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Abstract: As an alternative for perfluorooctane sulfonic acid (PFOS), sodium p-perfluorononyloxybenzene
sulfonate (OBS) has been widely used in petroleum, fire-fighting materials, and other industries. In
order to efficiently and economically remove OBS contaminations from water bodies, in this study,
a ternary heterojunction was constructed by coupling BiOBr and BiOI@Bi5O7I for improving the
redox capacity and carrier separation ability of the material and investigating the effect of the doping
ratios of BiOBr and BiOI@ Bi5O7I on the performance of the catalysts. Furthermore, the effects
on the degradation of OBS were also explored by adjusting different catalyst doping ratios, OBS
concentrations, catalyst amounts, and pH values. It was observed that when the concentration of OBS
was 50 mg/L, the amount of catalyst used was 0.5 g/L, and the pH was not changed. The application
of BiOBr/BiOI@ Bi5O7I consisting of 25% BiOBr and 75% BiOI@ Bi5O7I showed excellent stability
and adsorption degradation performance for OBS, and almost all of the OBS in the aqueous solution
could be removed. The removal rate of OBS by BiOBr/BiOI@ Bi5O7I was more than 20% higher than
that of OBS by BiOI@Bi5O7I and BiOBr when the OBS concentration was 100 mg/L. In addition, the
reaction rate constants of BiOBr/BiOI@ Bi5O7I were 2.4 and 10.8 times higher than those of BiOI@
Bi5O7I and BiOBr, respectively. Therefore, the BiOBr/BiOI@ Bi5O7I ternary heterojunction can be a
novel type of heterojunction for the efficient degradation of OBS in water bodies.

Keywords: photocatalysis; ternary heterojunction; OBS; catalyst; degradation

1. Introduction

Per- and polyfluoroalkyl substances (PFASs), as linear, branched, or cyclic compounds,
have been partially or completely substituted with the F element. PFASs have the most
stable C-F (115 kcal/mol) bond and are widely used as surfactants and surface protectants
due to their high hydrophobicity, oleophobicity, and thermal and chemical stability [1–3].
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS), as an alternative to perfluorooc-
tane sulfonate (PFOS), has been widely used in oil extraction, fire-fighting materials, camera
materials, and other industries due to the advantages of easy synthesis and high cost per-
formance and because PFOS has been banned in many countries and regions [4–8]. The
structure of the major OBS isomer was shown in Figure 1. The annual output of OBS in
China is estimated to be 3500 tons [9].
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Thus far, OBS has been found in the Daqing Oilfield, the Shengli Oilfield, the Dagang
Oilfield, Poyang Lake, and a wastewater treatment plant in China [4,10–12]. Occurrences
of OBS have also been found in drinking water, dust, and maternal and umbilical cord
serum in China. For instance, 3.2 µg/L of OBS was found in surface water near the
Daqing Oilfield, 144 µg/L of OBS was found in wild cross fruits, and 0.711 ng/mL of
OBS was even determined in the sera of pregnant women [10,12,13]. However, OBS may
cause metabolic disorders in mice, a decrease in hatching and vascular development and
metabolic dysfunction in zebrafish, an increase in obesity and a decrease in bone density in
humans, and necrosis and oxidative stress in HepG2 cells [4,5,14–18].

Methods for degrading PFOS have been widely studied; however, there are few stud-
ies related to the removal of OBS from water bodies [19–22]. Due to the extra ether group
and benzene ring in the structure of OBS, it is more difficult to be degraded naturally
compared with PFOS [9,23]. Currently, the removal of OBS from water bodies is mainly
through advanced oxidation and adsorption methods. The advanced oxidation method
mainly attacks the benzene ring and C=C double bond by generating •OH, SO4•−, etc.,
while the adsorption method mainly adsorbs OBS from water through hydrophobic, elec-
trostatic, π-π, and hydrogen bonding interactions [14,15,24,25]. Hwang et al. degraded
more than 90% of OBS in 1 h (pH = 11) by adding O3 or H2O2 [14], and Liu et al. removed
OBS by adding sulfite under UV irradiation [15]. Li et al. removed 76.6% of OBS in a
relatively short period of time by catalytic oxidation using Co@o-MXene combined with
peroxymonosulfate (PMS) [24]. In addition, Wang et al. degraded OBS by granular reduced
graphene oxide/Fe3O4 hydrogel, and the OBS removal rate was about 80% in 144 h (pH =
3) [25]. Although advanced oxidation can remove OBS in a relatively short period of time,
it often requires the consumption of additional active substances, which increases the cost
of degrading OBS. In contrast, the relative cost of removing OBS from water bodies through
adsorption is lower, but the reaction time is longer. Therefore, a cost-effective method for
the treatment of OBS is warranted.

