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Abstract: In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention
in the scientific community due to new evidence pointing at their continued presence in the en-
vironment and workplaces and the potential human risks related to their presence. PCBs move
from the environment to humans through different routes; the dominant pathway is the ingestion
of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and
outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported
the environmental and occupational exposure to these pollutants, deriving from building materials
(flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.)
and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling
sites, suggesting the need for the implementation of remediation strategies of such polluted areas
to safeguard the health of workers and local populations. Furthermore, a significant correlation
between PCB exposure and increased blood PCB concentrations was observed in people working
in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and
occupational exposure to high concentrations of PCBs is associated with different health outcomes,
such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions,
cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation
can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring.
In the near future, further studies are needed to assess the real effects of PCBs exposure at low
concentrations for prolonged exposure in workplaces and specific indoor environments.

Keywords: persistent organic pollutants; polychlorinated biphenyls; environment; occupational
exposure; human exposure; health effects; fertility
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1. Introduction

Chemicals detected in the environment, with the peculiarity of having long half-lives in
soils (generally years), sediments, air (several days) or biota are defined as persistent organic
pollutants (POPs). In recent years, studies on chemistry and effects of POPs are increasing
and this topic became a fascinating scientific research area [1–4]. Several POPs are listed
under the Stockholm Convention on Persistent Organic Pollutants, including chlorinated
(and brominated) aromatics, such as polychlorinated biphenyls (PCBs), polychlorinated
dibenzofurans, polychlorinated dibenzo-p-dioxins and polybrominated diphenyl ethers, as
well as several organochlorine pesticides (e.g., dichloro-diphenyl-trichloroethane and its
metabolites, chlordane, toxaphene, etc.) [5]. Moreover, these POPs can be easily absorbed
by microplastics, which become vectors of these organic contaminants, facilitating their
dispersion in different environmental compartments [6–8].

Polychlorinated biphenyls are persistent organic pollutants that have a negative impact
on the ecosystem and all living beings and continue to represent a serious risk to human
health [9]. Large-scale production of PCBs started in 1945. Thanks to their chemical
characteristics and thermal stability, they were used as dielectric fluids (in transformers
and electric capacitors) and as additives for pesticides, flame retardants, insulators, paints,
glues and printing inks [10,11]. PCBs are obtained from oil and tar, from which benzene
is extracted, and then transformed into biphenyl, which is subsequently chlorinated to
polychlorinated biphenyl. The chemical structure is characterized by the presence of two
aromatic rings on which there are 1 to 10 chlorine atoms (Figure 1).
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The various combinations determined by the number and position of the chlorine
atoms result in 209 different compounds called congeners. The IUPAC (International Union
of Pure and Applied Chemistry) nomenclature assigns each congener a number between
1 and 209 [12]. The chemical and physical characteristics of PCBs differ considerably
among congeners leading to a high structural variability, which has direct consequences on
persistence and bioaccumulation. Based on the number of chlorine atoms, PCB congeners
can be divided into low-chlorine PCBs if they contain four or fewer chlorine substituents,
and high-chlorine PCBs if they have more than four chlorine atoms [13]. These differences
determine their environmental availability and their routes of exposure. High-chlorine
PCBs are relatively non-volatiles, mainly present in food and more persistent than low-
chlorine PCBs, thanks to their resistance to metabolic degradation. Conversely, low-chlorine
PCBs, often referred to as transient or episodic forms due to their relatively short half-lives,
are semi-volatiles and are rapidly metabolized [14–16]. Low-chlorine PCBs are the main
PCBs found in indoor [17] and outdoor [18–20] air, especially in large cities and urban
industrial areas, e.g., in the air of major cities [16,21–24].

