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Abstract: Due to the significant price differences among different types of edible oils, expensive
oils like olive oil are often blended with cheaper edible oils. This practice of adulteration in edible
oils, aimed at increasing profits for producers, poses a major concern for consumers. Furthermore,
adulteration in edible oils can lead to various health issues impacting consumer well-being. In order
to meet the requirements of fast, non-destructive, universal, accurate, and reliable quality testing
for edible oil, the oblique-incidence reflectivity difference (OIRD) method combined with machine
learning algorithms was introduced to detect a variety of edible oils. The prediction accuracy of
Gradient Boosting, K-Nearest Neighbor, and Random Forest models all exceeded 95%. Moreover,
the contribution rates of the OIRD signal, DC signal, and fundamental frequency signal to the
classification results were 45.7%, 34.1%, and 20.2%, respectively. In a quality evaluation experiment
on olive oil, the feature importance scores of three signals reached 63.4%, 18.9%, and 17.6%. The
results suggested that the feature importance score of the OIRD signal was significantly higher than
that of the DC and fundamental frequency signals. The experimental results indicate that the OIRD
method can serve as a powerful tool for detecting edible oils.

Keywords: oblique-incidence reflectivity difference; edible oils; machine learning; feature importance
scores

1. Introduction

Edible oils play an important role in our daily life, such as providing essential fatty
acids, vitamins, and health-promoting ingredients [1,2]. The annual consumption of edible
oil is large, which speaks to the importance of edible oil safety. Due to the influence
of raw materials, there are significant price differences among different types of edible
oils. Moreover, differences in brands, sources of raw materials, and processing techniques
result in variations in ingredients and prices. Unscrupulous profit motives have led some
businesses to deceive consumers by selling substandard products. Therefore, the safety
testing of edible oil is of great importance in food safety assessment [3,4]. Common practices
currently include blending soybean oil into olive oil, blending rapeseed oil into peanut oil,
and so on [5,6]. When inferior-quality oil is mixed into edible oil, there may be issues such
as exceeding aflatoxin limits and containing rancid fats. Consuming these oils can harm
the nervous and digestive systems in the human body, and in severe cases, may even lead
to cancer [7,8].
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There are several procedures for researching edible oil in the field of food safety,
such as flash gas chromatography [9–11], TaqMan real-time quantitative polymerase
chain reaction [12], gas chromatography ion mobility spectrometry [13,14], electrochemi-
cal impedance spectroscopy [15], non-destructive ultrasonic method [16], and the use of
chemometric tools [17]. Combined with chemometrics, flash gas chromatography had been
used to assess volatile profiles of berry seed oils for authenticity and deterioration. The
partial least squares model was used to predict storage time, and the results demonstrated
that the coefficient of determination (R2) was between 0.842 and 0.969. Moreover, gas
chromatography ion mobility spectrometry was employed to analyze secondary oxidation.
A predictive model for the peroxide value of rapeseed oil was established in order to
research the relationships between peroxide values and the contents of secondary oxidative
products. In addition to this, a non-destructive ultrasonic method was used to investigate
temperature-dependent acoustic parameters of edible oils. As the oil temperature ranged
from 24 ◦C to 34 ◦C, acoustic parameters were closely related to the velocity, attenuation,
and frequency components [16]. Using the HPLC-DAD method, the total phenolic content
(TPC) and simple phenolic profile of raw olives were analyzed. The results indicated that
Turkish olive varieties showed significant differences in phenolic characteristics due to
variations in variety and harvest time [17].

Recently, rapid, collimated, and non-contact, optic methods have been widely used
in edible oil detection. Fourier Transform Infrared spectroscopy was used to monitor the
thermal stability of pure sesame oil, and a linear correlation was obtained between the FTIR
signals at different conditions and the proportion of pure sesame oil, with the root mean
square of prediction (RMSEP) between 0.8802 and 2.3827 and R2 between 0.9841 and 0.8834,
respectively [18]. Moreover, surface-enhanced Raman spectroscopy, combined with an
Artificial Neural Network, was used for the determination of peroxide value and fatty acid
composition, with an accuracy of 99% [19]. In addition, fluorescence spectroscopy [20–23],
reflectance spectroscopy [24–26], and terahertz spectroscopy [27–30] have also been used
in edible oil measurement.

