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Abstract: Heavy metals (HMs) in agricultural land have caused serious environmental problems,
resulting in severe contamination of the food chain and posing potential health threats. This study
aims to investigate the pollution levels and potential ecological risks of HMs in farmland soils in
central China, taking into account atmospheric deposition. Several indices were used to assess the
status of HMs and compare surface soil with deeper soil. Descriptive statistics, Pearson correlation,
and UMAP clustering methods were utilized to identify the characteristics of HMs. Additionally,
stepwise linear regression models were employed to quantify the contributions of different variables
to the potential ecological risks of HMs. The results showed that the average content of Zn in
surface soil (289.41 ± 87.72 mg/kg) was higher than in the deeper soil (207.62 ± 37.81 mg/kg), and
similar differences were observed in the mean values of related Igeo (1.622 ± 0.453 in surface soil and
1.183 ± 0.259 in deeper soil) and PEI (0.965 ± 0.292 in surface soil and 0.692 ± 0.126 in deeper soil)
indices. This indicates that surface soil is more heavily polluted. The UMAP results confirmed the
high variability of HMs in the surface soil, while PCA results suggested the importance of pollution
and ecological risk indices. The stepwise linear model revealed that different variable structures
contribute differently to the risk. In conclusion, Cr and Zn were found to be the major contaminants
in the local farmland soil, with higher concentrations in the surface soil. The geoaccumulation and
total potential ecological risk were classified as low risk. High variability of HMs was observed in the
surface soil. Therefore, HM-related pollution indices and ecological risk indices are important for
assessing the contamination status of local HMs. The local potential ecological risk can be attributed
to specific heavy metals, each of which can have different effects on the local ecological risk.

Keywords: heavy metal; farmland soil; atmosphere deposition; ecological risk; pollution assessment

1. Introduction

Contamination of the environment with heavy metals (HMs) is a global issue that
has gained significant attention over the past decade [1]. Soil pollution with toxic HMs
has become more prevalent due to increasing human activity, urbanization, and indus-
trialization [2]. HMs have been detected as widely distributed environmental pollutants
due to extensive usage in industrial and daily consumer products [3–7]. HMs are reported
in the literature as mostly toxic, persistent, and bioaccumulative [4,5,8,9]. They tend to
accumulate as substances of variable risk in farmland soils [3] and transmit to the top parts
of the food chain, which serve as bioaccumulators [10–12]. They accumulate in agricultural
soils and can be transmitted through the food chain, resulting in contaminated food with
harmful effects [13,14]. Furthermore, certain HMs such as Pb, Mn, Ni, Cd, and Cr have
been listed as hazardous air pollutants by USEPA [15], which could aggravate soil pollution
in farmland through atmospheric deposition.
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The pollution of HMs in farmland soil is considered irreversible due to the stability and
resilience of local geology, geographical characteristics, and local climate dynamics [16,17].
Moreover, HMs could be trapped when they interact with soil particles, forming chemical
forms and/or metal speciation, which prolongs their presence in the soil and increases
the risk of contamination [11]. Over time, atmospheric deposition of dust can contribute
to the accumulation of HMs in soil, which is evident in the surface soil profile. Deeper
soil layers, less influenced by atmospheric deposition, reflect naturally occurring elements
from the local crust of the Earth. Additionally, human activities can disturb the soil and
significantly increase the pollution level and spatial distribution, adding complexity to the
overall system.

