on
trailers in each season, and modified trailer insulation.

Xiong, Gates, and Green-Miller [61] (USA) analyzed the effects of the thermal category,
trailer zones, and misting method (before the start of the trip) for mild, warm, and hot
weather (16.7–35.3 ◦C) and cold weather (−10.6–7 ◦C) transport trips of market pigs. They
found that the front top and bottom zones were warmer during cold weather than the rest
of the trailer, indicating less ventilation toward the front. Conversely, the conditions were
more uniform throughout the trailer for hot temperatures, indicating sufficient ventilation
to limit the temperature rise. Misting showed the potential to alleviate high temperatures
but resulted in higher humidity index conditions. Moreover, no boarding and bedding
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combination effect was observed for the spatial distribution of the trailer’s interior tem-
peratures. However, there are still many unanswered questions: How do we design the
type of ventilation when transporting animals of different weights (mechanical or passive)
and what is the capacity to adapt to local climatic conditions to maintain the optimal
temperature for animals?

Nielsen et al. [20] recently recommended protecting transported pigs from high tem-
peratures and HS. The most important recommendations include placing them at pick-up
points with canopies, allowing wind to flow through the facilities, equipping vehicles with
fans to aid ventilation, transporting them at night to avoid the hottest hours of the day, and
reducing the stocking density during the preparation stage.

Wang et al. [62] offered another solution to reduce the adverse effects of HS during
prolonged (>3 h) pre-slaughter transport of poultry in summer. Supplementation with
resveratrol [61] at a dose of 400 mg/kg for 21 days or guanidine acetic acid at a dose of
1200 mg/kg for 14 days [49] before slaughtering broilers exposed to HS can help reduce
the rate of glycolysis of PM muscles, which mainly contain glycolytic fibers [63], which can
improve meat quality.

Several authors have studied the effect of water-bathing birds just before summer
transport to the slaughterhouse and holding broilers before slaughter [13,64–66]—Brazil,
China. It turned out that water-bathing birds at about 30 ◦C for 7 min [13] before transport
over short distances (over 3 km) harmed the welfare of chicken broilers. On the other hand,
this treatment was beneficial over a longer distance, significantly reducing the amount of
PSE meat in the summer. Jiang et al. [64,65] also observed that the use of water-misting
sprays with ventilation in the projected shed housing and post-transport (1 h, temperature
33–35 ◦C, relative humidity ~65%) holding birds in quiet, cooler areas (30 min, 30 ◦C,
relative humidity 60%) alleviated and reduced the energy depletion in post-mortem PM
muscles caused by HS. Similarly, Zhang et al. [66] showed that water-misting spray and
ventilation before and holding treatment after summer transport for broilers improved the
fresh meat quality, especially the water-holding capacity (WHC).

However, using environmentally controlled sheds and modern ventilation systems is
a short-term solution because it costs too much for farmers to implement [5]. Therefore,
Spurio et al. [14] (Brazil—tropical and subtropical regions, temperature 28.7 ± 2.6 ◦C, and
relative humidity 53.8 ± 9%) found a low-cost solution for improving animal welfare
conditions and meat quality. They designed [14] truck containers that allowed for a
reduction in the occurrence of PSE meat by 66.3% and 49.6% with and without wetting,
respectively. In another study, Carvalho et al. [67] evaluated the effect on turkey welfare in
the HS conditions of routine practices in truck transportation. They focused on the heat
distribution in trucks (Figure 5). They found a thermal core formed in the middle and rear
of the truck container regions; the heat was produced by the birds and the birds in these
regions were more prone to a higher incidence of dead-on-arrival (DOA) index and PSE-like
meat occurrence. A water-shower treatment applied to the birds at the farm and adequate
ventilation throughout the vehicle due to a better truck container design are challenges to
improving animal welfare and reducing the mortality and PSE meat incidence.

Birds are sensitive to cold temperatures. Windchill combined with low temperatures
can cause thermal discomfort in birds (values below 23 and 29 ◦C [68] or 18 and 30 ◦C [69]),
and such hypothermal conditions deplete muscle glycogen to maintain body warmth.
Carvalho et al. [70] found that the turkey breast muscles of birds transported (38 ± 10 km)
in an open vehicle container in the Brazilian winter season conditions (temperature: 3–7 ◦C,
relative humidity: 45–55%), located in the interior compartments of the middle and rear
truck regions and subjected to water-bathing treatment, had the highest DFD-like and the
lowest PSE-like meat incidence. Therefore, CS related to weather conditions can be reduced
during transportation on cold days and nights by closing the tracks’ curtains [48] (Belgium).
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6. Conclusions

It is expected that efforts will soon be undertaken to improve animal welfare during
rearing, transport, and pre-slaughter operations. Weather conditions and the loading
density during transportation are more critical factors influencing carcass damage and pork
quality variations than the transportation time alone. Nevertheless, transport during the
warmest periods (e.g., afternoon) and short-distance journeys (30 km) have been found to
result in higher production losses. On the other hand, longer trips (170 km) have allowed
pigs to adapt to the social and physical environments they encounter.

Methods aimed at mitigating the effects of HS and CS on poor pork quality include
showering (water sprinkling/misting) during transport and lairage, adjusting the ventila-
tion rates in trucks, implementing night transportation, and varying the amount and type
of bedding material used in trailers according to the season. Additionally, considering the
use of bedding in trailers in each season or modifying trailer insulation can be beneficial.

For chicken broilers, the strategies to reduce meat quality loss due to HS involve
dietary resveratrol supplementation on the farm, bathing birds with water just before
the journey from the farm to the slaughterhouse for a relatively long distance, utilizing
water-misting spray and ventilation before and holding treatment after transport, and
improving truck container design to enhance the microenvironment and ensure adequate
ventilation throughout the vehicle.

While transporting large slaughter animals and poultry to meat plants, the current
methods to reduce HS on the animals and birds could be further refined. To date, research
on improving the conditions for the transport of animals and birds in warmer weather
through measures such as the air supply and cage rotations has yielded benefits. However,
these improvements have not yet been implemented on a practical, mass scale. Due to
the environmental impact of raising pigs, cattle, and poultry, a shift in eating habits and
relying on genetic attempts to produce a meat-like product from plant raw materials
could potentially reduce meat production and make the raw material more expensive.
This alternative might lead to a resurgence of traditional animal-raising methods and a
departure from mass-scale production.
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