In this work, the oblique-incidence reflectivity difference (OIRD) method was proposed
for edible oil detection. As an optical method, OIRD characterizes the surface properties of
samples by the difference in reflectance values of p and s light after passing through the
sample. Due to its advantage of non-destructive, fast, and high throughput, it is widely used
in the fields of oil and gas reservoir exploration [31,32], as well as for monitoring biological
chips [33,34] and map electronic transfer flux [35,36]. A prediction model was performed
based on four different algorithms, which included Extreme Gradient Boosting, Logistic
Regression, K-Nearest Neighbor, and Random Forest. The predicted results showed a
clear correspondence with the content of monounsaturated fatty acids. Moreover, the
contribution of OIRD signals was significantly higher than that of direct current signals
and fundamental frequency signals. The experimental results suggested that OIRD is a
useful tool in the detection of edible oil.

2. Materials and Methods

In this work, five types of edible oils, with six brands for each type, were used for
testing. The information of the edible oil samples used is shown in Table 1. The first and
second types of olive oil came from China, while the remaining four types of olive oil came
from Spain. Corn oil, peanut oil, soybean oil, and rapeseed oil were all made in China, and
all of them were non-genetically modified edible oils. Among them, olive oil 4, soybean
oil 5, and peanut oil 3 were produced using cold pressing technology, while the rest were
produced using physical pressing.
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Table 1. Edible oil sample information.

Types of
Edible Oils Oil 1 Oil 2 Oil 3 Oil 4 Oil 5

corn oil corn oil 1 corn oil 2 corn oil 3 corn oil 4 corn oil 5
olive oil olive oil 1 olive oil 2 olive oil 3 olive oil 4 olive oil 5

peanut oil peanut oil 1 peanut oil 2 peanut oil 3 peanut oil 4 peanut oil 5
rapeseed oil rapeseed oil 1 rapeseed oil 2 rapeseed oil 3 rapeseed oil 4 rapeseed oil 5
soybean oil soybean oil 1 soybean oil 2 soybean oil 3 soybean oil 4 soybean oil 5

A schematic diagram of the experimental setup for OIRD is shown in Figure 1. A He-
Ne laser was adopted with a power of 3.8 mW and a polarization ratio of 500:1. The laser
operated at an incident angle corresponding to the Brewster angle (58◦), with a 632.8 nm
beam, the direction of the arrow is the direction of laser propagation. Moreover, incident
light intensity was adjusted using an attenuator. The polarization degree was enhanced
using a polarizer to modulate the laser into p-polarized light. The polarization state of the
laser was further adjusted by a photo-clastic modulator to introduce s-polarized light at a
frequency of 50 kHz. Thus, the s-polarized light and p-polarized light alternately exited the
system. A quarter-wavelength phase shifter introduced a fixed phase difference between
the two polarized components of the incident light. The reflected light was focused on the
sample using a plano-convex lens. The reflected beam passed through an optical beam
splitter, transformed into parallel light by another plano-convex lens, and then reached a
silicon photodetector through a polarizer to suppress unwanted polarization. The signal
was transmitted via a BNC cable to a lock-in amplifier for further processing. According
to the Fresnel principle, when laser light is incident on a sample surface at a fixed angle
(Brewster angle), the composition, structure, and density of the sample surface will affect
the interface dielectric constant, thereby influencing the laser reflectance.
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Figure 1. Schematic diagram of OIRD.

According to the Fresnel principle, when laser light is incident on the sample surface
at a fixed angle (Brewster angle), the composition, structure, and density of the sample
surface will affect the interface dielectric constant, thereby influencing the laser reflectance.
The OIRD technique introduces two alternately emitted, mutually perpendicular linearly
polarized lights (p and s) to the sample surface. It detects changes in the properties of the
sample interface layer, such as thickness and dielectric constant. The Oblique incidence
reflectivity difference is defined as follows:

∆p − ∆s =
rp − rp0

rp0
− rs − rs0

rs0
=

δrp

rp0
− δrs

rs0
(1)
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Using the transfer matrix method allows for a quantitative analysis of the interaction
process between light and matter, subsequently enabling the calculation of the reflection
coefficients rp and rs for p-polarized and s-polarized light on the sample. By incorporating
Equation (1), a quantitative expression for the Optical Interference Reflectance Difference
(OIRD) signal in relation to the physical properties of the sample can be derived.