Previous research has investigated HMs in agriculture and farmland soils [18–22].
These studies focused on various aspects, such as assessing the status of HMs [21,22],
measuring contamination levels [3,19], and evaluating the ecological risk [2,16] or health
impacts [3,15]. These studies utilized pollution or ecological risk indices combined with GIS
techniques to create digital maps that allowed for visualizing the distribution patterns and
relationships of HMs. Additionally, they examined larger areas, often with unique economic
or geographical characteristics [23–25]. The initial assessment of HM contamination heavily
relied on the spatial distribution presented in the GIS maps. The status and impacts of HMs
on different depths of soil profiles should be given more attention. Mitran et al. revealed
combined surface soil (0–15 cm) and depth-wise soil (15–30 cm, 30–50 cm, and 50–100 cm)
monitoring of pollutant accumulation would be a valuable addition to choosing a reliable
and practical approach to evaluate and gain a clear understanding of soil contamination [26].
It was crucial for decision making and reclamation planning of soil tillage. Huang et al.
analyzed the chemical forms of heavy metals in different aggregate-sized fractions along
the profile (0–1, 1–5, 5–15, and 15–25 cm) of a contaminated paddy field and revealed
the exogenous metals of surface soil were first retained and then migrate to a deep layer
through a leaching process, leading to a gradual decrease in metal concentration with soil
depth [27]. One study by Luo et al. emphasized that urban surface soils are usually more
contaminated owing to current human sources and these accumulated influences can also
make deep soil layers contaminated by HMs [28]. The study by Kim et al. emphasized that
the distribution patterns of soil constituents, especially HMs, within a soil layer should be
carefully evaluated to help understand the soil contamination processes [29]. Currently,
research on pollution has primarily focused on using a single factor index or a simple
composite index. This has become the traditional approach in research. The existing
methods for analyzing sources of HM pollution mainly involve geostatistical analysis
and multivariate statistical analysis. However, the routine linear regression method only
considers the performance of the model, without taking into account the construction of
the model or the comprehensive impact of multiple variables. In the study, we use linear
models and their comparisons after adjusting for different potential confounding factors to
reveal the main integrated effects of HMs rather than the single effect. Thus, the objectives
of the research include: (1) to explore the HM contamination status and levels; (2) to identify
the influencing contributions of HM-related indices to the current HM status; (3) to quantify
the effects of HM-related indices on local farmland ecological risk using linear models.

2. Materials and Methods
2.1. Study Area

The study area is located in central China, which is the well-known main grain-
producing area. The location is relatively flat, and the altitude range is less than 15 m. The
average annual precipitation is less than 700 mm, and the average annual temperature
is about 15 ◦C. The location belongs to the continental monsoon climate of the warm
temperate zone and always has southerly wind in summer and a northerly wind in winter.
The soil quality is formed by the alluvial of the Yellow River. The study area, due to less
anthropogenic pollution impacting soil environment quality, is an important window for
observing atmospheric deposition, as well as atmospheric particulate matter settlement
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monitoring. In a relatively smaller area with less than a 5 km radius, the monsoons and
local climate change produce a homogenous impact. Against this consistent background,
the content of heavy metals in the surface soil (0–10 cm) could represent the mixed impact
of atmospheric deposition and soil, and the deeper soil (10–20 cm) could represent the local
soil characteristic dynamics.

2.2. Sample Collection and Analysis

The eight sampling sites (longitudes from 114.371◦ E to 114.404◦ E and the latitudes
from 34.742◦ N to 34.766◦ N) of the study are used to explore the ecological risk and
pollution assessment (Figure 1). The sampling data were collected in February 2019. Soil
samples were randomly collected from 0 to 10 cm in the surface layer and 10–20 cm in the
middle layer of landsoils. The surface layers of croplands from 0 to 10 cm were used to
represent the mixed effects of atmospheric particulate matter settlement (APSM) on soil
heavy metal dynamics. Accordingly, layers of landsoil profiles from 10 to 20 cm were used
to represent the local soil effects (SOIL) of HM dynamics.
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The farmland heavy metal pollution risk items included Cd, As, Pb, Cr, Cu, Ni, and
Zn. Before the lab detection processes, soil samples were air-dried at 25 ◦C, ground, sieved
through 2 mm mesh in the laboratory, and stored in plastic bags. Then, 200 mg soil samples
were digested in a dry and clean Teflon digestion beaker, and 8 mL HNO3, 5 mL HClO4, and
2 mL HF were added, and the mixture was heated for 40 min on a hot plate at 120–150 ◦C.
The mixture was then filtered through Whatman filter paper and the filtered digest was
transferred to a 50 mL plastic volumetric flask which was filled up to the mark by deionized
water. Metal contents were measured by Agilent 700 series ICP-OES. A certified reference
material (CRM) was used to validate the analytical measurement methods. All samples
were replicated 3 times, and the average value was taken.