As a clean and sustainable energy source, the reasonable development of solar energy
can solve energy and environmental problems [26]. Photocatalytic degradation technology
is considered as a promising technology because of its excellent mineralization ability,
extensive energy sources, and mild reaction conditions [27–29]. Many photocatalytic
studies have been carried on the degradation of PFAS. For instance, Huang et al. prepared
an In-MOF/BiOF heterojunction, which completely degraded PFOA (C0 = 15 mg/L) within
3 h and PFOS within 1 h under UV light [30]. Park et al. utilized GO/TNA to decompose
approximately 82% of PFOA (C0 = 15 mg/L) within 4 h of UV irradiation [31]. Zhu et al.
adsorbed almost all of hexafluoropropylene oxide-dimer acid (HFPO-DA) (C0 = 100 µg/L)
within 1 h by the synthesis of Bi/TNTs@AC, and 70.0% of pre-adsorbed HFPO-DA was
degraded after 4 h of UV irradiation [32]. Although photocatalytic technology has been
applied to the treatment of various PFASs, most studies focused on the UV region, which is
not efficient at the removal of pollutants with higher levels. Hence, there is a need for a
novel material that might be able to utilize a wider spectral range and perform a higher
redox capacity to degrade OBS, as an alternative to PFOS.

Bismuth-based materials are widely used in the fields of water decomposition and
pollutant degradation due to their unique stability and economy [33–35]. Bismuth halide
oxide is a layered structure consisting of a double halogen atom plate with a [Bi2O2]2+ layer,
which has enough space to excite the relevant atoms and orbitals and induce the generation
of an internal electric field [34]. In particular, BiOI and BiOBr have a narrow band gap and
complex energy band structure, which exhibit excellent photocatalytic potential. However,
the rapid combination of photogenerated electrons and holes in these materials limits their
redox capabilities. To further resolve the said problem, some efficient methods involving
constructing heterojunctions, induced defects, crystal surface modulation, and noble metal
modification have been widely investigated [34,36].

In general, holes and photogenerated electrons will produce directional motions in
response to internal electric field forces by constructing heterojunctions to improve their
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redox capacity. Long et al. synthesized a BiOBr-Bi2S3 heterojunction that adsorbed 53.8%
of Cr (VI) within 30 min and completely removed it in the subsequent 12 min [37]. Hu et al.
degraded 99.2% of rhodamine B within 90 min by synthesizing a Bi5O7I/BiOBr type-II
heterojunction [38]. Due to the synergistic effect between the semiconductors, the ternary
heterojunction has a stronger redox capacity compared to the binary heterojunction [39,40].
Zhu et al. synthesized a BiOCl/BiVO4/N-GQD ternary heterojunction that degraded more
than 70% of bisphenol A in 160 min, which was 1.8 times higher than the reaction kinetic rate
constants of BiVO4/N-GQD and BiOCl/N-GQD [40]. Shi et al. degraded tetracycline by
utilizing a ternary heterojunction of Ag3PO4/Co3(PO4)2/g-C3N4, and 88% of tetracycline
was removed at 120 min, which was more than 30% higher than that of other heterojunc-
tions [41]. Therefore, the construction of a bismuth oxyhalide-based ternary heterojunction
might be considered a promising method of removing contaminants efficiently.

