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Abstract: Assessing the impact of climate change is essential for developing water resource manage-
ment plans, especially in areas facing severe issues regarding ecosystem service degradation. This
study assessed the effects of climate change on the hydrological balance using the SWAT (Soil and
Water Assessment Tool) hydrological model in the Mixteco River Basin (MRB), Oaxaca, Mexico. Tem-
perature and precipitation were predicted with the projections of global climate models (GCMs) from
the Coupled Model Intercomparison Project Phase 6 (CMIP6); the bias was corrected using CMhyd
software, and then the best performing GCM was selected for use in the SWAT model. According
to the GCM MPI-ESM1-2-LR, precipitation might decrease by between 83.71 mm and 225.83 mm,
while temperature might increase by between 2.57 ◦C and 4.77 ◦C, causing a greater atmospheric
evaporation demand that might modify the hydrological balance of the MRB. Water yield might
decrease by 47.40% and 61.01% under the climate scenarios SP245 and SSP585, respectively. Therefore,
adaptation and mitigation measures are needed to offset the adverse impact of climate change in
the MRB.

Keywords: bias correction; climate scenarios; management plans; water yield; water resources

1. Introduction

The United Nations Framework Convention on Climate Change defines climate
change (CC) as “a change of climate which is attributed directly or indirectly to human
activity that alters the composition of the global atmosphere and which is in addition to
natural climate variability observed over comparable time periods” [1]. This is frequently
expressed as a variation in precipitation and temperature [2], and it refers to a change
in climate compared to the average conditions of the atmosphere over a period of time,
resulting from the direct or indirect alteration of its composition [3]. Its most important
drivers are greenhouse gas (GHG) and aerosol emissions, as well as changes in the albedo
of the Earth’s surface, which cause an energy imbalance [4].

Anthropogenic activities are currently considered the main drivers of climate change,
leading to climatic catastrophes with irregular patterns [5]. Despite this knowledge, human
activities continue to increase GHG emissions, making climate change a growing global
issue [6]. This is to such an extent that, according to recent assessments by Richardson [7],
the atmospheric carbon dioxide (CO2) concentration threshold that ensures the climate sta-
bility of the planet (350 ppm and radiative forcing of 1 W m−2) was significantly exceeded,
as 417 ppm had been reached in 2022 (radiative forcing of 2.91 W m−2).
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Understanding the impact of climate change is achieved with future climate projec-
tions, generated with different Global Climate Models (GCMs) which are currently grouped
into the global climate modeling framework of the Coupled Model Intercomparison Project
Phase 6 (CMIP6), an international project to compare the results of climate model simula-
tions carried out according to a common protocol [8]. GCMs use scenarios called Shared
Socioeconomic Paths (SSPs) in their latest generation to make climate change projections.
For example, SSP245 represents a medium-term socioeconomic development scenario with
an average radiative forcing of 4.5 W m−2, and SSP585 considers intensive development
driven by the use of fossil fuels, with a high radiative forcing of 8.5 W m−2, both for the
year 2100 [9].

The connection between climate change and water resources is central to social pros-
perity, since this phenomenon causes alterations in the hydrological cycle that affect the
availability of water resources in terms of both quantity and quality [10]. Some analyses of
global precipitation data have concluded that 10% of the world’s most intense rainfall has
already increased by about 80% and will continue rising at a faster rate; on the other hand,
there are parallel increases in the risk of occurrence of droughts, leading to the increasing
occurrence and severity of flooding, landslides, and to scarcity of water resources [11].
Regarding runoff volumes, a marked reduction is expected from the different CMIP climate
scenarios, causing a decrease in water availability in various parts of the world [12,13].

The rate of increase in annual mean temperature in Mexico is considerably higher than
the global average rate. For example, the increase in the mean air temperature in Mexico
since the beginning of the 20th century was 1.69 ◦C (1.59–1.8 ◦C), while the rise in the global
mean temperature was 1.23 ◦C [14]. Additionally, Mexico’s geographic location and relief
directly influence the susceptibility to hydrometeorological events such as droughts, floods,
and landslides [15], which increase its exposure to climate change, projecting a decrease in
precipitation and a temperature rise [16]. Today, the mean annual precipitation is 740.00 mm,
mainly from June to September. However, due to decreasing precipitation, deforestation,
and soil degradation, 90% of its territory has recently been affected by droughts, altering
hydrological processes and affecting agricultural and livestock production systems [17].