2.3. Methods of Ecological Risk and Pollution Assessment

The single factor pollution index method and Nemero comprehensive pollution index
method could be used to assess the local farmland soil pollution levels [30]. The single
factor pollution load index (PI) and integrated pollution load index (PLI) were employed to
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assess the pollution level of HMs in the soil samples of the studied area. The single factor
pollution load index was determined using Equation (1).

PI = Ci/Si (1)

where PI is the single factor pollution load index for the examined HMs; Ci is the concen-
tration of HMs in a soil sample (mg kg−1); and Si is the permitted standard of the same
metal (mg kg−1) [24]. The average pollution index (PI) was calculated by the average of 7
heavy metal Pi, which represents the equal weighted pollution of each heavy metal. The
grading criteria were set to 1, 2, 3, and the pollution evaluation corresponded to four levels
from non-pollution, light pollution, and medium pollution to heavy pollution [31].

The PLI represented by the Nemero comprehensive pollution index method was
calculated as follows:

PLI =

√√√√1
2

(
[
1
n ∑n

i=1 PI]
2
+ [P2

imax]

)
(2)

where the Pimax is the maximum value of Pi. If the Pi value is greater than unity, it suggests
the existence of pollution or the presence of pollutants, while no pollution loads are
inferred with a lower value. Among them, the grading criteria were set to 0.7, 1, 2, 3, and
the pollution evaluation corresponded to five levels from safety, alert, light pollution, and
medium pollution to heavy pollution [31]. Both the single factor pollution index and the
integrated pollution load index could provide a more comprehensive reflection of the soil
environmental quality in the study area.

Heavy metals in soils were also evaluated using the geoaccumulation index (Igeo) [32].
It is expressed as:

Igeo = log2 [Cn/(1.5 Bn)] (3)

where Cn is the measured concentration of the examined metal n in the soil, and Bn is the
geochemical background concentration (or reference value) of the metal n. The constant
1.5 accounts for the natural fluctuations of the metal in soil. The geochemical background
concentration (or reference value) of each metal was provided by local environmental
government and the relevant statistical government. The background concentrations of
Cr, Ni, Cu, Zn, As, Cd, Pb were set to 190, 100, 300, 25, 0.6, 170 mg/kg, respectively. The
mean contents of the global geochemical background of tide soil and the average crustal
abundance were used. The Igeo has seven grades (0 to 6), indicating various degrees of
enrichment above the background values and ranging from unpolluted to heavily polluted
soil quality [33].

The total potential ecological risk index (TEI) is based on the necessary test item—
farmland pollution risk screening value in the trial implementation of standards for pollu-
tion risk control of farmland for soil environmental quality. Hakanson’s potential ecological
risk index method evaluated the ecological risk of heavy metal pollution in farmland soil
in this area. The classification evaluation standard of the single potential ecological risk
(PEI) of each heavy metal was established [34]. The calculation formulas of TEI and PEI are
as follows:

TEI = ∑i
n=1

(
Pi × Ti

r

)
(4)

PEI = Pi × Ti
r (5)

where is the corresponding toxicity coefficient of heavy metal element i (Ti, constant for
Cd is 30, As is 10, Pb is 5, Cr is 2, Cu is 5, Ni is 5, and Zn is 1). The grading ecological
risk criterion of TEI was set to 150, 300, 600, and the pollution evaluation corresponded
to four levels from low risk, moderate risk, and high risk to very high risk [31]. The
grading ecological risk criterion of PEI was set to 40, 80, 160, and the pollution evaluation
corresponded to four levels from low risk, moderate risk, and high risk to very high
risk [31].
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2.4. Statistical Method

Continuous numeric variables including HM concentration, Igeo indices, PEI matrix,
and pollution indices were expressed as the mean ± standard deviation for APMS and
SOIL, respectively. Correspondingly, the quantile statistics were also calculated. The t-test
was used to identify the statistical significance of the mean value variance of HMs be-
tween APMS and SOIL. The UMAP method was used in supervised clustering analysis,
and the PCA method was explored to identify the important influencing factors. The
stepwise linear regression models (step-lm) were explored to identify the effects of HMs
with different adjustments for Igeo-related variables, PEI-related variables, and pollution
indices, respectively. The corresponding generalized linear mixed models (GLMMs) used
random items of HM types (APMS and SOIL). However, the GLMM results were insignifi-
cant with tep-lm. Moreover, the variance decomposition could identify the effect of each
variable. All statistical analyses and diagrams were conducted using R (version R 4.2.0,
https://cran.r-project.org), with data cleaning and collation performed using the “tidy-
verse” package, descriptive statistics using the “gtsummary” package, and correlation
calculation and drawing based on “ggcor” and “ggplot2” packages. The supervised clus-
tering analysis and PCA were conducted with “tidymodels” packages. Standardization
was required before data analysis, as well as the dummy variable settings. The stepwise
linear model based on the standardized data was conducted by the “stats” package of R.
All plots were drawn based on the “ggplot2” package of R.