∆p − ∆s = d
(εd − ε0)(εd − εs)

εd

(−i)4π
√

ε0εs cos φinc sin2 φinc

λ(εs − ε0)
(
εs cos2 φinc − ε0 sin2 φinc

) (2)

In this context, λ represents the wavelength of the incident laser, ϕinc denotes the
incidence angle of the probing laser, and d signifies the thickness of the interface layer,
while ε0, εd, and εs respectively represent the dielectric constants of the overlying layer,
interface layer, and substrate. According to the Optical Interference Reflectance Difference
(OIRD) monitoring mechanism, based on the direct current signal and the fundamental
frequency signal (modulation frequency at 50 kHz) output by the lock-in amplifier, the
difference in relative changes in laser reflectance can be obtained, as follows:

Im(∆p − ∆s) ≈ 1
2J1(π)

(
I(Ω)

IDC

)
(3)

When the modulation frequency is fixed, the x-th order Bessel function Jx(A) becomes
a constant. Combined with Equation (3), when the incident light wavelength λ and the
incidence angle ϕinc are constant and the dielectric properties of the overlying layer and
substrate are known, the Optical Interference Reflectance Difference (OIRD) technique can
quantitatively detect interface thickness and dielectric properties.

To ensure the edible oil samples remained relatively stable over time, a single-point
dynamic monitoring mode of the OIRD testing system was employed, and the estimated
duration of each experimental test was set between 120 and 150 s. The output data were
formatted as a 2n × 2 text document. The direct current signal IDC and the fundamental
frequency signal I(Ω = 50 kHz) were acquired through the lock-in amplifier. Subsequently,
the OIRD signal was derived, and these three signals were employed as features for
modeling analysis.

The physical properties were investigated by introducing laser into liquid samples
and exploring the differences in reflectance values at the interface. However, scattering
inevitably occurred in this process. Multi-scattering correction (MSC), as a data processing
method, was designed to eliminate the influence of different scattering levels in the sample,
which effectively enhanced data correlation and corrected the baseline shift and offset
phenomena in the data by using ideal OIRD data. In this experiment, it was assumed that
the average value of the OIRD data served as the ideal OIRD data.

The resistance of multiple-scattering correction to signal noise was limited. Thus, it
could not completely eliminate the scattering noise in the data. Moreover, the OIRD signal
was susceptible to external noise signals. A Savitzky–Golay (S-G) smoothing algorithm was
suitable for data preprocessing. The S-G smoothing algorithm performs low-pass filtering
on information to remove high-frequency components, effectively retaining low-frequency
information [37]. Therefore, the noise was significantly suppressed.

In this work, four machine learning algorithms, including eXtreme Gradient Boosting
(XGBoost), Random Forest (RF), Logistic regression (LR), and K-Nearest Neighbors (KNN),
were employed in the data processing section to assist us in classification and feature
importance scoring. XGBoost is an algorithm based on the Gradient Boosting Decision Tree
(GBDT). In each iteration, GBDT learned a CART tree, fitting the difference between the
predicted values of the preceding (t − 1) trees and the true values of the training set [38–40].
The process of generating trees in XGBoost is shown in Figure 2a. The results of weak
classifiers trained by XGBoost were accumulated to obtain the final conclusion. The Random
Forest algorithm combines Breiman’s “Boot-strap aggregating” idea with Ho’s “random
subspace” method. RF is a classifier composed of multiple decision trees, and its output
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category was determined by the majority class among the individual tree outputs [41,42].
The basic principle of Random Forest is illustrated in Figure 2b. Logistic regression is a
linear model derived from the exponential distribution family. It assumes that given input
X, output Y follows a Bernoulli distribution. By introducing the Sigmoid function as a
non-linear factor, logistic regression was widely used in classification problems [43,44].
By substituting the derivative of the Sigmoid function into the loss function of logistic
regression, the gradient G was obtained, composed of partial derivatives. The process
of gradient descent is described in Figure 2c. The K-Nearest Neighbors classifier is an
online classifier that, during classification, identifies the K samples in the training set that
are closest to the test sample and determines the class of the test sample based on these
neighbors [45]. Figure 2d shows the flowchart of the KNN algorithm.
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3. Results and Discussions

