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Abstract: Background: The Clustered Orienteering Problem is an optimization problem faced in
last-mile logistics. The aim is, given an available time window, to visit vertices and to collect as
much profit as possible in the given time. The vertices to visit have to be selected among a set of
service requests. In particular, the vertices belong to clusters, the profits are associated with clusters,
and the price relative to a cluster is collected only if all the vertices of a cluster are visited. Any
solving methods providing better solutions also imply a new step towards sustainable logistics
since companies can rely on more efficient delivery patterns, which, in turn, are associated with an
improved urban environment with benefits both to the population and the administration thanks to
an optimized and controlled last-mile delivery flow. Methods: In this paper, we propose a constraint
programming model for the problem, and we empirically evaluate the potential of the new model
by solving it with out-of-the-box software. Results: The results indicate that, when compared to the
exact methods currently available in the literature, the new approach proposed stands out. Moreover,
when comparing the quality of the heuristic solutions retrieved by the new model with those found
by tailored methods, a good performance can be observed. In more detail, many new best-known
upper bounds for the cost of the optimal solutions are reported, and several instances are solved to
optimality for the first time. Conclusions: The paper provides a new practical and easy-to-implement
tool to effectively deal with an optimization problem commonly faced in last-mile logistics.

Keywords: clustered orienteering problem; constraint programming; exact solutions; heuristic solutions

1. Introduction

The Orienteering Problem (OP) was introduced in [1,2] in the 1980s. In an interpreta-
tion of the problem from the viewpoint of logistics, there is a single vehicle, leaving from
and returning to a depot, which serves a set of customers, each one associated with a spacial
location and profit, with such a profit collected upon visiting the location. The travel times
among the locations are known, deterministic, and given. However, not all the customers
can typically be serviced, since the vehicle mission cannot be longer than a given maximum
time. The aim of the problem is to maximize the total profit collected by the vehicle in the
available time. The problem has attracted a lot of attention due to its practical implications,
and many variations of the original problem have been introduced over the years. We refer
the interested reader to [3–6] for exhaustive reviews of the scientific literature on these
problems. Optimization approaches for last-mile logistics, in general, have become more
and more popular in recent years due to the dramatic increase in e-commerce [7], which
automatically generates a great need for effective operational solutions [8–12].

A generalization of the OP, called the Clustered Orienteering Problem (COP), was
originally proposed in [13], and is the topic of the present study. There is a set of customers
that are grouped into clusters. Associated with each cluster there is a profit, which is
collected once all customers of the cluster are visited. A classic application of the COP
is in last-mile distribution in the retail sector: sometimes contracts allow collection of
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the profit only if all the warehouses (or shops) of a chain (cluster) are visited. Another
typical application is again in last-mile logistics, which is about the collection of goods
from the customers in order to aggregate them for further shipping. In this case, the profit
is collected only if all the goods planned to be aggregated together (typically to form
a container) are collected, otherwise the shipment cannot happen and there is a delay.
The growth of e-commerce associated with globalization gives a measure of the impact on
the pollution of the activities associated with these logistics problems. It is safe to state that
any improvement on their solution is a clear step towards a more sustainable society.

The COP should not be confused with the Set Orienteering Problem [14,15], which
shares the same input information, but with a different objective, namely, the profit is
collected once a single vertex of a cluster is visited. This problem was introduced to model
a different family of last-mile logistics applications.

The first algorithmic approaches to solve the COP were proposed in [13], where exact
solving approaches, based on a mixed-integer linear program (MILP) and on a branch-and-
cut method were proposed. In the same paper, three different variations of a tabu search
heuristic were also proposed to deal with those instances that could not be effectively be
treated by the exact solvers. More recently, other heuristic approaches were discussed,
respectively, in [16], where a hybrid heuristic (HH) method was proposed, and in [17],
where the authors propose a hybrid evolutionary algorithm (HEA). A cutting plane method
was introduced as an exact method in [18] for the Clustered Team Orienteering Problem,
a version of the COP with multiple vehicles. In the same paper, a generalization of the
heuristic algorithm HH is also discussed. A summary of the contributions of these works
can be found in Table 1.

Table 1. Summary of the contributions of the publications dealing with the solving methods for the
Clustered Orienteering Problem and its generalizations.

Paper Exact Methods Heuristic Methods Multiple Trucks

Angelelli et al. [13] Yes Yes No
Yahiaoui et al. [16] No Yes No
Yahiaoui et al. [18] Yes Yes Yes
Wu et al. [17] No Yes No
This paper Yes No No

In the present work—which is along the line of recent successful applications of
constraint programming (CP) to other last-mile logistic problems [19,20]—we introduce a
novel exact solving method for the COP, which is able to take advantage of the technologies
available in modern solvers and modern hardware. The results achieved indicate that the
new approach is able to provide state-of-the-art results, notwithstanding an implementation
complexity that is substantially lower than that of the exact methods previously available
in the literature, with improved upper bounds for the optimal cost of several instances,
and many instances closed here for the first time.

The real-world implications of our results in terms of last-mile logistics derive from the
availability of the new tool we make available to practitioners, which allows them to have a
better understanding and higher-quality solutions while carrying out operational planning.
This, coupled with a better strategic organization, can lead to a more optimized and
harmonized logistics, leading to direct social benefits for citizens (higher quality service),
providers (less costs), and the cities themselves (less traffic in the urban environment).