3. Results and Discussion
3.1. Descriptive Statistics

The summary of the descriptive statistical analysis of heavy metal concentrations in
APMS and SOIL is presented in Table 1. The mean concentrations of HMs in APMS are
higher compared to SOIL, as well as in the Igeo-related variables and PEI-related variables.
The pollution indices also indicate higher levels of pollution in APMS. Specifically, the mean
concentration of Zn in APMS is significantly higher (289.41 ± 87.72 mg/kg) compared to
SOIL (207.62 ± 37.81 mg/kg) with a p-value of less than 0.05. A significant difference was
also observed in Igeo_Zn and PEI_Zn. The PLI exhibited a significant difference between
APMS and SOIL (p < 0.05). Moreover, only Cu and its associated Igeo and PEI variables
demonstrated lower values in the comparison between median and mean of APMS and
SOIL. These findings indicate a greater disparity in quantiles between APMS and SOIL,
with much higher values in APMS. The results suggest clear concentration effects of HMs
due to the settling of atmospheric particulate matter, particularly in the case of Zn. The
mean value of PI was 1.448 ± 0.343 in APMS and 1.274 ± 0.340 in SOIL, indicating light
pollution in the study area. Meanwhile, the mean value of PLI was 3.010 ± 0.463 in APMS
and 2.521± 0.232 in SOIL, indicating heavy pollution in APMS and medium pollution in
SOIL, respectively. The TEI values were all less than 150, indicating a low ecological risk in
the study area. However, PEI values grater than 40 were only observed for Cd, indicating
a moderate risk (other PEI-related HMs exhibited a low potential ecological risk). The
report by Wang et al. [35] indicates the moderate pollution of Cd with 41 samples, which
has a similar result to our research. The research also found the Cd concentration in the
atmosphere around the area is generally high, which enters the soil through rainfall or
sedimentation, resulting in the higher Cd concentration in surface soil. Similarly, there is a
potential ecological risk of Cd in both surface soil and deeper soil. The results by Al-Taani
indicated a higher geoaccumulation of Cd and Ni than other HMs with 31 samples [2].
This result is also proved by our results. In addition, the relatively higher concentrations of
HMs in surface farmland soil in our study are supported by Duan’s research [36]. It should
be highlighted that higher geoaccumulation of Cd and Ni just can show the accumulation
degree by comparing the contents obtained with geochemical baseline concentrations [37].
The excessive use of fertilizers and pesticides directly leads to the accumulation of Ni
and Cd in the soil, and the high content in organic fertilizers also affects the degree of
accumulation in farmland soil [38].

https://cran.r-project.org
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Table 1. Descriptive statistics of study variables.

Types Variables
APMS (n = 8) SOIL (n = 8)

p-Value
Q1 Median Q3 Mean (SD) Q1 Median Q3 Mean (SD)

H
M

s
(m

g/kg)

Cr 43.475 59.197 65.058 54.62 (12.72) 36.215 43.899 48.2 45.03 (11.27) 0.248
Ni 188.807 205.486 213.541 205.84 (22.42) 186.68 191.45 200.75 193.73 (10.51) 0.208
Cu 48.491 57.165 65.657 66.45 (40.14) 36.916 49.135 55.51 45.45 (13.93) 0.248
Zn 215.398 293.34 350.096 289.41 (87.72) 185.93 211.54 215.75 207.62 (37.81) 0.046
As 14.47 15.147 15.882 15.732 (2.634) 11.965 13.015 16.322 14.33 (3.26) 0.248
Cd 0.892 1.243 1.323 1.129 (0.282) 0.851 0.949 1.102 0.999 (0.291) 0.529
Pb 27.431 32.202 39.958 34.397 (8.949) 25.93 28.68 35.981 31.04 (8.421) 0.401