In this study, a BiOBr/BiOI@Bi5O7I heterojunction was innovatively synthesized and
characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–Vis
diffuse reflectance spectroscopy (UV–Vis), etc. The photocatalytic performances were
further optimized by the stepwise strategy of single influencing factors for the degradation
of OBS, including material, pH, contaminant concentration, and catalyst dosage.

2. Materials and Methods
2.1. Chemicals and Reagents

Bismuth nitrate hydrate (Bi (NO3)3•5H2O, ≥99.0%, 485 g/mol) and potassium iodide
(KI, ≥99.0%, 166 g/mol) were supplied by Damo chemical reagent factory and Technology
Development Co., Ltd., (Tianjing, China). Potassium bromide (KBr, ≥99.0%,119 g/mol)
was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). OBS was
obtained from Shanghai Macklin Biochemical Technology Co., Ltd. (Shanghai, China,
≥95%, 626 g/mol). Ethylene glycol was provided by Tianjin Komeo Chemical Reagent Co.,
Ltd. (Tianjin, China). All the above reagents were of pure analytical grade. The water used
throughout the experiment was ultrapure water.

2.2. Synthesis of BiOBr/BiOI@Bi5O7I

Synthesis of BiOBr (BO): Firstly, 2 mmol of Bi (NO3)3•5H2O was dissolved in 30 mL of
an ethylene glycol solution with 2 mmol of KBr. Secondly, after ultrasonication for 20 min,
stirring was carried out by a magnetic stirrer, and 2 mmol of the KBr solution was slowly
added dropwise into the Bi (NO3)3 solution. After stirring for 1 h, the above mixed solution
was transferred to a 100 mL autoclave and then placed in an oven at a temperature of
160 ◦C for 12 h. After cooling to room temperature, the obtained material was washed
several times with anhydrous ethanol and ultrapure water to obtain the designated BO.

Synthesis of BiOI@Bi5O7I (BI): Similarly to the BO preparation, KBr was replaced with
KI, and then the prepared material was placed in a muffle furnace and heated at 400 ◦C for
3 h to obtain BI.

Synthesis of BiOBr/BiOI@Bi5O7I ternary heterojunctions: The above-synthesized
BiOI@Bi5O7I and BiOBr were dispersed in an ethanol solution and sonicated for 1 h. Then,
the resulting mixture was transferred to a 100 mL autoclave reactor and heated at 160 ◦C
for 12 h. After cooling down to room temperature, the subsequent mixture was washed
with anhydrous ethanol and ultrapure water and dried at 80 ◦C. The prepared samples
were expressed as x BO-(100-x) BI, where x and (100-x) are denoted as the ratios of BiOBr
and BiOI, respectively (x = 0, 25, 50, 75, and 100), which could be abbreviated as 25BO-75BI,
50BO-50BI, and 75BO-25BI.

2.3. Characterization of the As-Prepared Materials

An X-ray diffractometer with a Cu-Ka emission source was used to examine the
2 θ range of the samples from 5◦ to 90◦ to analyze the crystal structure of the materials
(Dangdong Tongda Science & Technology Co., Ltd., TD-3500, Dandong, Liaoning, China).
Field emission scanning electron microscopy (JEOL Ltd., JSM-IT800, Tokyo, Japan) was
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used to analyze the microstructure and morphology of the material. The optical properties
of the materials were tested by the UV–visible diffuse reflection (Perkin Elmer, LAMBDA
950, Shelton, CT, USA) using BaSO4 as a blank reference between 200 and 800 nm. The
elemental composition and chemical valence of the photocatalysts of the prepared materials
were examined by using X-ray photoelectron spectroscopy (Shimadzu, AXIS SUPRA+,
Kyoto, Japan). The specific surface area and particle size distribution of the materials were
analyzed with the assistance of the Brunauer–Emmett–Teller method (Micromeritics, ASAP
2460, Norcross, GA, USA).

The band gap energy (Eg) of the material was deduced from the Tauc equation:

(αhν) n/2 = C (hν − Eg) (1)

where α, ν, h, and C represent the absorption coefficient, light frequency, Planck’s constant,
and the constant value, respectively (direct transition: n = 4, indirect transition: n = 1).