2. Problem Description

Let G = (V, A) be a directed graph, where V = {0} ∪ C is the set of vertices of the
graph and A is the set of arcs. The depot (starting and ending point of the route) is vertex
0, while C is the set of locations of the customers. A set of m + 1 clusters C0, C1, . . . , Cm is
given, such that Ci ⊆ C ∀i ∈ {0, 1, . . . , m} and they cover C: (

⋃m
i=0 Ci = C). Notice that
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clusters can overlap. Each vertex j ∈ C is part of at least one cluster, but it can be part of
several. A profit pi is associated with each cluster Ci, and such a profit is collected only
if all the vertices j ∈ Ci are visited. Cluster C0 contains only the depot 0 and has a null
profit. A travel time cjk is associated with each arc (j, k) ∈ A, representing travel times,
and a maximum time Tmax is given. The Clustered Orienteering Problem (COP) consists of
finding a route on vertices V with a total travel time not longer than Tmax that maximizes
the total profit collected. In the remainder of the paper, we assume—consistently with the
previous literature—that the travel times satisfy triangle inequalities. An example with a
COP instance and a relative solution is provided in Figure 1.
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Figure 1. Example of a (simplified) COP instance. The squared node 0 is the depot, while the other
vertices are customers. Clusters are represented as coloured rectangles, with the associated profit
depicted in a corner. Travel times are omitted for the sake of simplicity, together with the threshold
Tmax. A tour with a total profit of 90 is drawn in black.

3. A Model Based on Constraint Programming

The COP can be described through the following constraint programming model,
designed according to the syntax of the Google OR-Tools [21] CP-SAT solver [22]. The
idea behind the model is to define for each cluster a representative vertex, which will be
used to easily identify the visited clusters and to define constraints effectively. Let ri be the
representative of cluster Ci. Such a vertex is either selected as one of the vertices belonging
solely to cluster Ci or, if such a vertex does not exist, by adding the artificial vertex ai to
the cluster Ci (and to the vertex set V), with distances defined as follows. Let bi ̸= ai an
arbitrary vertex from Ci, then we define caibi

= 0 and cjai = cjbi
, cai j = +∞ ∀j ∈ V\{ai, bi}.

In such a way, node ai can be freely be visited without increasing the length of the tour as
soon as node bi is visited. Building on Figure 1, an example of the creation of an artificial
representative vertex is provided in Figure 2, together with the sketch of a relative solution.

In the model, a binary variable xij, with i, j ∈ V, takes value 1 if vertex i is visited right
before vertex j in the solution tour, and value 0 otherwise. In case a vertex i ∈ C is not
visited, then xii is set to 1, and 0 otherwise.

max ∑
i∈C

pi¬xriri (1)

s.t. AddCircuit(xij; i, j ∈ V; i ̸= 0 ∨ j ̸= 0) (2)

∑
i∈V

∑
j∈V,j ̸=i

cijxij ≤ Tmax (3)

xjj =⇒ xriri i ∈ C, j ∈ Ci\{ri} (4)

xij ∈ {0; 1} i, j ∈ V (5)
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The objective function (1) maximizes the profit collected in the tour. Constraint (2)
imposes that the tour associated with the active x variables forms a feasible circuit. This is
imposed by the CP-SAT statement AddCircuit that also ensures that xii = 1 for each variable
i ∈ C not touched by the circuit itself. Constraint (3) is a budget constraint requiring that
the length of the tour described by the active x variables has a length of, at most, Tmax.
Constraints (4) use the AddImplication statement (here represented as =⇒) and impose that
if a vertex of a cluster is not visited, then also the representative of the cluster cannot be
visited. As a consequence, a representative vertex can be visited only if all the nodes of its
cluster are visited. This is necessary in order not to overestimate the profit collected in the
objective function. Constraints (5) finally define the domain of the variables.
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Figure 2. The example of Figure 1 with representative nodes (double framed) and the artificial node
11 added. The solution now goes through node 11. The new cost of the solution arcs incident to 11 is
also depicted.

4. Computational Experiments

After having introduced the benchmark set adopted in Section 4.1 and described the
experimental settings in Section 4.2, in Section 4.3 we position the new model within the
exact methods that have previously appeared in the literature. In Section 4.4, the new
best-known results obtained by the model CP are detailed.

4.1. Benchmark Instances

The benchmark instances commonly adopted in the previous COP literature for the
exact algorithms are those proposed in [13] and are available at [23]. They are derived from
the classic TSPLIB95 instances available at [24]. The instances have a number of vertices
ranging between 42 and 318 (as indicated in the names), and the following elements have
been added and reflected into the names to make them suitable for the COP (on top of
slightly modifying some of the distance matrices):

• Clusters: the number of clusters (field s in the instance name) takes the value of 10, 15,
20, or 25;

• Profits: the profit of a given vertex is generated in two alternative ways (g1 or g2
in the instance name) based either on the number of vertices in a cluster, or on a
pseudo-random value, as explained in details in [13]

• Threshold: two different values are considered for Tmax (q2 or q3 in the instance name),
which are obtained by considering a fraction of the optimal value of the original
TSPLIB95 problem from which the instance is derived, as described in [13].

4.2. Experimental Settings

In this section, we present the results obtained by solving the model we proposed
in Section 3 via the CP-SAT solver [22] version 9.8 using standard settings on a computer
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running an Intel Core i7 12700F processor and equipped with 32 GB of RAM. A maximum
computation time of 3600 is allowed for each run, and the solver is launched from scratch
without any clue about bounds previously calculated. Notice that we decided to leave out
all the preprocessing rules described in [18] when solving the model described in Section 3.
The reason is that the remaining rules were either not helping the solver or extremely
time-consuming to calculate, and anyway, relying on previously calculated upper and
lower bounds, which are normally not available in real applications, when a new instance
is faced.

The results are compared with those obtained by all the other methods available in
the literature that we are aware of.