Igeo

Igeo_Cr −1.123 −0.68 −0.54 −0.830 (0.361) −1.386 −1.109 −0.974 −1.107 (0.335) 0.248
Igeo_Ni 2.066 2.188 2.244 2.183 (0.152) 2.05 2.086 2.154 2.101 (0.078) 0.208
Igeo_Cu 0.68 0.952 1.129 0.982 (0.757) 0.317 0.724 0.91 0.549 (0.515) 0.248
Igeo_Zn 1.252 1.702 1.957 1.622 (0.453) 1.044 1.23 1.259 1.183 (0.259) 0.046
Igeo_As −0.242 −0.175 −0.108 −0.136 (0.222) −0.516 −0.394 −0.07 −0.286 (0.312) 0.248
Igeo_Cd 3.005 3.485 3.574 3.301 (0.398) 2.937 3.093 3.296 3.116 (0.425) 0.529
Igeo_Pb −0.1 0.117 0.443 0.186 (0.363) −0.182 −0.04 0.283 0.033 (0.385) 0.401

PEI

PEI_Cr 0.348 0.474 0.52 0.437 (0.102) 0.29 0.351 0.386 0.360 (0.090) 0.248
PEI_Ni 4.969 5.408 5.62 5.417 (0.590) 4.913 5.038 5.283 5.098 (0.277) 0.208
PEI_Cu 2.425 2.858 3.283 3.323 (2.007) 1.846 2.457 2.776 2.273 (0.697) 0.248
PEI_Zn 0.718 0.978 1.167 0.965 (0.292) 0.62 0.705 0.719 0.692 (0.126) 0.046
PEI_As 5.788 6.059 6.353 6.293 (1.054) 4.786 5.206 6.529 5.730 (1.304) 0.248
PEI_Cd 44.576 62.158 66.128 56.45 (14.09) 42.53 47.434 55.093 49.94 (14.56) 0.529
PEI_Pb 0.807 0.947 1.175 1.012 (0.263) 0.763 0.844 1.058 0.913 (0.248) 0.401

Index

PI 1.168 1.588 1.681 1.448 (0.343) 1.098 1.218 1.399 1.274 (0.340) 0.401
TEI 60.787 78.915 84.978 73.89 (16.12) 57.592 62.059 71.442 65.01 (14.56) 0.345
PLI 2.67 3.131 3.383 3.010 (0.463) 2.429 2.543 2.666 2.521 (0.232) 0.046

3.2. Correlation Analysis

All numeric variables were used to conduct the Pearson correlation analysis. The
correlation heatmap displayed these relations among HMs, the Igeo-related matrix, the
PEI-related matrix, and pollution indices in APMS and SOIL (Figure 2). Clear differences
were observed between APMS and SOIL. The correlation coefficient was higher in APMS
compared to SOIL. In SOIL, there were more significant correlations between HMs, as well
as among Igeo-related and PEI-related variables. Significant correlations were also found
among three pollution indices in both APMS and SOIL (p < 0.05). In SOIL, Cr showed
significant correlations with other HMs, except Ni and Pb (p < 0.05), and Pb exhibited an
extremely significant correlation with Cd (p < 0.001, Figure 2B). However, similar changes
were not observed in APMS. Additionally, Cd, Pb, and their corresponding Igeo and PEI
values showed significant correlations with pollution indices. The previous research by
Wang et al. [35] indicates that there is an obvious difference in HM concentration and spatial
distribution between surface soil and deeper soil in the farmland of central China. Shao
et al. indicated that atmospheric deposition originating from intensive coal combustion is
considered the main source of HMs in the topsoil [39] which implies higher variations of
HMs in surface soil. These differences could be reflected by correlation results to a certain
extent, especially in deeper HM-contaminated soil.