Among all 209 compounds classified as PCBs, 12 (i.e., PCB 77, 81, 105, 114, 118, 123, 126,
156, 157, 167, 169 and 189) have physio-chemical and toxicological properties comparable to
those of dioxins and furans and are, therefore, called dioxin-like PCBs. Being all coplanar,
they can bind to the aryl hydrocarbon receptor (AhR), which is the canonical receptor
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for 2,3,7,8-tetrachlorodibenzo-p-dioxin [25]. Importantly, non-dioxin-like PCBs account
for a significantly high proportion of PCBs found in human serum, adipose tissue and
breast milk [26]. Moreover, PCBs could be also divided into “legacy” and “non-legacy”
or “contemporary” [27]. The latter are formed as inadvertent by-products during the
production of currently sold paints, inks and dyes, so are released into the environment
unintentionally [28–31].

Although their use was banned in the 1970s, their resistance to chemical and thermal
degradation results in bioaccumulation in marine organisms and humans. Thus PCBs
continue to be an environmental and human health concern [13,32]. The occurrence of
several chronic diseases, such as endocrine dysfunction, type 2 diabetes, cardiovascular
disease, obesity, liver disorders, and neurological deficits, have been associated with
exposure to PCBs [33]. Moreover, they affect the immune, reproductive, nervous and
endocrine systems and are carcinogenic [34–36].

Considering the growing interest in this research field, the present review aims to
discuss the accumulation of the different PCBs based on their chemical-physical and toxico-
logical characteristics, routes for human exposure (both environmental and occupational)
and subsequent effects on human health.

2. Methodology

Based on the recent scientific literature related to PCBs occurrence in the environment,
this review had three main objectives: (1) describe the different routes for human expo-
sure to PCBs; (2) highlight the importance of PCBs level of contamination in workplaces
for occupational exposure; (3) discuss the effects on human health due to exposure and
bioaccumulation of PCBs. The keywords “persistent organic pollutants”, “polychlorinated
biphenyls”, “environment”, “occupational exposure”, “human exposure”, “health effects”
and “fertility” were selected individually or jointly to search for relevant information on the
Web of Science, Scopus and Google Scholar. The literature search covered articles published
between 1990 and 2022.

3. Human Exposure and Bioaccumulation of PCB
3.1. Routes for Human Exposure

PCBs can be generated from thermal processes, mainly waste incineration, but also
steel smelting and domestic and industrial combustion of coal and wood (Figure 2). How-
ever, it must be considered that PCB congeners combined emissions generally contribute
only a few percent to total air POPs emissions from domestic coal and wood combustion,
which are mainly made of polycyclic aromatic hydrocarbons and particulate matter [37,38].
The main PCBs emission sources are electricity production (principally due to the con-
sumption of coal as fuel), steel production and incineration, including that of waste. In
addition to point sources, PCBs can be transported for long distances via deposition and
resuspension processes (i.e., dry fallout and vapor deposition) that can be described as the
grasshopper effect [39,40]. Human exposure to PCBs can derive from different sources,
such as dietary intake, inhalation, ingestion of dust and dermal contact [41]. In Figure 2 are
shown the main routes for the release of PCBs into the environment and relative human
exposure routes.

The main exposure route to PCBs for humans is the consumption of contaminated
food, mainly fish, seafood and dairy products [42,43]. In fact, numerous studies have shown
that animal products containing fats are the most contaminated food sources, so their intake
represents one of the principal routes of exposure to these POPs. Due to frequent health
recommendations regarding fish consumption, determining the contribution to dietary
intake of chemical contaminants, such as PCBs, is a matter of particular concern. Indeed, it
was concluded that population groups that frequently consume large quantities of dietary
items rich in fats could experience significantly higher health risks from exposure to PCBs
and POPs in general [44–46]. Epidemiological studies have shown a correlation between
the consumption of contaminated fish and the increase in the serum concentrations of
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PCBs [45]. Very recently, the association between dietary intake and PCBs serum levels
was examined, revealing that body mass index can modify this association with a stronger
connection among normal/underweight individuals [47].
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Studies that investigated PCBs human intake through food consumption are mainly
focused on fish, followed by meats (beef, pork, and poultry), dairy products and chicken
eggs. Recently, it was found that salmon is the food item that contains the highest amount
of POPs including PCBs, followed by canned tuna, beef steak, butter and fried chicken [48].
However, a reduction in PCB concentration in food was observed over the last 20 years,
indicating a decrease in dietary exposure over time [48]. Furthermore, it has to be under-
lined that different human populations may differ in their exposure susceptibility to PCBs
because of their differences in terms of lifestyle, living environment and dietary habits [49].