The other exact methods we consider are as follows:

• The mixed-integer linear program BASIC presented in [13], with experiments run on a
computer with an Intel Xeon W3680 CPU and 12 GB of RAM, using CPLEX 12.2 [25]
as a MILP solver. A maximum computation time of 3600 is allowed for each run;

• The branch-and-cut algorithm COP-CLU presented in [13], with experiments run on a
computer with an Intel Xeon W3680 CPU and 12 GB of RAM, using CPLEX 12.2 [25]
as a MILP solver. A maximum computation time of 3600 is allowed for each run;

• The branch-and-cut algorithm CUT-PLA presented in [18], with experiments run on a
computer with an Intel Xeon(R) E2-2670 and 128 GB of RAM, using CPLEX 12.6 [25]
as a MILP solver. A maximum computation time of 3600 is allowed for each run.
Unfortunately, for this method, only aggregated results are available.

Concerning heuristic approaches, we consider the following:

• The three different tabu search methods COP-TS-∗ discussed in [13] with experiments
run on a computer with an Intel Xeon W3680 CPU and 12 GB of RAM;

• The hybrid heuristic HH approach discussed in [16] (see also [18]) with experiments
run on a computer with an Intel Xeon X7542 CPU;

• The hybrid evolutionary algorithm HEA presented in [17] with experiments run on a
computer with an Intel Core i5-8400 CPU and 16 GB RAM.

4.3. Comparison with Exact Methods

A first comparison of the results obtained by the CP model compared to all the
other exact solvers available in the literature, in terms of success and optimality gap, is
presented in Table 2. For each of the exact methods considered, the results after one hour
of computation are reported, covering for each class of instances the number of instances
solved to optimality over the 16 ones in each group (# Opt); the average optimality gap
(Gap %), calculated as 100(UB(m) − LB(m))/UB(m) where UB(m) and LB(m) are the
upper and lower bounds retrieved by the generic method m at the end of the 3600 s; the
average computation time (Sec).

Before commenting the results, some considerations have to be made. First, the dif-
ferent experiments are taken from different papers and made on different computers and
using different solvers. These settings inevitably affect the comparison, but we believe the
main conclusions remain valid independently of these (inevitable) perturbations. More-
over, no preprocessing rule is used by the methods BASIC, COP-CLU and CP, while an
extremely time-consuming preprocessing phase is carried out before CUT-PLA. It involves
the solution of multiple maximum clique problems [26], multiple smaller COPs, and relies
on pre-calculated tight bounds for the original problem. Unfortunately, the time spent on
these very time-consuming activities is not accounted for within the computation times
reported. In our opinion, this gives the method CUT-PLA a clear advantage, turning the
comparison against it biased. We report the results anyway for the sake of completeness.
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Table 2. Comparison against published exact methods—aggregated results.

Classes of Instances
BASIC COP-CLU CUT-PLA CP(Angelelli et al. [13]) (Angelelli et al. [13]) (Yahiaoui et al. [18])