The OIRD time-domain signal is described in Figure 3. The signals of each sample were
relatively smooth and there were significant differences in the OIRD signals of different
edible oil samples. For corn oil 1, the OIRD signal Im(∆p − ∆s) ranged from 0.2878 to 0.288.
The Im(∆p − ∆s) of corn oil 2 changed from 0.2851 to 0.2853. Moreover, the Im(∆p − ∆s) of
olive oil 1, peanut oil 1, rapeseed oil 1, and soybean oil 1 fluctuated around 0.2882, 0.2869,
0.2843, and 0.2864, respectively. However, it was difficult for us to distinguish all the oil
samples based on the absolute magnitude of the signal values.

The average imaginary signals Im(∆p − ∆s) are described in Figure 4. Except for
the significantly lower OIRD signals of olive oil samples, it was difficult to distinguish
different edible oil samples. This may be attributed to the considerably higher content of
monounsaturated fatty acids in olive oil compared to others, leading to a lower dielectric
constant in the interface layer of olive oil [46], consequently exhibiting a lower OIRD
response. The fatty acid contents of different edible oils are shown in Table 2.



Foods 2024, 13, 1420 6 of 15

Foods 2024, 13, x FOR PEER REVIEW 6 of 16 
 

 

0.2869, 0.2843, and 0.2864, respectively. However, it was difficult for us to distinguish all 
the oil samples based on the absolute magnitude of the signal values. 

 
Figure 3. The temporal signals of OIRD for 30 edible oil samples. 

The average imaginary signals Im(Δp − Δs) are described in Figure 4. Except for the 
significantly lower OIRD signals of olive oil samples, it was difficult to distinguish differ-
ent edible oil samples. This may be attributed to the considerably higher content of mon-
ounsaturated fatty acids in olive oil compared to others, leading to a lower dielectric con-
stant in the interface layer of olive oil [46], consequently exhibiting a lower OIRD response. 
The fatty acid contents of different edible oils are shown in Table 2. 

Table 2. The fatty acid content in edible oils. 

Reference Table for the Fatty Acid Content in Edible Oils (%) 

Edible Oils Saturated Fatty Acids 
Monounsaturated Fatty 

Acids Polyunsaturated Fatty Acids 

Oleic Acid (Ω-9) Linoleic Acid (Ω-6) Alpha-Linolenic Acid (Ω-3) 
corn oil 10–13 20–25 50–60 4–6 
olive oil 9–11 67–75 10–15 0–3 

peanut oil 17–18 30–40 30–40 0–3 
rapseed oil 5–10 40–60 10–20 5–8 
soybean oil 10–13 20–25 55–60 4–6 

Figure 3. The temporal signals of OIRD for 30 edible oil samples.

Foods 2024, 13, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 4. The average OIRD signal of edible oil samples. 

The average OIRD signal was taken as the ideal OIRD signal, and a multivariate scat-
ter correction was applied to all OIRD data. This correction involved baseline shift and 
offset correction of the data based on the ideal OIRD data. Subsequently, the data after 
multivariate scatter correction were subjected to the S-G smoothing process. After itera-
tively comparing different parameter combinations for the smoothing model, the polyno-
mial order and the number of smoothing points were set as 7 and 299 in order to achieve 
the best smoothing effect. Preprocessing effectively eliminated the influence of different 
scattering levels in the samples and removed external high-frequency noise. Figure 5a–e re-
spectively displays the OIRD signals of corn oil, olive oil, peanut oil, rapeseed oil, and 
soybean oil after preprocessing. 

 

Figure 4. The average OIRD signal of edible oil samples.

Table 2. The fatty acid content in edible oils.