The Mixteco River Basin (MRB) is located at the place of origin of the Balsas Hydro-
logical Region. Its functional dynamics are highly distorted due to altered hydrological
processes, river soil degradation, water stress, and potential diffuse pollution [18]. The
Mixteca region is characterized mainly by its degree of environmental degradation, de-
forestation level, water scarcity, and accelerated desertification processes as a result of
anthropogenic activities [19,20], as well as the increasing frequency of droughts, being an
area with a temperate and semi-arid climate [21]. Additionally, according to the National
Atlas of Vulnerability to Climate Change (ANVV, in Spanish) produced by the National In-
stitute of Ecology and Climate Change (INECC, in Spanish), 65% of the MRB municipalities
currently have high or very high levels of vulnerability to climate change [22].

The relationship between water resources and the hydrological cycle is crucial for
climate change, as the latter will directly affect water availability and the spatial and tempo-
ral variations in runoff, mainly due to changes in significant climate factors (precipitation
and temperature) [2,23,24]. This will impact current practices in designing and managing
natural resources [25].

Hydrological modeling is a tool that allows for analysis of the behavior of the hydro-
logical processes that occur within a basin [26]. Therefore, it is widely used in multiple
research studies for the comprehensive management of water resources [27] and for evalu-
ating the impact of climate change [28]. In recent decades, the Soil and Water Assessment
Tool (SWAT) model has been used to quantify the hydrological response to different man-
agement practices and climate change scenarios in different environmental conditions and
basin sizes [29,30]. The SWAT model is a physically based semi-distributed hydrological
model that allows for the calculation of the water balance components at spatial and tem-
poral levels and production of runoff and sediments in basins [31]. Mainly, it is used to
calculate the availability of water in a basin [32].
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Assessing the impact of climate change on hydrological processes at spatial and
temporal levels is essential to define comprehensive management of water resources in
a basin [33]. Therefore, the main objective of this study is the analysis of the impact of
climate change on the hydrological balance components of the Mixteco River Basin (MRB),
located in the northeast of Oaxaca state, Mexico, based on short-, medium-, and long-term
projections of precipitation and temperature from several Global Climate Models (GCMs)
under the SPP245 and SSP585 climate scenarios, applying hydrological modeling with the
SWAT model.

2. Materials and Methods
2.1. Study Area

The study area corresponds to the Mixteco River Basin (MRB). Its main channel
originates from the confluence of the Tlaxiaco and Juxtlahuaca rivers; its delimitation
begins from the mountainous region to the Mariscala hydrometric station (17◦51′45′′ N;
98◦08′58′′ W), with an approximate length of 180.16 km, and it becomes a major tributary
of the Balsas River [34] (Figure 1).
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Figure 1. Location of the Mixteco River Basin, Oaxaca, Mexico.

The MRB comprises 6559.20 km2 over an elevation range of 1.040 m to 3.366 m, with
an average of 2.213 m (Figure 2a). Most of the basin has a steep relief, with an average slope
of 34.29% (Figure 2b). Additionally, its rainfall regime ranges from May to October, with a
mean annual precipitation of 733.55 mm. The monthly temperature varies between 16.94 ◦C
and 22.09 ◦C; the lowest and highest temperatures occur in January and May, respectively.

The plant cover of the MRB corresponds mainly to forests (44.95% of the basin;
Figure 2c). The most representative plant cover is oak forest (BENC, 21.54%), followed by
pine-oak forest (ENPI, 10.74%), pine forest (PINE, 6.43%), oak–pine forest (ENPI, 3.31%),
tascate (BTAS, 2.26%), and mountain cloud forest (BOMM, 0.67%). The area also harbors
induced pastures (PASI, 21.85%), rainfed agriculture (TEMP, 19.02%), and low deciduous
forest (SEBC, 10.06%). The remaining area is covered by irrigation agriculture (RIEG, 1.77%),
scrubland (MATO, 1.58%), induced palm-tree forest (PALM, 0.44%), medium-density urban
area (URMD, 0.24%), low-density urban area (URLD, 0.07%), and water bodies (WATER,
0.04%). The main soil classes in the MRB, according to the FAO WRB Classification System
(FAO, 2014), are Leptosols (LP; 48.25%), followed by Cambisols (CM; 35.80%), Regosols
(RG; 8.00%), Fluvisols (FL; 7.16%), and Vertisols (VR; 0.79%) (Figure 2d).
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2.2. SWAT Hydrological Model