# Opt Gap % Sec # Opt Gap % Sec # Opt Gap % Sec # Opt Gap % Sec

dantzig42 16 0.0 8.1 16 0.0 0.6 16 0.0 2.9 16 0.0 4.6
swiss42 16 0.0 6.6 16 0.0 1.0 16 0.0 4.1 16 0.0 5.1
att48 16 0.0 13.2 16 0.0 8.5 16 0.0 34.8 16 0.0 25.9
gr48 16 0.0 11.9 16 0.0 4.9 16 0.0 12.5 16 0.0 18.5
hk48 16 0.0 10.9 16 0.0 5.5 16 0.0 12.4 16 0.0 19.3
eil51 16 0.0 16.7 16 0.0 6.8 16 0.0 16.6 16 0.0 30.2
berlin52 16 0.0 12.0 16 0.0 2.3 16 0.0 10.0 16 0.0 13.9
brazil58 16 0.0 16.4 16 0.0 5.5 16 0.0 26.7 16 0.0 24.0
st70 16 0.0 52.7 16 0.0 57.7 16 0.0 95.7 16 0.0 400.2
eil76 16 0.0 20.2 16 0.0 18.2 16 0.0 25.8 16 0.0 62.6
pr76 16 0.0 94.4 15 0.5 501.7 16 0.0 196.4 16 0.0 276.9
gr96 16 0.0 34.8 16 0.0 23.3 16 0.0 37.2 16 0.0 78.7
rat99 16 0.0 232.4 16 0.0 93.1 16 0.0 159.3 16 0.0 458.6
kroA100 14 3.7 1112.5 16 0.0 279.0 16 0.0 241.0 16 0.0 520.4
kroB100 11 7.0 1386.0 16 0.0 468.6 16 0.0 272.5 16 0.0 762.3
kroC100 11 7.2 1968.0 16 0.0 602.8 15 0.5 746.3 16 0.0 696.5
kroD100 14 2.1 1613.8 16 0.0 647.2 16 0.0 581.6 16 0.0 1022.8
kroE100 13 2.8 1107.8 15 2.1 562.5 16 0.0 179.1 16 0.0 717.3
rd100 10 3.8 1702.8 16 0.0 537.0 16 0.0 225.1 16 0.0 1387.9
eil101 16 0.0 94.0 16 0.0 50.9 16 0.0 116.0 16 0.0 236.5
lin105 16 0.0 104.4 16 0.0 59.4 16 0.0 72.7 16 0.0 184.1
pr107 16 0.0 171.3 16 0.0 61.6 15 1.9 332.5 16 0.0 112.2
gr120 10 4.8 1854.9 15 1.8 948.2 15 0.6 688.8 16 0.0 1013.0
pr124 16 0.0 139.7 16 0.0 78.5 16 0.0 100.5 16 0.0 293.6
bier127 16 0.0 283.8 16 0.0 97.4 16 0.0 92.2 16 0.0 211.0
ch130 5 11.7 2717.6 12 2.6 1844.0 15 0.4 767.3 12 3.1 2480.0
pr136 11 4.6 2024.1 16 0.0 765.1 16 0.0 326.3 16 0.0 1106.1
gr137 16 0.0 144.9 16 0.0 62.9 16 0.0 149.9 16 0.0 204.6
pr144 16 0.0 229.0 16 0.0 119.4 16 0.0 135.7 16 0.0 407.1
ch150 1 37.2 3438.7 0 44.4 3600.7 9 5.8 2098.0 5 13.3 2859.9
kroA150 2 32.5 3488.5 3 32.8 3232.8 10 5.8 1713.4 7 13.9 2641.9
kroB150 1 33.3 3591.2 1 34.6 3571.2 11 5.6 1913.8 6 12.2 2782.9
pr152 16 0.0 266.4 16 0.0 130.0 16 0.0 559.2 16 0.0 545.8
u159 13 1.3 923.5 16 0.0 442.1 14 1.1 1185.8 15 0.1 1844.1
si175 16 0.0 844.0 16 0.0 424.5 16 0.0 315.5 16 0.0 950.3
brg180 16 0.0 597.5 16 0.0 141.5 16 0.0 155.6 16 0.0 422.0
rat195 5 7.5 3020.1 7 8.1 3004.0 10 4.5 1757.7 8 4.9 2821.1
d198 16 0.0 179.5 14 1.4 1035.5 12 3.3 1431.6 16 0.0 1334.7
kroA200 0 62.5 3600.8 0 74.6 3601.0 6 14.7 2562.2 3 24.1 3281.1
kroB200 2 45.6 3471.5 0 64.2 3600.4 6 17.7 2550.0 3 24.6 3142.6
gr202 13 1.3 814.4 13 1.4 1255.6 16 0.0 557.1 15 0.6 1799.6
ts225 0 36.9 3600.5 0 71.2 3600.4 0 27.3 3600.7 0 23.5 3600.0
tsp225 1 26.2 3504.6 3 14.8 3335.7 10 6.8 2461.4 4 8.7 3428.1
pr226 10 11.0 1782.0 14 1.9 1485.8 5 14.4 3066.9 11 10.9 2342.3
gr229 16 0.0 299.6 13 2.1 1645.3 16 0.0 1063.6 14 0.5 2023.9
gil262 0 61.4 3601.5 0 91.8 3601.6 4 19.9 3084.4 1 28.9 3436.3
pr264 8 6.6 2499.8 10 17.5 2105.1 2 35.0 3155.6 8 8.6 3191.0
a280 1 17.6 3415.7 1 23.5 3464.0 2 17.7 3357.5 1 13.4 3424.3
pr299 1 17.6 3569.6 2 54.8 3554.8 1 28.4 3449.9 2 10.9 3421.6
lin318 1 15.3 3543.9 0 53.1 3600.6 1 15.5 3430.7 1 15.4 3563.4

Average 11.2 9.2 1344.8 12.0 12.0 1166.9 12.9 4.5 982.6 12.6 4.3 1312.6

The aggregated results presented in Table 2 indicate that the new model CP is com-
petitive with the state-of-the-art exact solvers discussed in the literature. In particular, the
statistics indicate that the CP model is able to provide the smallest optimality gap of all
the methods, notwithstanding it does not take advantage of the aggressive preprocessing
run before the solver CUT-PLA. The latter has slightly better results in terms of the average
number of instances solved to optimality, and shorter computation times, although the
time of the heavy preprocessing run for CUT-PLA is not accounted for in these figures.
The methods BASIC and COP-CLU appear to deliver worse performance, although the fact
that for some groups of instances they are the best, indicate that a clear dominance among
the approaches is not present.



Logistics 2024, 8, 48 7 of 15

In Figures 3 and 4, a graphical representation of the results of Table 2 is proposed,
in terms of average optimality gaps and computation times. The instances are presented in
a non-decreasing order of size, in order to allow considerations on the scalability for the
different approaches. For this purpose, quadratic trend lines are also inserted in the charts.
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Figure 3. Average optimality gaps for the different exact methods for instances of increasing size.

Figure 3 suggests that our proposal CP is the one scaling better among the methods,
having a fairly flat curvature of the trend line. In detail, CP emerges as the most effective
method on the larger instances, while CUT-PLA is superior on the small and medium
ones—always keeping in mind the preprocessing advantage of the latter method mentioned
before. The method COP-CLU presents the worst figures in terms of scaling. It is finally
interesting to observe the presence of a cluster of hard instances, difficult to solve for all the
methods considered, with a size around 150.

Figure 4 highlights that the approach CP we propose appears to have a similar trend
to BASIC and COP-CLU in terms of average computation times, although with different
spikes, sometimes worse, sometimes better, with a trend line worse than that of BASIC but
better than that of COP-CLU. Although it is not possible to draw accurate conclusions about
the method CUT-PLA due to the unknown time spent by the method in preprocessing,
it appears to be the fastest of all, but with a degradation in performance associated with
the larger instances that poses doubts on scalability, as highlighted by the least promising
trend line of all.

The detailed results obtained by solving the model CP are available in Appendix A
for future reference.