3.3. Supervised Clustering Analysis

The UMAP clustering results for HMs and their Igeo-related variables, PEI-related
variables, and pollution indices in APMS and SOIL revealed that HMs and their related
variables can be grouped together. Among these, HMs in SOIL demonstrated the strongest
clustering effect, with a relatively smaller 90% confidence ellipse (Figure 3). The results
indicate that external interference is weaker in SOIL compared to APMS. This can be
attributed to the higher influence of atmosphere decomposition and human activities on
the surface soil. Furthermore, some individual sites showed mixed effects, likely due
to their proximity to both SOIL and APMS sites. Similarly, two APMS sites displayed a
significantly larger distance compared to the other APMS sites. The results from the in-
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depth distribution of HMs in southern Kazakhstan indicate the higher spatial distribution
of HMs in surface soil [40]. Our clustering results also implied the relatively wider spatial
distribution of HMs in farmland soil, especially in surface soil. Research assessed the
effect of HMs in dust on landsoil, and the results indicate higher variability of HMs in
dust [41]. Our results also support these high variabilities of HMs in atmospheric particulate
matter settlement.
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3.4. PCA

The PCA results of the data from HMs and their Igeo-related variables, PEI-related
variables, and pollution indices indicate that Cu, Zn, Igeo_Cr, Igeo_As, PEI_Ni, PEI_Pb, and
PLI are the most important influencing variables, as indicated by the relatively longer
arrows (Figure 4A). Figure 4B provides a detailed breakdown of the most influencing
variables in the first four axes. Within the components of the first axis, PLI has the strongest
effect, followed by PEI_Pb and PEI_Ni, with Cu and Zn following. In the components of
the second axis, Igeo_Cr and Igeo_As have the dominant effects. Furthermore, the similar
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clustering characteristics of HMs in SOIL indicate that it has the best clustering effect with
a relatively smaller confidence boundary (Figure 4A).
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The PCA results showed that the variables related to pollution or ecological risk had
the greatest contribution in the first principal component (PC1). This was represented by
PLI, PEI_Pb, and PEI_Ni. In the second principal component (PC2), the variables related
to Igeo were represented by Igeo_Cr and Igeo_As. These results implied the importance of
pollution or ecological risk other than the HMs themselves. Liu et al. [42] reported ecological
risk assessment and pollution classification should be given in more concentrations than
each heavy metal content. As it should be, the solo heavy metal contamination in our study
indicates the special spotlight of Cu and Zn. Other research using PCA indicates different
HMs in different areas [19,42,43].

3.5. Stepwise Linear Multivariate Regression Model

The stepwise linear model with data standardization was explored to distinguish
the individual effect from HMs (Table 2). By adjusting for potential confounding factors,
the model’s performance improved. Four models were estimated for the stepwise linear
regression analyses. Model 0 represented the linear response of the dependent variable TEI
to the independent variables of HMs. Model 0 included components of HMs (not all, due
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to collinearity elimination in the step-lm model) in both APMS and SOIL that predicted the
total ecological risk. Model 1 added Igeo-related variables to Model 0, and Model 2 added
PEI-related variables to Model 0. Finally, Model 3 investigated other pollution indices
based on Model 0. Table 2 displays the adjusting variables, with N indicating “NO” and
Y indicating “YES”. Furthermore, a generalized linear mixed model was conducted to
identify any random effects due to the difference between APMS and SOIL. However, the
model results did not show any significant effect from these random items. The model
comparison also revealed no significant difference from the step-lm model, although it still
allowed for variable decomposition to identify the importance of variable contribution.

Table 2. The stepwise linear model summary of TEI and other HM-related variables under different
variable adjustment.

Variables Model 0 Model 1 Model 2 Model 3

Cr — — — — — — — —
Ni 0.427 (0.179) * — — — — 0.024 (0.002) ***
Cu 0.610 (0.179) *** 0.3026 (0.092) ** — — 0.067 (0.003) ***
Zn — — 0.206 (0.088) * — — −0.013 (0.002) ***
As — — — — — — 0.066 (0.002) ***
Cd — — — — — — — —
Pb — — — — 0.7372 (0.078) *** — —
PI — — — — — — 0.963 (0.003) ***