2.4. Adsorption Kinetics and Experiments

At 25 ◦C, 40 mL of a 50 mg/L solution of OBS was placed under dark conditions,
and 20 mg of material (BI, BO, 25BO-75BI, 50BO-BI, and 75BO-25BI) was added. It was
then mixed with a shaker at 150 rpm, and the change in concentration was measured at a
set time.

The equilibrium solid-phase concentration (qe) and the reaction rate constants (k1,
k2) were also calculated from the proposed primary and proposed secondary kinetics,
respectively.

qt = qe − qeexp(−k1t) (2)

qt = k2qe
2t/(1 + k2qet) (3)

where t denotes the time of adsorption and qt is the concentration of OBS in the solid at
time t.

2.5. Photocatalytic Degradation

The photocatalytic properties of the prepared materials were evaluated under irradi-
ation by a 300 W xenon lamp (China Education Au-light, CEL-PF300-T6, Beijing, China,
illumination range 300–1100 nm). All experiments were able to react in a CEL-LB70 pho-
tochemical chamber. In this experiment, 20 mg of photocatalyst was added to the OBS
solution (40 mL, 50 mg/L). The reaction solution was stirred in the dark for 30 min before
exposure to light to bring the reaction to the adsorption–desorption equilibrium. At the
set time intervals, the reaction liquid was removed and filtered through a 0.45 µm needle
filter. The filtrate was analyzed by a UV spectrophotometer (Shanghai Metash Instruments
Co., Ltd., UV-6000PC, Shanghai, China) at 218 nm to determine the concentration change
of the OBS.

The kinetics of OBS degradation by the catalyst in the presence of light was deter-
mined by examining the concentration of the OBS solution at different times (C) and the
concentration of the OBS under the initial conditions (C0), as shown in (1):

Photodegradation (%) = C/C0 × 100% (4)

The photocatalytic process conforms to the pseudo-first-order kinetic equation, such
as the following formula:

−ln (Ct/Ci) = Kobst (5)

where Kobs is the pseudo-first-order rate constant, Ct is the OBS concentration at time t,
and Ci is the OBS concentration at the adsorption equilibrium.
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3. Results and Discussion
3.1. Characterization of Materials
3.1.1. XRD

The composition and crystal structure of the BO, 25BO-75BI, 50BO-50BI, 75BO-25BI,
and BI were investigated by the XRD measurements (Figure 2). The XRD patterns of the
synthesized BO were consistent with tetragonal BiOBr (JCPDS 09-0393). The peaks were
located at 10.90◦, 21.93◦, 25.16◦, 31.69◦, 32.22◦, 46.21◦, and 57.12◦, corresponding to the
(001), (002), (101), (102), (110), (200), and (212) facets of the BiOBr. No diffraction peaks
of any other phases were observed in the material, demonstrating the effective synthesis
of pure BiOBr. In the spectrum of the BI, the peaks at 75.02◦ and 77.56◦ may come from
the residual BiOI during calcination, and the diffraction peaks were observed at 27.98◦,
30.91◦, 33.01◦, 41.08◦, and 46.77◦, corresponding to the characteristic peaks of (312), (004),
(204), (205), and (604) of Bi5O7I. In the XRD patterns of the BO, 25BO-75BI, 50BO-50BI,
and 75BO-25BI were observed, and the position of the peaks did not change significantly,
proving the successful composite of several materials.
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3.1.2. SEM

The morphology and structure of the BO, BI, and 25BO-75BI materials were examined
by SEM (Figure 3). It can be observed that several materials are compact microspherical
materials around 1–5 µm in volume. The BO is slightly larger than the other two materials,
presenting a spherical structure assembled by larger 2D nanosheets (Figure 3a–c). The BI
has a smaller and looser structure that contributes to the pore volume and comparative
area of the material (Figure 3d–f). As shown in Figure 3i, it is observed that there are two
kinds of sheet-shaped structures of both sizes fully contacted to combine into microspheres,
which helps the fast transport of charge carriers and also proves the successful combination
of both the BI and BO materials.