Logistics 2024, 8, 48 8 of 15

da
nt

zig
42

sw
iss

42
at

t4
8

gr
48

hk
48

ei
l5

1
be

rli
n5

2
br

az
il5

8
st

70
ei

l7
6

pr
76

gr
96

ra
t9

9
kr

oA
10

0
kr

oB
10

0
kr

oC
10

0
kr

oD
10

0
kr

oE
10

0
rd

10
0

ei
l1

01
lin

10
5

pr
10

7
gr

12
0

pr
12

4
bi

er
12

7
ch

13
0

pr
13

6
gr

13
7

pr
14

4
ch

15
0

kr
oA

15
0

kr
oB

15
0

pr
15

2
u1

59
si1

75
br

g1
80

ra
t1

95
d1

98
kr

oA
20

0
kr

oB
20

0
gr

20
2

ts
22

5
ts

p2
25

pr
22

6
gr

22
9

gi
l2

62
pr

26
4

a2
80

pr
29

9
lin

31
8

Classes of instances

0

500

1000

1500

2000

2500

3000

3500

Se
co

nd
s

Average Compuation Times
BASIC
COP-CLU
CUT-PLA
CP
BASIC, trend
COP-CLU, trend
CUT-PLA, trend
CP, trend

Figure 4. Average computation times for the different exact methods for instances of increasing size.

4.4. Improved Best-Known Results

In this section, we compare the results retrieved by CP with the best-known lower and
upper bounds for the optimal costs available in the literature, and obtained by all the exact
and heuristic methods listed in Section 4.2. The best lower bounds are mainly obtained by
the tailored heuristic methods, while the upper bounds are exclusively made available by
exact methods. In general, the new CP model was able to retrieve many improved upper
bounds with respect to those reported in the previous literature, leading also to the first
optimality proof for the solutions of several instances. In the following Table 3, we detail
these new state-of-the-art bounds. In the table we indicate, for each instance affected by an
improvement, the previous best-known lower and upper bounds, and the upper bounds
obtained by the new model CP. In the column Opt, we finally mark (with ⋆) those instances
for which an exact solution is documented for the first time in this study. According to the
table, a total of 118 new improved lower bounds are presented, with optimality proven
for the first time for 37 of the instances. For the sake of completeness, we report that for 27
of these 37 instances the model CP was able to close the instance, while for the remaining
10 optimality was inferred by comparing the new upper bounds with the lower bounds
previously known.

Table 3. New best bounds and new optimality proofs.

Instance s g q Best Known CP Instance s g q Best Known CP
LB UB UB Opt LB UB UB Opt

gr120 15 1 2 49 56.1 49 ⋆ kroB200 15 1 3 123 156.2 139
ch130 25 1 2 52 59.7 59 kroB200 15 2 3 6204 7828.3 7565
ch150 10 1 3 85 105.3 85 ⋆ kroB200 20 1 2 48 106.2 84
ch150 10 2 2 1773 2580.9 1773 ⋆ kroB200 20 1 3 132 166.9 144
ch150 10 2 3 4380 5119.7 4380 ⋆ kroB200 20 2 3 6814 8354.2 8239
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Table 3. Cont.

Instance s g q Best Known CP Instance s g q Best Known CP
LB UB UB Opt LB UB UB Opt