A second route for PCB exposure, albeit often overlooked, is inhalation, mainly indoors
and to a lesser intent outdoors. This applies particularly to densely populated industrial
areas and homes and buildings that have been constructed using PCBs in sealants and other
building materials [24,50,51]. In fact, the highest concentrations of PCBs are found in the
indoor and outdoor air of industrialized and densely populated urban areas in the cities of
Chicago, Milwaukee, Toronto, Philadelphia and New York [23,52–57]. Since the volatiliza-
tion of airborne PCBs is temperature dependent, this phenomenon can lead to their release
from environmental or reservoirs, such as rivers, lakes, landfills or contaminated building
materials [24,26,58]. Airborne PCBs also include most of the recently discovered non-legacy
PCBs. Non-legacy PCBs are present in both indoor and outdoor environments and they can
ultimately accumulate in the bodies of exposed populations. Many studies have reported
the presence of non-legacy PCBs in air samples around the world. Volatilization from
commonly used paints is the most likely source of these contaminants [28,59,60]. In 2010,
over 50 non-legacy PCBs were detected in pigments employed in household paint [29].
Several studies have analyzed the effect of indoor air on PCB contamination. This is due to
the fact that levels in indoor air may be several orders of magnitude greater compared to
outdoor air and that people spend much more time indoors than outdoors. In order to get
more information about potential health hazards due to indoor air PCBs in the literature,
some studies investigated the PCB indoor concentration in schools, as well as the blood
levels. In different schools the blood analyses indicated an increase in teachers from a
school with heavy contamination of low chlorinated PCB [61–64].

Among all the exposure pathways, the dietary intake of PCBs continues to be the major
one, despite having observed a recent increase in contributions from indoor air inhalation.
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The other possible exposure routes (dermal contact and ingestion of dust) do not contribute
significantly to the overall PCB exposure [41]. If the decrease in PCB concentrations in food
observed in the last years continues, PCB inhalation could become comparable to dietary
exposure in the near future [48]. This trend is related to the fact that legacy high-chlorine
PCBs can be metabolized and eliminated from the food chain, whereas non-legacy PCBs
are still inadvertently produced in modern paints and consumer items [13,29,65].

3.2. Occupation and Exposure Events in Workplaces

The potential health risks posed by pollutants, such as PCBs in the indoor environment
are of great concern [66–70]. People generally spend more than 90% of their time indoors,
between their home and their workplace. For many years there has been a large use of
PCBs in the production of materials and/or objects typically found in indoor environments,
such as building, sealing and caulking and materials, fluorescent lighting fixtures, electrical
equipment, plasticizers, surface coatings, paints and ink [71,72]. Therefore, they could still
be released in the indoor environment, absorbed as indoor dust and bio accumulated by
people via non-dietary ingestion and inhalation pathways.

Indoor PCBs inhalation is a cause for concern in schools and other buildings (e.g.,
offices) constructed and refurbished especially from the 1950s to the late 1970s, as demon-
strated by several studies investigating indoor PCB exposure in the United States and
Europe [17,61,73–79]. During this period, caulking compounds (waterproofing technique),
sealants and other building materials (e.g., fluorescent light ballasts) contained high levels
of PCBs, and affected buildings still represent a major problem for chronic inhalation. The
most relevant data concerning PCB air pollution in indoor environment are reported in
Table 1.

Table 1. Concentration of PCB in indoor environments around the world.