3.1.3. UV–Vis

The characterization of the optical properties of the BO, BI, and 25BO-75BI was per-
formed by UV–Vis (Figure 4). The difference between the absorption edges of the BO
and BI is small. The absorption edge of the BO is 425 nm, while the absorption edge of
the BI is 435 nm (Figure 4a). After the two materials were doped with each other, the
absorption edge of the 25BO-75BI was slightly red-shifted to about 446 nm, which enhances
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the absorption of the material in the visible region. In Figure 4b, the band gap energies
of the BO, BI, and 25BO-75BI are 2.62 eV, 2.45 eV, and 2.27 eV, respectively. Hence the
25BO-75BI has the narrowest band gap, which can also utilize solar energy more effectively.
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3.1.4. XPS

In Figure 5 and Table 1, the surface atomic states and elemental valence states of the
BO, BI, and 25BO-BI were determined by XPS, and the data were corrected using C 1s
(284.80 eV) as a reference peak. The full spectra (Figure 5a) show that the corresponding
elements are correctly present in several materials. The 4f5/2 and 4f7/2 of the BO are located
at 159.25 eV and 164.56 eV separately with energy gaps of 5.3 eV, which is consistent with
the valence state of Bi (III) [42]. The O 1s signal in the BO is divided into three peaks
at 529.99 eV, 531.75 eV, and 533.47 eV, corresponding to the Bi-O bond in the lattice, i.e.,
the hydroxyl group on the surface of the material, the oxygen atoms around the oxygen
vacancies, and the decrease in the Bi-O peak may be due to the absence of O on the surface
of the material as a result of warming during the material compounding process [43]. The
values 68.24 eV and 69.26 eV in Figure 5d correspond to Br 4f3/2 and Br 4f5/2, confirming
the presence of Br−, and the decrease in the peak at 3d5/2 of the Br may have produced the
electron escape phenomenon [44,45], while the two peaks of BI at 619.21 eV and 630.65 eV
correspond to the 3d5/2 and 3d3/2 orbitals of I, respectively [43,46]. After the two materials
were doped with each other, the 4f states of Bi were shifted toward higher binding energy,
while I and Br were shifted toward lower binding energy by 0.32 eV and 0.23 eV. This is
because I and Br are more capable of trapping electrons compared to [Bi2O2]2+, which leads
to a decrease in the charge density and an increase in the binding energy of Bi. It is also
demonstrated that the BO and BI are not only physically connected, but a charge transfer
occurred between them, proving an interaction between the two materials.

Table 1. Peak splitting results of the XPS spectra.

Element Elemental Orbital Peaks BO (eV) BI (eV) 25BO-75BI (eV)

Bi
4f5/2 159.25 159.34 159.86
4f7/2 164.56 164.68 165.18

O
Bi-O 529.99 530.14 530.03
H2O 531.75 531.83 531.79
OV 533.47 533.29 533.19

I
3d5/2 - 619.21 618.98
3d3/2 - 630.65 630.30

Br
4f3/2 68.24 - 68.01
4f5/2 69.26 - 69.14
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3.1.5. BET

The N2 adsorption–desorption isotherms and pore size distribution of the BI, BO, and
25BO-75BI are shown in Figure 6. According to the IUPAC classification, at a given pressure,
when the amount of adsorption of all materials increases with increasing equilibrium
pressure, the adsorption lines measured do not coincide with the desorption line measured
when the pressure decreases. Furthermore, the amount of adsorption in the desorption
line is greater than the amount of adsorption at the same relative pressure. Therefore, the
adsorption curve of the material conforms to type IV, and the hysteresis loop is type H3
(Figure 6a). The results show that the material is a layered mesoporous structure with a
pore size greater than 4 nm and is consistent with the layered structure observed in the
SEM. The values of the surface area, pore volume, and pore diameter of several materials
are demonstrated in Table 2, where the surface area, pore volume, and pore diameter of
the BO are smaller, whereas after doping with BI, the surface area, pore volume, and pore
diameter are increased. This provides beneficially sufficient active sites for photocatalytic
reactions and adsorption.
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Figure 6. The N2 adsorption–desorption isotherm distribution curves (a) and pore size distribution
curves (b) of BI, BO, and 25BO-75BI.