ch150 15 2 2 1882 3639.6 1882 ⋆ kroB200 25 1 2 60 120.0 90
ch150 15 2 3 4961 5736.1 5515 kroB200 25 1 3 140 176.8 160
ch150 20 1 2 56 79.3 65 kroB200 25 2 3 7390 8931.2 8671
ch150 20 1 3 114 127.0 117 gr202 15 1 2 124 133.2 124 ⋆
ch150 20 2 2 2781 3913.2 3541 ts225 10 1 2 81 131.4 107
ch150 20 2 3 5665 6524.3 6308 ts225 10 1 3 160 197.3 186
ch150 25 1 2 48 94.1 72 ts225 10 2 2 4058 6613.6 6127
ch150 25 1 3 120 130.7 128 ts225 10 2 3 8036 9680.9 9386
ch150 25 2 2 2597 4593.7 3801 ts225 15 1 2 102 129.2 102 ⋆
kroA150 10 1 3 85 102.2 85 ⋆ ts225 15 1 3 170 198.6 187
kroA150 10 2 3 4379 4990.1 4379 ⋆ ts225 20 1 2 107 136.8 121
kroA150 15 1 2 36 60.0 36 ⋆ ts225 20 1 3 186 206.3 199
kroA150 15 2 2 1882 3302.7 2925 ts225 25 1 2 121 144.0 132
kroA150 20 1 2 40 74.1 59 ts225 25 1 3 187 215.0 209
kroA150 20 1 3 108 127.9 120 ts225 25 2 2 6072 7269.2 7147
kroA150 20 2 2 2109 3634.2 3354 tsp225 10 1 2 107 110.9 108
kroA150 20 2 3 5532 6338.2 6196 tsp225 10 2 2 5274 5591.4 5362
kroA150 25 1 2 48 78.1 64 tsp225 15 1 2 102 112.9 102 ⋆
kroA150 25 1 3 120 128.3 127 tsp225 15 1 3 170 180.9 170 ⋆
kroA150 25 2 2 2424 4003.0 3890 tsp225 20 1 2 107 117.3 108
kroB150 10 1 2 34 38.9 34 ⋆ tsp225 20 1 3 186 187.2 186 ⋆
kroB150 10 1 3 85 105.9 85 ⋆ gil262 10 1 2 61 110.4 61 ⋆
kroB150 10 2 3 4390 5431.1 4390 ⋆ gil262 10 1 3 151 203.9 181
kroB150 15 1 2 36 64.7 48 gil262 10 2 2 3125 5337.1 4640
kroB150 15 1 3 107 116.0 107 ⋆ gil262 10 2 3 7750 10,191.2 9245
kroB150 15 2 2 1882 3654.9 2496 gil262 15 1 2 78 123.6 99
kroB150 15 2 3 5421 5762.8 5421 ⋆ gil262 15 1 3 175 205.9 195
kroB150 20 1 2 45 68.7 59 gil262 15 2 3 8961 10,313.3 10,012
kroB150 20 1 3 112 122.7 117 gil262 20 1 2 76 139.7 121
kroB150 20 2 2 2212 3782.5 3336 gil262 20 1 3 181 214.1 196
kroB150 20 2 3 5733 6222.1 6194 gil262 20 2 3 9184 11,051.5 10,780
kroB150 25 1 2 48 96.3 64 gil262 25 1 2 87 135.0 133
kroB150 25 1 3 119 130.8 128 gil262 25 1 3 188 221.7 215
kroB150 25 2 2 2488 4270.7 3724 gil262 25 2 3 9649 11,393.6 11,283
rat195 10 1 2 87 90.8 87 ⋆ pr264 10 2 2 4682 7196.4 5416
rat195 20 1 3 167 167.3 167 ⋆ pr264 15 2 3 8985 10,164.7 9967
rat195 25 2 2 5695 5948.4 5695 ⋆ a280 10 1 2 128 140.2 128 ⋆
kroA200 10 1 2 44 76.7 44 ⋆ a280 10 1 3 224 230.1 224 ⋆
kroA200 10 1 3 110 140.8 110 ⋆ a280 20 1 2 144 154.0 144 ⋆
kroA200 10 2 2 2258 3698.8 2258 ⋆ a280 20 1 3 224 233.5 224 ⋆
kroA200 10 2 3 5655 7390.1 6660 a280 25 1 2 147 158.4 157
kroA200 15 1 2 48 105.1 78 pr299 10 1 2 136 146.7 136 ⋆
kroA200 15 1 3 124 157.7 139 pr299 10 1 3 236 242.7 238
kroA200 15 2 2 2470 4643.7 4598 pr299 10 2 2 6792 7720.7 7263
kroA200 15 2 3 6200 8056.5 7613 pr299 10 2 3 11,986 12,117.3 12,057
kroA200 20 1 2 48 98.8 84 pr299 15 1 2 132 153.2 153
kroA200 20 1 3 132 178.0 144 pr299 20 1 3 238 253.9 238 ⋆
kroA200 20 2 3 6654 8429.2 8302 pr299 25 1 3 238 257.2 252
kroA200 25 1 2 60 116.7 80 lin318 10 1 2 152 173.5 152 ⋆
kroA200 25 1 3 140 174.0 159 lin318 10 1 3 265 265.2 265 ⋆
kroA200 25 2 3 7170 9118.2 8901 lin318 15 1 2 152 174.3 152 ⋆
kroB200 10 1 3 110 143.1 110 ⋆ lin318 15 1 3 252 271.0 252 ⋆
kroB200 10 2 3 5675 7276.5 6680 lin318 20 1 2 162 176.9 162 ⋆
kroB200 15 1 2 47 89.2 78 lin318 25 1 2 175 184.4 180



Logistics 2024, 8, 48 10 of 15

5. Conclusions

In this work, we have considered the Clustered Orienteering Problem, an optimization
problem faced in last-mile logistics. The aim is, given an available time window, to select the
vertices to visit among a set of service requests in order to maximize the total profit collected.
In particular, vertices belong to clusters, and the profits are associated to clusters, and the
price relative to a cluster is collected only if all the vertices of such a cluster are visited.

We propose a constraint programming model for the problem and we empirically eval-
uate the potential of the new model by solving it with out-of-the-box software. The results
indicate that, when compared to the exact methods currently available in the literature,
the new approach proposed is dominant. Several improved upper bounds are provided in
the study, and different instances are closed here for the first time. Overall, we provided an
easy-to-implement tool providing well-optimized solutions, which, in turn, translates into
a more sustainable logistics organization.

Future work should be in the direction of integrating the new model we propose with
the high-performance heuristic methods available in order to enhance the quality of the
lower bounds. Moreover, the approach should be extended to deal with the Team Orien-
teering version of the problem—where several vehicles operate together—and compared
with the existing literature on these settings.
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Appendix A

In this appendix, we report extensively the results obtained by the CP model for reference.
The results were obtained by attacking the model with the CP-SAT solver [22] version

9.8 using standard settings on a computer equipped with an Intel Core i7 12700F processor
and 32 GB of RAM, with a maximum computation time of 1 h.

Table A1. Detailed results retrieved by the new model.

Instance s (g, q) = (1, 2) (g, q) = (1, 3) (g, q) = (2, 2) (g, q) = (2, 3)
LB UB LB UB LB UB LB UB

dantzig42

10 31 31 43 43 1519 1519 2133 2133
15 36 36 51 51 1789 1789 2499 2499
20 41 41 61 61 2074 2074 3004 3004
25 48 48 71 71 2451 2451 3499 3499

swiss42

10 25 25 37 37 1231 1231 1885 1885
15 30 30 49 49 1486 1486 2443 2443
20 37 37 57 57 1829 1829 2807 2807
25 40 40 60 60 1973 1973 3042 3042

att48

10 14 14 35 35 733 733 1820 1820
15 20 20 46 46 1005 1005 2280 2280
20 23 23 49 49 1145 1145 2581 2581
25 24 24 56 56 1236 1236 2856 2856

gr48

10 18 18 42 42 832 832 2109 2109
15 21 21 52 52 1050 1050 2519 2519
20 28 28 57 57 1339 1339 2792 2792
25 33 33 66 66 1633 1633 3208 3208
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Table A1. Cont.