Continent Country Location Type of Site Concentration Reference

Asia

Taiwan Tainan
Urban 4.730 ng·m−2 day−1 [80]

Urban/industrial/rural 0.57–0.65 ng·m−2 day−1 [81]

South Korea Pohang Industrial 2.1 ng·m−2 day−1 [82]

Japan Hong Kong

Office 52.5–589 ng·g−1

[83]
Electronic factory 47–249 ng·g−1

Manufacturing plan 709 ng·g−1

Electronic factory, commercial office,
hospital, school and shopping store 107–233 ng·g−1

China

- Nonferrous Metallurgical Facilities 0.0155–0.770 ng·m−3 [84]

Taizhou
E-waste recycling site 37.75–65.83 ng·m−3

[85]
Urban 5.28–21.48 ng·m−3

Quingyuan
and

Guangzhou

E-waste recycling site 568–11,500 ng·g−1

[86]
Rural 55.3–658 ng·g−1

Urban 38.6–226 ng·g−1

Industrial 0.94–1665 ng·g−1

Vietnam - Home 11–1900 ng·g−1 [87]

Singapore Singapore Home 5.6 ng·g−1 [88]

India Chennai
E-waste recycling site 3.6–53 ng·g−1

[89]
suburban industrial roadsides 1.6 ng·g−1
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Table 1. Cont.

Continent Country Location Type of Site Concentration Reference

America

Canada Toronto

Home 56–820 ng·g−1 [90]

Home air 0.11–5.11 ng·m−3

[17]
Home dust <LOD-521 ng·g−1

United States

Chicago

Urban 4500 ng·m−2 day−1 [91]

Resident 190 ng·m−2 day−1 [92]

Urban-industrial 0.075–5.5 ng·m−3 [23]

New Jersey

Urban 10–40 ng·m−2 day−1

[93]Suburban 0.9–3 ng·m−2 day−1

Background 0.8–2 ng·m−2 day−1

Texas Home 47–620 ng·g−1 [90]

Illinois Dwelling and church 199–43,540 ng·g−1 [94]

Iowa School 39.2–1.24 ng·m−3 [95]

Indiana and Iowa School 0.5–194 ng·m−3 [79]

Europe

United Kingdom Birmingham Home 57–860 ng·g−1 [90]

France Thau lagoon Rural 0.715 ng·m−2 day−1 [96]

Germany
Stuttgart School 3643–13,561 ng·m−3 [61]

North-Rhine Westphalia E-waste recycling site 8000–330,000 ng·g−1 [97]

Czech Republic Brno
Home air 0.14–4.23 ng·m−3

[17]
Home dust 11.4–358 ng·g−1

Africa

Nigeria Abraka and Warri Office 96.6–3949 ng·g−1 [98]

Lagos Power Station office 0.02–2.20 ng·m−2 day−1 [99]

South Africa Durban

E-waste recycling site 50–490 ng·g−1

[100]Office 923–1040 ng·g−1

Computer laboratory 360–1880 ng·g−1

Oceania New Zealand Wellington Home 46 ng·g−1 [90]

- Turkey Izmir Industrial 409 ng·m−2 day−1 [101]

High concentrations of low-chlorine PCB congeners were detected in the indoor air of
polluted schools in Germany [61]. Furthermore, there was a significant correlation between
PCB exposure and increased blood PCB concentrations in teachers who had worked in
these contaminated school buildings.

In a school in the town of Columbus Junction (Iowa) different PCB concentrations were
found based on construction year, which in turn relates to different use of PCB-containing
building materials during the time [95]. The highest concentrations were detected in
the rooms in the oldest wing of the building (e.g., 39.2 ng·m−3 in the math room PCBs
constructed before 1920), while the lower values were measured in rooms built more
recently (e.g., 1.24 ng·m−3 in the practice gym completed in 2012).