The SWAT (Soil and Water Assessment Tool) program is a semi-distributed hydro-
logical model that simulates the different components of the hydrological balance in
continuous time (annual, monthly, and daily) at spatial and temporal levels. Its primary
function is to estimate runoff and sediment production and predict the impact of soil
management practices on water quality in large basins with different elevations, plant
cover, and soil types [31,35]. It simulates the terrestrial phase of the hydrological cycle
based on hydrological balance (Equation (1)):

SWt = SW0 +
n

∑
i=1

(
Rday − Qsur f − ET − Wseep − R f

)
(1)

where SWt is the final soil water content of day n (mm); SW0 is the initial soil water content
of day i (mm); t is the simulation period (days); Rday is the total precipitation of day i (mm);
Qsur f is the surface runoff of day i (mm); ET is the evapotranspiration of day i (mm); Wseep
is the water leaching through the soil profile of day i (mm), and R f is the return flow of day
i (mm).

Surface runoff refers to the amount of precipitation not lost through interception,
infiltration, and evapotranspiration, which occurs when the precipitation rate is greater
than the infiltration rate. For its calculation, the SWAT model uses the Soil Conservation
Service curve number method (SCS) [36] and the Green and Ampt method [37], however,
the latter requires precipitation data in sub-daily or hourly time intervals that are difficult
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to obtain, which frequently makes its application difficult. Therefore, the SCS curve number
method based on Equation (2) was used in this study.

Qsur f =

(
Rday − 0.2S

)2

Rday + 0.8S
(2)

where Qsur f is the accumulated surface runoff (mm); Rday is the total amount of precip-
itation for a day (mm); S is the retention parameter (mm), which varies spatially due to
changes in the characteristics of the land surface (soil type, land use, slope, and manage-
ment practices) and, in addition, could be temporarily affected due to changes in soil water
content. The retention parameter is estimated with Equation (3).

S = 25.4
(

1000
CN

− 10
)

(3)

where CN is the curve number for a day, and its value is determined by land use manage-
ment practices, soil type permeability, and the soil’s hydrologic group. The SWAT model
utilizes the classification of the United States Natural Resources Conservation Service
(NRCS), which groups soils into four hydrologic groups (A, B, C, and D) based on their
infiltration rates being high, moderate, slow, and very slow, respectively.

The SWAT model calculates soil evaporation and plant transpiration separately, based
on available meteorological data. Potential evapotranspiration (PET) can be calculated
using the Penman–Monteith (PM), Priestley–Taylor (PT), and Hargreaves–Samani (HS)
methods. The PM method requires variables such as solar radiation, air temperature,
wind speed, and relative humidity; meanwhile, the PT method only needs solar radiation,
air temperature, and relative humidity. The HS method solely employs air temperature.
Therefore, based on the available information, this method was utilized for calculating the
PET of the MRB.

Figure 3 illustrates the climate change assessment process using the SWAT model and
its integration with Global Climate Models (GCMs), according to Saade et al. [38]. First, the
river basin is delimited from the Digital Elevations Model (DEM), then, it is subdivided into
multiple sub-basins and each of these is divided into Hydrological Response Units (HRU),
depending on the slope, soil type, and plant cover. The simulation of the hydrological
cycle can be divided into terrestrial phase and routing: the first determines the water
load in the main channel, and the second is the flow of these loads through the different
channels of sub-basins toward the outputs [39]. The simulation is performed for each HRU,
including precipitation, interception, surface runoff, evapotranspiration, leaching, lateral
flow through the soil profile, and return flow of shallow aquifers; this provides greater
certainty and better describes the hydrological balance of the basin [40].

Furthermore, it employs a unique plant growth model for any vegetation type, differ-
entiating between annual and perennial plants and estimating the amount of water and
nutrients extracted from the root zone, transpiration, and biomass production/yield [41].