Reference Table for the Fatty Acid Content in Edible Oils (%)

Edible Oils Saturated Fatty Acids
Monounsaturated Fatty Acids Polyunsaturated Fatty Acids

Oleic Acid (Ω-9) Linoleic Acid (Ω-6) Alpha-Linolenic Acid (Ω-3)

corn oil 10–13 20–25 50–60 4–6
olive oil 9–11 67–75 10–15 0–3

peanut oil 17–18 30–40 30–40 0–3
rapseed oil 5–10 40–60 10–20 5–8
soybean oil 10–13 20–25 55–60 4–6
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The average OIRD signal was taken as the ideal OIRD signal, and a multivariate
scatter correction was applied to all OIRD data. This correction involved baseline shift
and offset correction of the data based on the ideal OIRD data. Subsequently, the data
after multivariate scatter correction were subjected to the S-G smoothing process. After
iteratively comparing different parameter combinations for the smoothing model, the
polynomial order and the number of smoothing points were set as 7 and 299 in order
to achieve the best smoothing effect. Preprocessing effectively eliminated the influence
of different scattering levels in the samples and removed external high-frequency noise.
Figure 5a–e respectively displays the OIRD signals of corn oil, olive oil, peanut oil, rapeseed
oil, and soybean oil after preprocessing.
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cooking oil).

The DC signal, fundamental frequency signal, and OIRD signal were selected as
features in the experiment. The experiment adopted single-point dynamic scanning, and
the continuous signal collection for each sample lasted for 120–150 s. To ensure the reliability
of the results, six oil samples from different origins and brands were collected for each type
of edible oil. Finally, approximately 50,000 stable sample points were selected for each type
of edible oil as the dataset, in which 35,000 sample points were used for training, and the
others were used for prediction. The model parameters used for processing OIRD data
were described as follows. For the XGBoost, RF, and LR models, the random state was set
as 2022. For the XGBoost model, the max depth, estimators, and verbosity were established
as 6, 100, and 0, respectively. However, the parameter neighbor was set as 3 for the KNN
model. Confusion matrices and prediction results are described in Figures 6 and 7. It can
be observed that except for LR, the accuracy of the other models in predicting the types
of edible oils exceeds 95%. The lower accuracy of the LR model may be attributed to the
complex relationships and interactions present in the interface layer dielectric constant and
interface layer thickness, which are not simply linear. Additionally, the LR model exhibited
limitations in handling continuous and discrete features, which resulted in suboptimal
classification performance.
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The results indicated that the sole use of either DC or fundamental frequency signals 
did not effectively characterize the samples. However, the OIRD signal could be derived 
from the ratio of the two signals. Under the conditions of a fixed incident angle and mod-
ulation frequency of a photoelastic modulator, the OIRD signal could reflect both the 
thickness and dielectric properties of the interface layer. For the three classification pre-
diction models, the OIRD data demonstrated good guiding capability for predicting edi-
ble oil types, with an accuracy of over 95%. The absolute value of the OIRD signals did 
not directly affect the prediction results. The unprocessed DC and fundamental frequency 
signals had a low contribution to the model. This can characterize the complex interplay 
between these two aspects. Applying the interface properties to differentiate types of ed-
ible oils exhibited high accuracy, which could be a novel method for addressing this issue. 

Figure 7. Accuracy of edible oil type prediction.

The predictive performance of XGBoost among the four models was exceptionally
good, with an accuracy exceeding 97% for all types of edible oils. As a gradient boosting
algorithm, XGBoost improved model performance by ensemble learning from multiple
decision trees. Then, non-linear relationships could be analyzed by the XGBoost algorithm
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in order to achieve excellent predictive results. Due to external noise and potential data loss
in the test, the XGBoost algorithm was used to handle missing values, which enhanced the
reliability of prediction outcomes. Feature importance analysis was conducted using the
XGBoost algorithm, and the feature importance scores for the three signals are shown in
Figure 8. The contribution rates of the OIRD signal, DC signal, and fundamental frequency
signal to the classification results were 45.7%, 34.1%, and 20.2%, respectively. Both the
DC signal and the fundamental frequency signal were optical intensity signals received
by the photodetector and amplified by the lock-in amplifier, which contributed less to the
model’s predictive accuracy. By contrast, the OIRD signal was calculated from the DC and
fundamental frequency signals according to the principles of OIRD technology, which can
be expressed by the following relationship equation:

1
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=
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√
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The results indicated that the sole use of either DC or fundamental frequency signals
did not effectively characterize the samples. However, the OIRD signal could be derived
from the ratio of the two signals. Under the conditions of a fixed incident angle and
modulation frequency of a photoelastic modulator, the OIRD signal could reflect both
the thickness and dielectric properties of the interface layer. For the three classification
prediction models, the OIRD data demonstrated good guiding capability for predicting
edible oil types, with an accuracy of over 95%. The absolute value of the OIRD signals did
not directly affect the prediction results. The unprocessed DC and fundamental frequency
signals had a low contribution to the model. This can characterize the complex interplay
between these two aspects. Applying the interface properties to differentiate types of edible
oils exhibited high accuracy, which could be a novel method for addressing this issue.

Using single-point dynamic scanning, DC, fundamental frequency, and OIRD signals
were collected from six olive oil samples, which originated from different brands and
regions. The XGBoost, LR, RF, and KNN models were employed for quality analysis of the
six olive oil samples. Each sample underwent continuous signal acquisition for 120–150 s.
For each type of olive oil, approximately 10,000 stable sample points were selected as the
dataset, while 7000 sample points were used for training, and the others were used for
prediction. Confusion matrices and prediction results are shown in Figures 9 and 10. The
best-predicted result was for Olive oil2, where all models achieved an accuracy exceeding
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98%. By contrast, the lowest accuracy was observed for Olive oil3, which responded
to all three models achieving less than 75% accuracy. Olive oil3 achieved the highest
monounsaturated fatty acid content among the six brands of olive oil, corresponding to
79%. However, the lowest monounsaturated fatty acid content was 70%—this referring to
Olive oil4. The monounsaturated fatty acid content was a crucial indicator for evaluating
the quality of olive oil. Additionally, the content of monounsaturated fatty acids is an
important indicator for differentiating between different cooking oils. For example, corn
oil and sunflower oil contain 28%, 23%.
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Therefore, it is suggested that the OIRD method, combined with machine learning
algorithms, can characterize the quality of olive oil.

Except for Olive oil3, the prediction accuracy for olive oils exceeded 97%. The feature
importance scores for the three signals are shown in Figure 11. The contribution rates
of the OIRD, DC, and fundamental frequency signals to the classification results were
63.4%, 18.9%, and 17.6%, respectively. The feature importance score of the OIRD signal was
significantly higher than that of the DC and fundamental frequency signals, indicating the
feasibility of evaluating olive oil quality based on interface properties. OIRD signals played
a crucial role in model training, which carried sample physical property information. OIRD
signals show a good consistency with the prediction accuracy of the model and the content
of monounsaturated fatty acid.
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In this work, the OIRD method was firstly proposed to detect edible oil. Combined
with machine learning algorithms, the OIRD method can realize the classification of edible
oils, which is beneficial for the quality inspection of edible oils. The detection models were
established by OIRD data. Thus, these models were suitable for classifying edible oils
through OIRD detection. And the test results were beneficial for consumers to understand
the types and origins of edible oils. The models were established from the OIRD signal,
DC signal, and fundamental frequency signal. In principle, the model was also applicable
for analyzing the detection results of other edible oils. However, it may be necessary to
establish a new model in order to determine specific parameters of edible oils.