In the literature, a different distribution of PCBs was reported for workplaces. Manu-
facturing plants showed high concentrations (709 ng·g−1), and similar PCB values (range
107–233 ng·g−1) were observed in schools, offices, electronic factories, hospitals and shop-
ping malls [83]. PCBs were also detected in the air of paper industries, at a concentration
up to 2300 ng·m−3 [102]. Many studies investigated PCB concentrations in the settled dust
around the world. For example, PCBs values ranged from 11 to 1900 ng·g−1 in northern
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Vietnam [87], while higher concentrations of total PCBs (199–43,540 ng·g−1) were detected
in dwellings and churches in Illinois, USA [94].

Regarding e-waste recycling sites, higher concentrations were discovered in North-
Rhine Westphalia, Germany (from 38,000 to 330,000 ng·g−1) [97] compared to those in
indoor dust from Quingyuan, southern China (568–11,500 ng·g−1) [86] and in Durban,
South Africa (50–490 ng·g−1) [100]. A recent study reported information on the distribution
and composition of PCBs in electronic repair workshop dust in Nigeria. The results indi-
cated concentrations of PCBs from 96.6 to 3949 ng·g−1 with a mean value of 1234 ng·g−1

with hexa-PCBs being the most prevalent PCB homologs, which have a high estimated
hazard index and cancer risk values associated with human exposure [98]. The regula-
tion of the e-waste problem requires more attention and many efforts, such as source
control, limitation of illegal importation of domestic e-waste collection, transportation and
process control.

Environmental remediation measures of such polluted areas should be implemented
to control the health risks facing the workers and local population.

3.3. Presence of PCB in Human Fluids and Bioaccumulation

Considering the above-mentioned pathways for human exposure to PCBs and their
resistance to chemical and thermal degradation, the bioaccumulation of these compounds
must be taken into account.

The bioaccumulation of toxic substances can take place either directly from the en-
vironment in which the organism lives (bioconcentration) or through ingestion along the
trophic chains (biomagnification or biological magnification) or in both ways. Biomagni-
fication is a process in which a chemical compound accumulates through the food chain
from lower concentrations in prey species to higher concentrations in predatory species.
In the case of bioconcentration, the amount of substance in the body’s tissues becomes
progressively higher than those present in the environment from which it was absorbed.
Since PCBs are found in the organic part of the soil and marine and lake sediments, they
can be absorbed by plants and ingested by aquatic organisms. Due to their poor degrad-
ability, this phenomenon leads to biomagnification along the trophic levels of the food
chain. PCBs bioaccumulate in the adipose tissue of living organisms, so their concentration
increases along the trophic web, together with their toxicity for both animals and humans.
High-chlorine PCBs have a greater potential for bioaccumulation and biomagnification
along the food chain [103–105].

The biomonitoring approach in blood and non-invasive biological matrices, such as
urine, was used to assess worker exposure to PCBs [106]. For instance, concentrations
of PCB metabolites up to 174 µg·L−1 have been detected in human urine from former
PCB-exposed workers of a transformer recycling company in Germany [107]. The highest
concentrations were observed for low-chlorine PCBs, to which workers are easily exposed
through inhalation. Several studies have shown that detection of PCBs in blood is still a
serious cause for concern [108–114]. PCB concentrations up to 0.442 µg·L−1 were detected
in the plasma of a group working in a building with documented PCB contamination (total
indoor air PCB concentration in the range 70–1500 ng·m−3) [115]. Furthermore, data from
the last decade demonstrate widespread human exposure to non-legacy PCB congeners
that were not present in commercial PCB blends [13]. Non-legacy PCBs were also detected.
In particular, PCB 11, one of the most frequently detected PCBs [116], was found at a
concentration from 0.005 to 1.717 µg·L−1 in the plasma of pregnant women. Along with it,
different dioxin-like PCBs inadvertently formed as by-products in chemical processes, have
also been found at high concentrations. Despite the evidence of the widespread presence of
non-legacy PCBs in the environment and consumer products, the metabolism of PCBs and
the physiological fate of individual metabolites remain poorly understood.
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4. Effects of PCBs on Human Health