Table 1 shows the input data for the SWAT hydrological model, including the digital
elevation model, spatial distribution of plant cover and soil type, and meteorological and
hydrometric data.
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Table 1. Input data for the SWAT hydrological model.

Type of Data Description/Scale Source

Digital Elevation Model DEM Resolution: 15 m National Institute of Statistics
and Geography [42]

Plant cover
Series IV Land Use and

Vegetation Chart:
1:250,000 scale

National Institute of Statistics
and Geography [43]

Soil type Digital soil classification:
1:60,000 scale

Digital Soil Mapping
Techniques [44]

Precipitation and temperature 1970–1980 (daily) Servicio Meteorológico
Nacional [45]

Stream flow 1970–1980 (monthly) Comisión Nacional del
Agua [46]
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2.3. Configuration of Model

The SWAT model was implemented using the QSWAT3 plugin within the graphical
interface of the open-source program QGIS version 3.16.8 [47]. The delineation of the
watershed was carried out in five stages [48]: (1) configuration of the 15 m resolution DEM;
(2) definition of the stream network based on a flow accumulation area of 50 km2, employing
the eight-direction flow (D8) algorithm [49]; (3) identification of inputs and outputs of
sub-watersheds from the intersections of watercourses; (4) location of the watershed’s
outlet; and (5) selection, definition, and calculation of the parameters of the sub-watersheds.
The outlet points are generated automatically by the SWAT model for each sub-watershed.
Furthermore, it allows for the manual addition of user-defined points corresponding to
stream flow measurement sites in the water courses. Therefore, according to the delineation,
the MRB covers an area of 6559.20 km2 and was subdivided into 79 sub-watersheds.

Subsequently, each sub-watershed was subdivided into homogeneous areas termed
Hydrological Response Units (HRU) based on the overlay of thematic layers of vegetation
cover, soil type, and terrain slope; the latter was classified into two intervals, less than 5%
and greater than 5%. The vegetation cover was derived from the spatial distribution of
the Land Use and Vegetation Map Series IV from INEGI [43]. The characterization of the
main soil groups was obtained from field profile surveys, and from the spatial distribution
resulting from Digital Soil Mapping (DSM) techniques [44]. Additionally, to enhance
the efficiency of the SWAT model in estimating runoff production, it is recommended to
discretize the HRUs based on a threshold value of 5%/5%/5% for each thematic layer [50].
Finally, the SWAT model identified a total of 1239 HRUs within the MRB.

Meteorological data provide the amount of energy and water that controls the water
balance components and highlight their relative importance in the basin [48]. To do this,
the SWAT model uses the daily climate variables of precipitation, maximum and minimum
temperature, solar radiation, average wind speed, and average relative humidity. These
variables could be entered or estimated from the WXGEN climate generator, which works
based on the monthly statistics of each variable. The MRB has twelve meteorological
stations that record precipitation and temperature daily [45]. For each meteorological
station, the other variables were estimated monthly; wind speed and solar radiation were
generated from the information available from the Climate Forecast Reanalysis System
(CFSR) data [51]. The maximum rainfall intensity in 30 min was obtained using Chen’s
method [52,53], and the dew point temperature was based on the minimum tempera-
ture [54]. Therefore, due to the limited and scarce availability of relative humidity, wind
speed, and solar radiation variables to calculate the ETP, the HS method was used, which
has shown good performance in semi-arid areas [55].

2.4. Model Calibration and Validation

The first two years were established as warm up to adjust the initial moisture content
of the soil [56]. Subsequently, the calibration (1972–1976) and validation (1977–1980) period
were selected based on the available current streamflow information.

The calibration of the SWAT model consists of estimating values of a set of parameters
that minimize the difference between the observed and simulated data [57]. SWATCUP
(SWAT Calibration and Uncertainty Program) software was used, which provides a decision-
making framework through a semi-automatic approach for sensitivity analysis, calibration,
validation, and information certainty [58]. In this research, the Sequential Uncertainty
Adjustment algorithm (SUFI-2) was used by selecting parameters associated with the
processes of runoff production, groundwater flow, the definition of the HRU, and soil
type [59], as shown in Table 2. The SWATCUP was executed by defining the objective
function, the initial range, and the change method of each parameter. The latter could be
determined by the methods of relative change (r_), replace (v_), and absolute (a_). The
term “r” is used for the relative adjustment of a parameter within a given range; the term
“v” directly replaces the parameter value with an assigned value, and the term “a” adds a
value to the parameter [58].
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Table 2. SWAT model calibration parameters.