Instance s (g, q) = (1, 2) (g, q) = (1, 3) (g, q) = (2, 2) (g, q) = (2, 3)
LB UB LB UB LB UB LB UB

hk48

10 14 14 35 35 733 733 1820 1820
15 25 25 45 45 1250 1250 2220 2220
20 24 24 53 53 1188 1188 2590 2590
25 32 32 63 63 1616 1616 3025 3025

eil51

10 21 21 42 42 1087 1087 2149 2149
15 26 26 50 50 1193 1193 2325 2325
20 29 29 59 59 1320 1320 2793 2793
25 32 32 64 64 1610 1610 3188 3188

berlin52

10 21 21 42 42 1158 1158 2251 2251
15 32 32 53 53 1694 1694 2707 2707
20 36 36 62 62 1870 1870 3111 3111
25 44 44 68 68 2322 2322 3486 3486

brazil58

10 22 22 39 39 1045 1045 1945 1945
15 34 34 57 57 1775 1775 2822 2822
20 37 37 63 63 1865 1865 3235 3235
25 44 44 73 73 2106 2106 3438 3438

st70

10 18 18 45 45 999 999 2321 2321
15 27 27 58 58 1202 1202 2811 2811
20 29 29 68 68 1424 1424 3359 3359
25 34 34 73 73 1665 1665 3660 3660

eil76

10 38 38 59 59 1726 1726 2902 2902
15 42 42 70 70 1994 1994 3440 3440
20 47 47 81 81 2217 2217 3868 3868
25 50 50 85 85 2440 2440 4275 4275

pr76

10 48 48 77 77 2362 2362 3755 3755
15 49 49 84 84 2523 2523 4178 4178
20 54 54 94 94 2827 2827 4721 4721
25 65 65 100 100 3295 3295 5130 5130

gr96

10 59 59 82 82 2895 2895 4062 4062
15 66 66 93 93 3305 3305 4719 4719
20 70 70 105 105 3515 3515 5268 5268
25 78 78 118 118 3987 3987 6067 6067

rat99

10 48 48 72 72 2376 2376 3664 3664
15 54 54 80 80 2693 2693 3996 3996
20 56 56 91 91 2812 2812 4587 4587
25 60 60 102 102 3094 3094 5055 5055

kroA100

10 12 12 60 60 654 654 3069 3069
15 27 27 70 70 1505 1505 3564 3564
20 35 35 77 77 1890 1890 3999 3999
25 30 30 84 84 1691 1691 4346 4346

kroB100

10 23 23 71 71 1154 1154 3469 3469
15 26 26 77 77 1439 1439 4040 4040
20 34 34 83 83 1756 1756 4349 4349
25 41 41 95 95 2159 2159 4917 4917

kroC100

10 12 12 60 60 634 634 2990 2990
15 26 26 71 71 1341 1341 3494 3494
20 28 28 70 70 1366 1366 3640 3640
25 30 30 83 83 1575 1575 4087 4087

kroD100

10 12 12 59 59 654 654 2936 2936
15 26 26 67 67 1405 1405 3467 3467
20 28 28 77 77 1636 1636 4143 4143
25 36 36 83 83 1889 1889 4319 4319

kroE100

10 24 24 71 71 1288 1288 3590 3590
15 26 26 76 76 1456 1456 3930 3930
20 28 28 84 84 1646 1646 4387 4387
25 36 36 90 90 1950 1950 4737 4737
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Table A1. Cont.

Instance s (g, q) = (1, 2) (g, q) = (1, 3) (g, q) = (2, 2) (g, q) = (2, 3)
LB UB LB UB LB UB LB UB

rd100

10 24 24 60 60 1288 1288 3090 3090
15 34 34 71 71 1879 1879 3641 3641
20 35 35 84 84 1995 1995 4303 4303
25 42 42 90 90 2169 2169 4573 4573

eil101

10 48 48 84 84 2456 2456 4298 4298
15 51 51 86 86 2613 2613 4516 4516
20 56 56 98 98 3002 3002 5161 5161
25 66 66 108 108 3393 3393 5458 5458

lin105

10 51 51 88 88 2500 2500 4368 4368
15 54 54 99 99 2789 2789 4940 4940
20 60 60 109 109 2920 2920 5234 5234
25 69 69 112 112 3531 3531 5748 5748

pr107

10 39 39 65 65 1958 1958 3210 3210
15 54 54 73 73 2709 2709 3766 3766
20 61 61 80 80 2958 2958 4016 4016
25 65 65 89 89 3255 3255 4535 4535

gr120

10 42 42 84 84 2181 2181 4350 4350
15 49 49 99 99 2491 2491 4955 4955
20 56 56 104 104 2800 2800 5339 5339
25 56 56 116 116 3102 3102 5941 5941

pr124

10 44 44 87 87 2280 2280 4455 4455
15 62 62 103 103 3102 3102 5139 5139
20 66 66 115 115 3221 3221 5631 5631
25 77 77 124 124 3779 3779 6246 6246

bier127

10 75 75 118 118 3700 3700 5882 5882
15 86 86 136 136 4315 4315 6874 6874
20 94 94 142 142 4751 4751 7125 7125
25 99 99 148 148 5069 5069 7530 7530

ch130

10 30 30 89 89 1546 1546 4421 4421
15 44 44 97 97 2266 2266 4483 4844
20 53 53 104 104 2665 2665 5246 5585
25 52 59 115 115 2605 3414 5785 5785

pr136

10 48 48 95 95 2500 2500 4781 4781
15 66 66 110 110 3415 3415 5635 5635
20 72 72 117 117 3624 3624 5899 5899
25 79 79 128 128 4019 4019 6592 6592

gr137

10 64 64 111 111 3256 3256 5635 5635
15 77 77 122 122 3892 3892 6115 6115
20 81 81 132 132 4113 4113 6618 6618
25 87 87 137 137 4470 4470 7060 7060