The International Agency for Research on Cancer (IARC) has classified PCBs as proba-
ble human carcinogens (Group 2A) [117]. PCBs target several human systems, including
the nervous system, the endocrine systems (thyroid, thymus, pancreas and gonads), the
reproductive system, the cardiovascular system and the immune system (Figure 3). This
review will focus in particular on neurological and reproductive health outcomes.
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4.1. Nervous System Disorders and Other Dysfunctions

The developing brain was identified as a vulnerable target for PCBs by different
scientific studies on both humans and animals [118]. Numerous reviews of the epidemio-
logical literature have inferred that exposure to PCBs during nervous system development
enhances the risks of neuropsychological deficits in children, as demonstrated by im-
paired cognitive and psychomotor function, as well as attention, learning and memory
deficits [119–122]. Moreover, recent studies suggest that prenatal exposure to PCBs may
increase the risk of autism spectrum disorders [120,123–127] and attention deficit hyperac-
tivity disorder [128–131]. Prenatal exposure to PCBs is also associated with an increased
risk of low birth weight, defined as <2500 g at birth, [132–136] and lower development for
gestational age [137–139]. Experimental studies on animals confirm that PCB exposures
cause neurobehavioral effects similar to those observed in humans [140–143]. Recent stud-
ies suggested that PCB 11 is able to alter the dendritic and axonal growth of neurons by
interfering with brain development [144]. However, the 209 PCB congeners that are capable
of producing neurotoxic effects and the mechanisms by which PCBs interfere with nervous
system development still remain to be determined. In addition, new questions are emerg-
ing about the potential neurotoxicity of low-chlorine PCBs, not only those released from
PCB-containing equipment and materials manufactured before the production ban, but
also the non-legacy PCBs that represent a significant proportion of contemporary human
PCB exposures. Recent epidemiological studies suggest that non-dioxin-like PCBs and
low-chlorine PCBs are primarily responsible for PCB-associated neurotoxicity [118]. On
the other hand, dioxin-like PCBs are associated with diseases that affect various organs; in
particular, the skin, liver and immune system [145–147] are also carcinogenic [148–156].

Since PCB serum levels have been linked to chronic diseases, their possible association
with the incidence of all-cause dementia and Parkinson’s disease was also assessed using a
population-based prospective cohort study in a north Italian highly polluted area [157]. A
positive association between the onset of dementia not mediated by hypertension and total
PCB serum levels was observed, whereas the unstable risk estimates for Parkinson’s disease
did not permit to conclude a possible association. PCBs have been suspected for some
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time of having adverse effects on neuropsychological functioning in humans and there
are studies that have found associations between serum PCB levels and neurobehavioral
deficits in older adults; while there is evidence of slowing of cognitive function in children
associated with exposure to PCBs, the evidence of comparable effects on adults is far less
well understood [158–160].

The results of different epidemiological studies indicate that exposure to PCBs is also
associated with immune system dysfunctions, including thymic atrophy and suppressed
immune responses, [161–163] and cardiovascular diseases, such as stroke and hyperten-
sion [164–169]. In addition, several studies have shown that non-dioxine-like PCBs alter
the cellular homeostasis of calcium, increasing the levels of intracellular Ca2+ ions and/or
the activation of different cellular processes mediated by the same Ca2+ ions. In fact, they
operate by altering the structure and function of ryanodine receptors, channels that allow
the release of calcium from the sarcoplasmic reticulum of muscle cells and from the endo-
plasmic reticulum, which is found in other cells [170,171]. Furthermore, the mechanism
of PCB toxicity comprises the inhibition of antioxidant defense enzymes, including super-
oxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione
transferase [172–177].