Table 2. The N2 adsorption characteristics of BI, BO, and 25BO-75BI.

Material BET Surface Area (m2/g) Pore Volume (cm3/g) Pore Diameter (nm)

BO 23.3838 0.090615 12.3033
BI 26.4047 0.139493 15.8817

25BO-75BI 27.3040 0.148473 17.9120

3.2. Adsorption Kinetics

In Figure 7 and Tables 3 and 4, the OBS adsorption capacity of the BO, 25BO-75BI, 50BO-
50BI, 75BO-25BI, and BI are compared according to the adsorption kinetics. The adsorption
of OBS by these materials was fast and basically reached the adsorption equilibrium point
at 30 min, and the 25BO-75BI and BI had especially better adsorption capacities, which was
consistent with the results in BET, in which the 25BO-75BI removed 59.1% of the OBS at
90 min, while the removal of BI reached 52.3% at 90 min.

Table 3. Pseudo-first-order reaction rate constants and equilibrium solid-phase concentrations for
BO, 25BO-75BI, 50-BO-50BI, 75BO-25BI, and BI determined in 50 mg/L OBS solution.

Material BO 25BO-75BI 50-BO-50BI 75BO-25BI BI

K1 0.11686 0.24348 0.20256 0.25287 0.16664
qe 0.0274 0.5957 0.05195 0.03498 0.05148
R2 0.90558 0.99295 0.98327 0.97834 0.95344

Table 4. Pseudo-second-order reaction rate constants and equilibrium solid-phase concentrations for
BO, 25BO-75BI, 50-BO-50BI, 75BO-25BI, and BI determined in 50 mg/L OBS solution.

Material BO 25BO-75BI 50-BO-50BI 75BO-25BI BI

K2 6.34445 7.39654 6.18475 13.02043 4.81483
qe 0.03063 0.06307 0.05578 0.03705 0.05582
R2 0.9521 0.99926 0.99610 0.98332 0.97742
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3.3. Photocatalytic Performance
3.3.1. Influence of Material Compositions

Comparative studies were implemented on the adsorption degradation effects of
BO, 25BO-75BI, 50BO-50BI, 75BO-25BI, and BI at higher and lower concentrations of OBS,
together with the effect of BO doping on the adsorption degradation ability of BI (Figure 8).
OBS is very stable and hardly degrades in the absence of photocatalysts [17]. As shown in
Figure 8, when the concentration of OBS was 20 mg/L, the BO could only remove 38.8%
of the OBS in the adsorption stage, while the 25BO-75BI and BI had higher removal rates
of 81.3% and 84.3%, respectively. In the photocatalytic stage, the 25BO-75BI was able to
remove 99.4% of the OBS at 3 h, which is much better than other types of materials.

In order to further highlight the OBS degradation performance of the different ma-
terials, the effects on the treatment of a higher level of OBS (100 mg/L) were compared.
When the concentration of OBS was 100 mg/L, the adsorption amount of the 25BO-75BI
was close to that of the BI, and the adsorption effect was greater than that of the BO, which
might be related to its larger specific surface area. It might provide more adsorption sites,
which was consistent with the results of BET. When the concentration of OBS was 100 mg,
the removal of OBS by the BO was only 22.4% in 6 h, while the BI could degrade 61.0% of
the OBS in 6 h. When the BI was doped with BO at a lower proportion, the removal rate of
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OBS was significantly increased in the process of lower concentration doping, generating
an 84.3% OBS removal in 6 h.
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In addition, as shown in Figure 8c and Table 5, the reaction rate constants of the
prepared photocatalysts for OBS degradation at 100 mg/L were compared. The highest
degradation constant was found for the 25BO-75BI (kobs = 0.26996 h−1), which was 2.4 times
higher than that of the BI (kobs = 0.11129 h−1) and even 10.80 times higher than that of the
BO (kobs = 0.025 h−1). The results showed that the 25BO-75BI had the highest rate of treating
OBS, and a small amount of BO in the BI was effective in improving the photocatalytic
effect, which may be related to the synergistic effect between the ternary heterojunction [40].
On the other hand, the removal rate of OBS was not significantly improved by excessive
doping, which may be related to the weak redox ability of BO.