Recently, the OIRD technique has been widely used in monitoring the in situ growth
of oxide films [47–53], the preparation of biochips [54–63], and the exploration of oil
and gas resources [64–69]. Experimental results suggested that the OIRD method could
characterize the spatially resolved electrochemical reversibility of a polyaniline thin film.
The OIRD signal would rise as the electrochemical conversion from a completely reduced
state to a partially oxidized state [48]. Moreover, the deterioration of the electrochemical
reversibility led to a decrease in the OIRD signal. The OIRD method has also been used
in the scanning of biomolecules, realizing the label-free detection of biological molecular
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interaction [61]. In addition to this, based on the characterization of wax precipitation, the
detection curve of OIRD can reveal the wax formation process [64]. In this paper, OIRD
signals were used to guide models for the identification of edible oils. XGBoost, LR, RF,
and KNN algorithms were employed for quality analysis of the six olive oil samples. Olive
oil2 got the best-predicted result, while the lowest accuracy was observed for Olive oil3.
Moreover, OIRD, DC, and fundamental frequency signals exhibited different contribution
rates to the classification results. Going forward, our work lays the groundwork for future
efforts by researchers to use this work as the starting point for the application of OIRD
in the characterization of edible oils. Compared to other atomic-level monitoring tools,
OIRD has significant advantages in data acquisition and image scanning time. Therefore,
OIRD had become a high-throughput screening tool for protein detection. Additionally,
the OIRD method was also used in biochip building. Just last year, OIRD technology
made significant breakthroughs; the detection speed of OIRD microscopes improved by
an order of magnitude, making OIRD a high-throughput screening tool. Its software
has significant advantages in data acquisition and image scanning time compared to
other atomic-level monitoring tools [54]. By applying polystyrene (PS) evenly onto a
standard glass slide, a porous monolayer of PS can enhance the sensitivity of Oblique-
incidence reflectivity difference (OIRD) through optical interference enhancement and
effective dielectric constant effects [70]. This demonstrates that OIRD, as an emerging
detection system, has shown significant advantages, while there are still many aspects that
can be further researched and improved.

In recent years, optic methods have been widely used in food detection. Due to the
limitations of the experimental setup, experiments can only be conducted in the laboratory.
It is necessary to consider improving equipment to achieve online monitoring. At present,
only the detection of edible oil in a stationary state has been considered, and it is necessary
to consider the impact of external regulation on edible oil. Additionally, the types of edible
oils evaluated in research are limited, especially lacking assessments on a wider variety of
high-end edible oils, such as safflower edible oil [71,72]; the detection methods for them
are currently relatively scarce and have limitations.

4. Conclusions

In this study, the OIRD method was employed for the characterization of edible
oils. Key features including the DC signal, fundamental frequency signal, and OIRD
signal were used to construct prediction models, employing advanced algorithms such
as XGBoost, LR, RF, and KNN. Remarkably, the prediction accuracies of the XGBoost,
RF, and KNN models all surpassed 95%. In addition, the feature importance scores of
the OIRD signal, DC signal, and fundamental frequency signal were 45.7%, 34.1%, and
20.2% and 63.4%, 18.9%, and 17.6%, respectively. Experimental results indicated that the
OIRD signal played an important role for the establishment of edible oil detection models.
These findings underscored the significance of the OIRD method as a valuable tool for
the precise measurement of edible oils. This study highlights the potential of OIRD as
a promising technique for enhancing the efficiency and accuracy of edible oil analysis,
thereby advancing research and applications in the field of food science and technology.

Author Contributions: Conceptualization, X.S. and Y.H.; methodology, X.S. and K.Z.; software, Y.H.
and S.Y.; validation, X.S. and Y.H.; formal analysis, C.L.; investigation, S.Z.; resources, X.L.; data
curation, Y.H. and S.Y.; writing—original draft preparation, X.S. and Y.H.; writing—review and
editing, S.Z.; visualization, K.Z.; supervision, C.L.; project administration, X.S.; funding acquisition,
X.S. and K.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The corresponding author was supported by the National Natural Science Foundation of
China under Grant 12374412 and the Beijing Natural Science Foundation under Grant 4222043.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Acknowledgments: We thank Honglei Zhan, Xinyang Miao, and Chao Song for their helpful discussion.



Foods 2024, 13, 1420 13 of 15

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chien, H.Y.; Shih, A.T.; Tseng, Y.M. Exploration of fast edible oil classification using infrared spectrum, machine learning, and

chemometrics. In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST),
Morioka, Japan, 23–25 October 2019; pp. 1–6.

2. Tian, M.K.; Bai, Y.C.; Tian, H.Y.; Zhao, X.B. The chemical composition and health-promoting benefits of vegetable oils—A review.
J. Mol. 2023, 28, 6393. [CrossRef] [PubMed]

3. Wang, Z.X.; Lei, X.L.; Guo, L.L.; Xu, X.X.; Liu, L.Q.; Kuang, H.; Xu, C.; Yang, F.; Du, X. Current situation and prospect of rapid
quantitative detection technology for edible oils safety hazard factors. J. China Oils Fats 2021, 8, 105–109.