4.2. Endocrine Disrupting Activity and Effects on Reproductive Organs

PCBs have been considered endocrine disruptors because their exposure was associ-
ated with diabetes [46,178], cardiovascular diseases—mainly hypertension [166] and the
functionality of the endocrine system, particularly the thyroid and reproductive organs
(the primary targets of most endocrine disruptors) [3,179,180]. Several studies have shown
that PCBs can interfere with endocrine processes and persistent exposure to them can
considerably decrease animal and human fertility and reproductive quality [181]. In fact,
the reproductive toxicity of PCBs was proved in both animal and human studies [182,183].
However, their role and mechanism of action are still poorly understood and current
evidence is still inconclusive. A study conducted in northern Italy revealed no associ-
ation between PCB exposure and prevalence of endocrine and metabolic diseases and
hypertension [35].

PCBs have been found in follicular and amniotic fluid, uterine muscle, ovarian tissue,
placenta, fetal cord blood and breast milk [184,185]. PCBs accumulate over time in human
follicular fluid, as observed for the accumulation in serum [186]. Moreover, high PCB con-
centrations in the follicular fluids are found in women experiencing assisted reproductive
technology, which can contribute to in vitro fertilization failure [187]. Women’s exposure
to PCBs can damage ovarian function, leading to reproductive problems, such as abnormal
hormone levels, premature ovarian failure and finally infertility [188]. Other adverse effects
in women, associated with PCB exposure, are the earlier onset of menopause, altered men-
strual function, the increase in miscarriage risk and of time taken to get pregnant [189–192].
In contrast to this evidence, a recent study examined the link between the level of PCBs in
serum and various female reproductive health outcomes, finding no correlation between
serum PCB levels and infertility, but only an association between the reduction in the
number of pregnancies and PCB concentration [193]. Moreover, the majority of the studies
that found an association between PCB exposure during pregnancy and reduced cognitive
functions among children have not taken into consideration some confounding factors,
such as the co-exposure to other toxic compounds (i.e., Hg, Pb and iodine).

Male exposure to endocrine disruptors, such as PCBs and their consequent bioaccu-
mulation, has been associated with the reduction in semen quality, fertility and anogenital
distance [34,194–199]. In particular, environmental exposure to PCBs influences circulating
reproductive hormone levels, sperm concentration, motility, morphology and quantity and
quality of gametes, and it alters the redox state of the seminal plasma and other sperm
factors (e.g., sperm DNA integrity) [34,194,195,200,201]. A correlation between increas-
ing serum PCB levels and lower concentration of serum testosterone in some American
males was noticed [202]. Furthermore, significant associations between low environmental
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levels of serum dioxin-like PCBs in male partners of subfertile couples and pregnancy
outcomes of in vitro fertilization, such as implantation, clinical pregnancy and live births
were observed [203]. PCBs may have direct effects on spermatogenesis as they easily
penetrate the blood–testis barrier [204], and their accumulation is also associated with
testicular cancer [205]. A constant decline in the quality of human semen was observed in
many industrialized countries [206]. This probably arises from continuous, repeated and
prolonged exposure to POPs that are still today widely used in the production chains of
food and consumer products [207–210].

In addition to the effects on the people directly exposed, PCBs might influence the
epigenetic modification process since their harmful effects on the reproductive system
can be passed to offspring. In fact, PCBs can be transferred from mother to fetus via the
placenta [211], resulting in transgenerational effects [212,213], such as heritable epimuta-
tions in sperm and brain [214]. Prenatal exposure to PCBs affects gestational length and
birth weight [215,216] and causes the reduction in intelligence quotient and fecundity in
the offspring [217–219]. Moreover, in-utero exposure to PCBs results in children having
sperm with abnormal morphology, reduced motility and capacity to penetrate hamster
oocytes [220], a reduction in male reproductive function that is transferred on to the next
three generations [221]. Not least, high maternal blood concentrations of PCBs at the end of
pregnancy are linked to the reduction in anogenital distance in male neonates, a parameter
considered as a promising marker of male reproductive health [222].