Table 5. Rate constants determined of BO, 25BO-75BI, 50-BO-50BI, 75BO-25BI, and BI in 100 mg/L of
OBS solution.

Material BO 75BO-25BI 50-BO-50BI 25BO-75BI BI

kobs (h−1) 0.025 0.03426 0.04409 0.26996 0.11129
R2 0.97188 0.99422 0.94666 0.97656 0.92098
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3.3.2. Influence of OBS Concentrations

As shown in Figure 9a, the adsorption degradation effects of the 25BO-75BI at OBS
concentrations of 20 mg/L, 50 mg/L, 80 mg/L, and 100 mg/L for 6 h were compared to
explore the optimal treatment concentration. In the adsorption stage, the removal rate of
OBS could reach 81.3% when the OBS level was 20 mg/L, 53.8% and 53.3% when the OBS
level was 50 and 80 mg/L, respectively, and only 26.7% when the concentration of OBS
was further increased to 100 mg/L. The results were similar to those of the photocatalytic
results. When the concentration of OBS was lower (20 mg/L), the degradation effect of the
material was better, and the removal rate reached 100% after 6 h. However, the removal
rates could be up to 93.6%, 88.5%, and 84.4% individually when the concentration of OBS
gradually increased from 50 mg/L to 100 mg/L. The reason is that the high concentration
of OBS will consume the active substances produced by BO in a short time, so that the
photocatalytic effect will be reduced [46]. In Figure 9b and Table 6, the fastest reaction
rates were observed when the concentrations of OBS were 50 mg/L and 20 mg/L, but the
poor fit was mainly due to the fact that the reaction rates decreased significantly when the
concentration of OBS was reduced to a certain level. At 20 mg/L of OBS, although the
removal effect was excellent, the degradation effect of the material could not be reflected.
When the concentration of the contaminant was 50 mg/L, the removal rate was more than
93.6% in 6 h, and the adsorption and degradation ability of the material could be compared,
so the concentration of the contaminant was set to 50 mg/L in the subsequent experiments.
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Table 6. Rate constants at different OBS concentrations.

Concentration 100 mg/L 80 mg/L 50 mg/L 20 mg/L

kobs (h−1) 0.26996 0.23552 0.29726 0.75396
R2 0.97657 0.99908 0.81387 0.88000

3.3.3. Influence of Catalyst Usages

The effects of catalyst dosages of 0.1 g/L, 0.5 g/L, 0.7 g/L, and 1 g/L on photocatalytic
degradation were compared in Figure 10a. When the catalyst dosage was 0.1 g/L, only
75.1% of the OBS could be removed in 6 h. With the increase in catalyst dosage, the
adsorption effect of OBS was enhanced, and the removal rate of OBS gradually increased
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from 32.9% to 73.9% within 0.5 h of adsorption. In the photocatalytic stage, when the
catalyst dosage was 0.1 g/L, the removal rate of OBS was only 75.1% at 6 h, whereas the
removal rates of other dosages could reach more than 95.3%. This may be because the
lower catalytic effect of a small amount of catalyst produced fewer free radicals, resulting
in a weakened rate. Meanwhile, in Figure 10b and Table 7, when the catalyst was used in
the amounts of 0.5 g/L and 1 g/L, it had a faster reaction rate. In order to save resources
and ensure the degradation effect, the subsequent catalyst dosage was set at 0.5 g/L. The
catalyst dosage was used as a reference for determining the degradation effect. The poorer
fits with catalyst amounts of 0.5 g/L, 0.7 g/L, and 1 g/L are also due to the fact that the
degradation basically reached the upper limit at the lower concentration of OBS in the first
half of the reaction, and the rate became faster in the second half of the reaction.
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Figure 10. Effect of catalyst usages on OBS degradation (a); kinetic curves at different catalyst
usages (b).