4. Yu, H.W.; Wang, Q.; Liu, L.; Shi, A.M.; Hu, H.; Liu, H.Z. Research process on hyperspectral imaging detection technology for the
quality and safety of grain and oils. J. Spectrosc. 2016, 36, 3643–3650.

5. Wu, X.J.; Gao, S.B.; Niu, Y.D.; Zhao, Z.L.; Xu, B.R.; Ma, R.Q.; Liu, H.L.; Zhang, Y.J. Identification of olive oil in vegetable blend oil
by one-dimensional convolutional neural network combined with Raman spectroscopy. J. Food Compos. Anal. 2022, 108, 104396.
[CrossRef]

6. Jiang, L.L.; Hong, Z.; Hong, F.L. Application of UV spectrometry and chemometric models for detecting olive oil-vegetable oil
blends adulteration. J. Food Sci. Technol. 2015, 52, 479–485. [CrossRef]

7. Zhang, T.; Liu, Y.Y.; Dai, Z.; Cui, L.H.; Lin, H.Z.; Li, Z.J.; Wu, K.H.; Liu, G.Y. Quantitative detection of extra virgin olive oil
adulteration, as opposed to peanut and soybean oil, employing LED-induced fluorescence spectroscopy. J. Sens. 2022, 22, 1227.
[CrossRef]

8. Kumar, A.; Sharma, A.C.; Upadhyaya, K. Vegetable oil: Nutritional and industrial perspective. J. Curr. Genom. 2016, 17, 230–240.
[CrossRef] [PubMed]

9. Rajagukguk, Y.V.; Cevoli, C.; Grigoletto, I.; Tomaszewska-Gras, J. Rapid determination of the storage time of cold-pressed berry
seed oils using flash gas chromatography E-Nose coupled with chemometrics. J. Food Eng. 2024, 364, 111795. [CrossRef]

10. Roy, M.; Doddappa, M.; Yadav, B.K.; Jaganmohan, R.; Sinija, V.R.; Manickam, L.; Sarvanan, S. Detection of soybean oil adulteration
in cow ghee (clarified milk fat): An ultrafast study using flash gas chromatography electronic nose coupled with multivariate
chemometrics. J. Sci. Food Agric. 2022, 102, 4097–4108. [CrossRef]

11. Kalo, P.; Kuuranne, T. Analysis of free and esterified sterols in fats and oils by flash chromatography, gas chromatography and
electrospray tandem mass spectrometry. J. Chromatogr. A 2001, 935, 237–248. [CrossRef]

12. Jing, Q.; Liu, S.; Song, Y.; Xu, T.; Ma, F.; Yu, L.; Hu, C.D.; Li, P.W.; Zhang, X.L. TaqMan real-time quantitative PCR for the detection
of beef tallow to assess the authenticity of edible oils. Food Control 2024, 156, 110139. [CrossRef]

13. Cui, F.; Liu, M.; Li, X.; Wang, D.; Ma, F.; Yu, L.; Hu, C.D.; Li, P.W.; Zhang, X.L. Gas chromatography ion mobility spectroscopy: A
rapid and effective tool for monitoring oil oxidation. Food Res. Int. 2024, 176, 113842. [CrossRef] [PubMed]

14. Geng, D.; Chen, X.; Lu, D.; Chen, B. Discrimination of different edible vegetable oils based on GC-IMS and SIMCA. Cyta-J. Food
2023, 21, 49–56. [CrossRef]

15. de Magalhães, J.B.; Simon, K.F.; Veiga, E.A.; Galvão, A.C.; Robazza, W.D.S. Evaluating Adulteration of Commercial Extra Virgin
Olive Oil with Canola and Sunflower Oils Through Electrochemical Impedance Spectroscopy. Food Bioprocess Technol. 2023, 1–13.
[CrossRef]

16. Jiménez, A.; Rufo, M.; Paniagua, J.M.; González-Mohino, A.; Olegario, L.S. Temperature dependence of acoustic parameters in
pure and blended edible oils: Implications for characterization and authentication. Ultrasonics 2024, 138, 107216. [CrossRef]
[PubMed]
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