Although PCBs are indeed declining, as also demonstrated by Raffetti et al. [223], be-
ing persistent they are not currently completely absent in various biological fluids. After all,
PCBs, used in various types of industrial products, are persistent organochlorine pollutants,
considered a potential endocrine disrupting compound, and exposure to these toxins has
a negative impact on the chromatin integrity of spermatozoa [224]. Therefore, it cannot
be ruled out that these pollutants could have a synergistic action with other pollutants,
such as some heavy metals, that have been found in the sperm of subjects residing in
areas of high environmental impact. In fact, there are numerous reports demonstrating
the correlation between heavy metals with oxidative damage to DNA. In particular, it
has been shown that some heavy metals have the potential to alter the properties of the
sperm nuclear basic proteins (SNBP) in individuals residing in high environmental impact
areas. In these subjects, surprisingly, the SNBP, instead of having their canonical role
of protecting DNA, are involved in oxidative DNA damage [225]. In addition, seminal
antioxidant activity has also been shown to be lower in these subjects living in areas of high
environmental impact [226]. Environmental pollution also has a significant bearing on the
susceptibility of a given population to various diseases, and semen quality has been found
to be a potential indicator of susceptibility to viral insults in those highly polluted areas,
capable of helping to predict the risk of harmful effects of viral outbreaks [227,228]. Very
recently it has also been demonstrated that kallikrein-related serine peptidase 3 appears to
be an early biomarker of environmental exposure in young women [229]. For these reasons,
biosensors have been developed for environmental pollution along with new technologies,
especially because altered environmental conditions, together with the direct and indirect
short- and long-term effects of viral infection, have the potential to produce a deterioration
in sperm quality with significant implications for male fertility, particularly in those areas
with a greater environmental impact [230]. Pollutants, such as heavy metals, polycyclic aro-
matic hydrocarbons, polychlorinated biphenyls, dioxins, pesticides and ultrafine particles,
produced by human activities pose real threats to the body’s entire defense system. Trials
from preclinical and clinical research studies indicate that compromised male fertility and
gonadal development, as well as cancers of the reproductive system, resulting from the
exposure to organic and inorganic pollutants can be contrasted by flavonoids [231].

It should be emphasized that the majority of the studies are carried out on adult
subjects to verify the possible association of the effects on fertility with ongoing exposures in
adult males. However, the exposure of a developing organism may have more pronounced
and persistent negative effects. Collectively, these data indicate the need for biological
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monitoring studies on PCBs taking into account not only the substances widely used, but
also paying attention to the potential biomarkers indicative of long-term effects (e.g., sperm
DNA damage) and the co-exposure to other toxic compounds.

5. Conclusions

In this review, we considered recent scientific studies related to the presence of PCBs
in the environment. In particular, we discussed the potential routes for their release into
the environment and consequent human exposure, occupational exposure events, and
related effects on human health. Dietary intake was the main exposure pathway, even if the
contribution from indoor air inhalation could become comparable to dietary exposure in
the next years. On the other hand, we have underlined how several literature studies have
detected high PCB concentrations in indoor environments (both air and dust) derived from
building material (furniture, paints, caulking compounds and sealants) with the consequent
transport to the human web. Furthermore, e-waste recycling sites resulted to be the most
PCB-contaminated workplaces (concentration up to 330,000 ng·g−1). These phenomena
are of particular concern considering the occupational exposure of workers, indicating
the need for better remediation strategies of such polluted workplaces in order to prevent
health problems of workers and local populations. Negative effects on human health
(neuropsychological and neurobehavioral deficits in children, dementia, immune system
dysfunctions, cardiovascular diseases and cancer) were reported to occur at higher PCB
concentrations compared to human exposure, demonstrating a hazard for human health.
Although PCBs exposure does not necessarily entail clinically relevant consequences in
the short term, recent studies suggest that their bioaccumulation can reduce fertility with
transgenerational effects. Further studies must be performed to assess the real consequences
of PCBs contamination at concentrations in the range of human exposure.
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