Table 7. Rate constants for different catalyst usages.

Catalyst Usage 0.1 g/L 0.5 g/L 0.7 g/L 1 g/L

kobs (h−1) 0.17682 0.29765 0.23472 0.35099
R2 0.96558 0.81600 0.66118 0.75759

3.3.4. Influence of Solution pH

As shown in Figure 11, the degradation effects of OBS were compared when the
solution pH = 3, 5, 8, and 10, and initial pH of 50 mg/L OBS was 6.22. The removal effect
was poor in the adsorption stage, with removal rates of 38.8% and 36.8%, respectively,
when the solution pH = 3 and 8. However, the removal rates of other materials were higher
than 52.5%. In the photocatalytic stage, the fastest removal was achieved at the initial
condition, but there was little difference in the removal effect at 6 h. Differences in pH
may affect the material electrostatic and π-π effects [25], but it is not obvious in this study.
In Figure 11b and Table 8, the fastest reaction rate was observed at a pH = 3. However,
there was little difference in the remaining concentration of OBS in the solution when the
reaction was carried out for 6 h. Therefore, the pH of the solution was not adjusted in the
following experiments.
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Table 8. Rate constants at different pH values.

pH Initial 3 5 7 10

kobs (h−1) 0.29726 0.49649 0.24125 0.37342 0.37342
R2 0.81387 0.96358 0.96133 0.95255 0.95255

3.4. Photocatalytic OBS Removal Mechanism

Under the optimal conditions, a mechanism regarding the removal of OBS was pro-
posed by a UV–Vis spectrophotometric analysis at 200–600 nm (Figure 12). As shown in
the figure, the initial OBS solution has two absorption peaks at 218 nm and 254 nm, which
correspond to the benzene ring structure and -c=c-, respectively [24,25]. As can be seen
from the figure, the wavelength of the OBS at 218 nm gradually decreased in the dark
reaction stage, which might be because OBS was adsorbed by the material, resulting in
a decrease in the concentration of OBS in the solution. In the photocatalytic stage, the
absorption peaks at 218 nm and 254 nm continued to decrease, which might be because the
benzene ring and -c=c- were oxidized by the active materials in the photocatalytic process,
and the wavelengths were gradually stabilized after 2 h because the reaction had reached
the saturation state.
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4. Conclusions

In the present study, a 25BO-75BI ternary heterojunction was innovatively synthesized,
and the photocatalytic ability was enhanced by coupling three semiconductor materials,
which could be more economical and efficient for the removal of OBS from aqueous
solution. The XRD analysis proved the effective synthesis of the material. The microscopic
spherical structure of the material was observed by SEM images. Moreover, the changes
in the elemental binding energy of the materials before and after doping were compared
through XPS images, indicating a new built-in electric field among the three materials,
thus improving the separation of the photogenerated carriers. The UV–Vis test showed
that the formation of the ternary heterojunction resulted in a slight increase in the light
absorption capacity of the material. The BET test results showed that the 25BO-75BI
has a large specific area, which may provide enough active sites for the adsorption and
photocatalytic processes. In the adsorption experiments, the solid-phase equilibrium
concentration (qe = 0.06307 mg/mg) of the material was determined by adsorption kinetics.
In a subsequent degradation experiment, 20 mg/L of OBS was completely degraded by the
25BO-75BI, and the removal rate of OBS at 100 mg/L could reach 84.3%. According to the
first-order kinetic analysis, the reaction constants of the 25BO-75BI were 2.4 and 10.8 times
higher than those of the BO and BI individually. Finally, the optimal treatment conditions
for OBS were explored during this study, showing that 93.6% of OBS was removed at 6 h
when the catalyst dosage was 0.5 g/L and the initial concentration of OBS was 50 mg/L.
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