PLI — — — — — — — —

Model Performance
Adj.R2 52.09% 89.88% 92.01% 99.99%

AIC 53.59 41.718 13.051 −26.798
BIC 59.771 50.989 21.55 −19.844

Adjust Igeo N Y N Y
Adjust PEI N N Y N
Adjust PI +

PLI N N N Y

Variable
Importance
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The results of Model 0 indicate significant effects of Ni (p < 0.05) and Cu (p < 0.01) on
local ecological risk. Zn, on the other hand, has a non-significant contribution (p > 0.05),
and the model performance explained 52.09% of the variance. After adjusting for Igeo-
related variables in Model 1, significant contributions were found for Cu (p < 0.01) and
Zn (p < 0.05), as well as significant contributions from Igeo_Pb and Igeo_Cu. The model
performance improved, explaining 89.88% of the variance, compared to Model 0. After
further adjusting PEI-related variables, based on Model 0, the results only showed an
extremely significant contribution of Pb (p < 0.01) to local ecological risk. The contributions
of PEI_Cu and PEI_Zn followed. The model performance achieved a notable improvement,
with an adjusted R2 of 92.01% compared to 52.09% in Model 0. Finally, after adjusting
pollution indices, the results showed extremely significant contributions of Cu, Zn, As,
and Ni (p < 0.001) to local ecological risk, with the largest contribution from PI. The model
performance had an adjusted R2 of 99.99%.

The comparisons between models can reveal the influence of adjusting variables
on the single variable effect. In terms of the local ecological effects, the effect related to
Igeo show a relatively decreasing effect of Cu but an increasing significant effect of Zn.
Additionally, the contributions of Igeo_Pb and Igeo_Cu are greater. The effect of PEI on local
ecological risk indicates that the effects of Cu and Ni have disappeared, while the effects
of Pb are extremely significant. Furthermore, PEI_Cu and PEI_Zn also have a huge effect.
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The pollution effects on local ecological risk reveal a decrease in the effects of Cu and Ni,
but the addition of a negative significant effect of Zn and a positive significant effect of
As. Additionally, the contribution of PI is extremely significant. These results show the
associated influencing effects of Igeo-related variables and PEI-related variables with HMs
on local ecological risk, as well as the pollution effect of HMs.

Although each site may pose a relatively small potential ecological risk, the different
variable structures have varying impacts on the total potential ecological risks. The local
total potential ecological risk is influenced by different variables related to HMs. Our re-
search at least demonstrates that the local potential ecological risk of HMs can be explained
partially by certain stubborn heavy metals, but the pollution associated with each heavy
metal can also have different effects on the local ecological risk. Current research primarily
focuses on HMs themselves [2,3,11,44], with less consideration for the simultaneous effects
of their multiple related variables. However, HMs and their composite indices provide
different insights into the effects of HMs. Each in situ heavy metal content or derived single
variable only offers limited information on pollution or the relative risk of HMs [23]. Sun
et al. [45] explored the health risks posed by heavy metals and other pollutants at various
pollution levels using a multilinear model. Their results provide a deeper understanding
of the effects of HMs on health and risk. Our results further establish a connection between
HM pollution and their potential ecological risk, providing a way or pattern to gain a
broader understanding of the effects and influences of HMs.

4. Conclusions

This study provided valuable information of farmland soil heavy metal contaminants
with consideration of atmosphere deposition. Several indices of PI, PLI, Igeo, PEI, and TEI
were used to assess the HM status and the effects. Moreover, the stepwise linear model
was used to quantify and discriminate the effects of multiple HM-related variables on TEI.
Cr and Zn were the major contaminants in the local farmland soil, with high values of
54.62 ± 12.72 and 289.41 ± 87.72 mg/kg in surface soil. The geoaccumulation and total
potential ecological risk were mostly at low risk levels (with Igeo less than 3 and TEI less
than 150). High variability of HMs is shown in surface soil. The HM-related pollution
or ecological risk may have more importance. The local potential ecological risk of HMs
could be explained by stubborn heavy metals, but the related pollution derived from each
heavy metal could also bring different effects on local ecological risk. Restricted by region
and sample size, more samples with long-term detection in future research are necessary
which could further improve the accuracy and reliability of research for revealing the fate of
HMs with more convincing proof. More samples covering more areas should be included
in future prospective research. The study provides us with a way or pattern to further
understand the effects or influences of HMs with wider thinking, and it will also help to
improve the analysis accuracy further not only for researchers but also for policymakers.
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