pr144

10 66 66 98 98 3265 3265 5001 5001
15 72 72 117 117 3584 3584 5942 5942
20 74 74 128 128 3743 3743 6464 6464
25 80 80 136 136 4040 4040 6784 6784

ch150

10 34 34 85 85 1773 1773 4380 4380
15 36 60 96 107 1882 1882 4961 5515
20 56 65 107 117 2781 3541 5340 6308
25 48 72 119 128 2185 3801 6022 6707

kroA150

10 34 34 85 85 1708 1708 4379 4379
15 36 36 108 108 1882 2925 5475 5475
20 40 59 107 120 2072 3354 5512 6196
25 40 64 120 127 2300 3890 6000 6669

kroB150

10 34 34 85 85 1753 1753 4390 4390
15 36 48 107 107 1882 2496 5421 5421
20 45 59 112 117 2212 3336 5733 6194
25 48 64 119 128 2488 3724 5821 6545
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Table A1. Cont.

Instance s (g, q) = (1, 2) (g, q) = (1, 3) (g, q) = (2, 2) (g, q) = (2, 3)
LB UB LB UB LB UB LB UB

pr152

10 68 68 102 102 3414 3414 5141 5141
15 72 72 120 120 3656 3656 6060 6060
20 80 80 127 127 4100 4100 6541 6541
25 88 88 136 136 4436 4436 6960 6960

u159

10 72 72 125 125 3696 3696 6227 6227
15 85 85 138 138 4072 4072 6845 6845
20 88 90 148 148 4374 4374 7364 7364
25 99 99 157 157 4955 4955 7716 7716

si175

10 80 80 137 137 4075 4075 6861 6861
15 98 98 149 149 5033 5033 7456 7456
20 99 99 153 153 5171 5171 7831 7831
25 108 108 162 162 5478 5478 8249 8249

brg180

10 80 80 140 140 4100 4100 6990 6990
15 97 97 140 140 4830 4830 7186 7186
20 99 99 154 154 5107 5107 7779 7779
25 103 103 166 166 5249 5249 8312 8312

rat195

10 87 87 129 150 4481 4481 6555 7699
15 105 105 150 164 5265 5265 7475 8126
20 108 108 156 167 5486 5486 7915 8734
25 110 110 158 179 5695 5695 8685 9095

d198

10 110 110 153 153 5595 5595 7738 7738
15 121 121 166 166 6228 6228 8513 8513
20 120 120 192 192 6100 6100 9624 9624
25 130 130 200 200 6625 6625 10,100 10,100

kroA200

10 44 44 110 110 2258 2258 5540 6660
15 48 78 108 139 2415 4598 5957 7613
20 48 84 132 144 2496 5047 6654 8302
25 60 80 140 159 2970 5612 6006 8901

kroB200

10 44 44 110 110 2298 2298 5541 6680
15 47 78 122 139 2438 4697 5458 7565
20 48 84 132 144 2516 5178 6119 8239
25 60 90 140 160 2685 5499 6631 8671

gr202

10 121 121 193 193 6280 6280 9869 9869
15 124 124 200 200 6306 6946 10,080 10,080
20 144 144 205 205 7332 7332 10,342 10,342
25 150 150 221 221 7525 7525 11,104 11,104

ts225

10 79 107 159 186 3983 6127 7987 9386
15 68 102 135 187 4355 6607 6912 10,107
20 92 121 173 199 5491 7009 9063 10,843
25 99 132 164 209 5497 7147 9407 11,014

tsp225

10 81 108 158 183 5267 5362 7867 9283
15 85 102 170 170 5089 6118 8551 9379
20 107 108 186 186 5562 6537 9431 9956
25 121 121 197 197 5505 6545 9887 10,242

pr226

10 81 107 186 186 4137 6762 9633 9633
15 102 102 204 204 4390 7641 10,388 10,388
20 117 117 212 212 5642 8142 11,197 11,197
25 110 110 220 220 5100 8210 11,195 11,195

gr229

10 162 162 215 215 8139 8139 10,809 10,809
15 155 155 206 206 7858 7858 10,439 10,439
20 187 187 228 228 9179 9179 10,768 11,348
25 188 188 233 233 9466 9466 11,718 12,041

gil262

10 61 61 151 181 3125 4640 7690 9245
15 78 99 136 195 3101 6710 7951 10,012
20 75 121 181 196 3669 7060 8350 10,780
25 83 133 174 215 3227 7394 6709 11,283



Logistics 2024, 8, 48 14 of 15

Table A1. Cont.

Instance s (g, q) = (1, 2) (g, q) = (1, 3) (g, q) = (2, 2) (g, q) = (2, 3)
LB UB LB UB LB UB LB UB

pr264

10 92 92 182 182 4682 5416 7802 10,423
15 120 120 178 197 6080 6080 8971 9967
20 122 122 197 197 6155 6155 8594 12,019
25 130 186 215 229 6565 6565 10,331 12,024

a280

10 128 128 191 224 6296 7610 9554 11,304
15 105 147 186 226 6137 7667 10,405 11,400
20 128 144 223 224 6318 7797 11,165 11,809
25 131 157 210 238 6808 8306 11,411 12,533

pr299

10 136 136 204 238 5269 7263 10,274 12,057
15 132 153 219 242 6752 8308 11,099 12,649
20 136 153 238 238 7704 8598 12,024 12,923
25 154 167 236 252 7795 8878 12,102 13,337

lin318

10 76 152 226 265 5854 9471 9682 13,502
15 151 152 227 252 7660 9162 11,466 14,012
20 162 162 251 270 8215 9294 12,780 13,941
25 161 180 264 279 7341 9337 13,190 13,894
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