Parameter Description Method

ALPHA_BF Baseflow alpha factor (day) Replace

ALPHA_BNK Baseflow alpha factor for bank storage (day) Replace

CH_K1 Hydraulic conductivity in alluvium (mm h−1) Replace

CH_K2 Effective hydraulic conductivity in the main channel (mm h−1) Replace

CN2 SCS runoff curve number (dimensionless) Add

DEP_IMP Depth of impervious layer (mm) Replace

EPCO Plant uptake compensation factor (dimensionless) Replace

ESCO Soil evaporation compensation factor (dimensionless) Replace

GW_DELAY The time interval for recharge of the aquifer (day) Replace

GW_REVAP Groundwater revap coefficient (dimensionless) Replace

GWQMN The threshold depth of water in the shallow aquifer required for return flow to occur (mm) Replace

HRU_SLP Average slope steepness (m/m) Relative

LAT_TTIME Lateral flow travel time (day) Replace

RCHRG_DP Deep aquifer percolation function (dimensionless) Replace

SLSOIL Slope length for lateral subsurface flow (m) Relative

SLSUBBSN Average slope length (m) Relative

SOL_AWC Soil available water storage capacity (mm mm−1) Relative

SOL_K Soil hydraulic conductivity (mm h−1) Relative

SOL_Z Soil depth (mm) Relative

SURLAG Surface runoff lag coefficient (day) Replace

Finally, the validation of the model determined the precision of surface runoff produc-
tion during the validation period without making any additional adjustments to parameters
calibrated using SWATCUP.

The SWAT model’s performance was evaluated using the evaluation metrics recom-
mended by Moriasi et al. [60]: coefficient of determination (R2), Nash–Sutcliffe efficiency
(NSE), and percentage bias (PBIAS), according to Equations (4)–(6).

R2 =

[
∑n

i=1
(
Qobs(i)− Qobs

)(
Qsim(i)− Qsim

)]2

∑n
i=1

(
Qobs(i)− Qobs

)2
∑n

i=1
(
Qsim(i)− Qsim

)2 (4)

NSE = 1 − ∑n
i=1(Qobs(i)− Qsim(i))

2

∑n
i=1

(
Qobs(i)− Qobs

)2 (5)

PBIAS =
∑n

i=1(Qobs(i)− Qsim(i))
∑n

i=1 Qobs(i)
× 100 (6)

where Qobs is the observed flow, Qsim is the simulated flow in a month i, Qobs is the average
of the observed flow, and Qsim is the average of the simulated flow. R2 varies from 0 to 1,
where 0 indicates no correlation and 1 corresponds to perfect correlation and lower error
variance. NSE can vary from −∞ to 1, where values ≤ 0 show that the model is not reliable
and values closer to 1 indicate a perfect fit between the observed and simulated data. The
best value of PBIAS is 0, the underestimation and overestimation of the model correspond
to positive and negative values, respectively.
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2.5. Global Climate Models

Global Climate Models (GCMs) are the tools most commonly used for assessing the
potential impacts of climate change because they provide valuable information, although
they generate systematic biases, mainly in rugged relief areas [61]. The Coupled Model
Inter-Comparison Project (CMIP) is a global climate modeling framework that has allowed
for a better understanding of the climate system and knowledge of different scenarios of
greenhouse gas (GHG) concentrations that are mainly due to human activities; it is currently
in phase six (CMIP6) [62,63]. However, despite the progress of GCMs on a global scale,
they still exhibit a more significant bias in precipitation than in surface air temperature
compared to climate models developed in previous phases [64].

The climate scenarios of the GCMs in the IPCC Sixth Assessment Report (AR6) con-
tain four Shared Socioeconomic Pathways (SSP), representing different socioeconomic
developments and atmospheric GHG concentration pathways. The first scenario, SSP126,
corresponds to sustainable socioeconomic development by optimizing material and energy
resources, with a radiative forcing of 2.6 W m−2. The second scenario, SSP245, corresponds
to moderate development, in which countries establish climate change mitigation and
adaptation measures with a radiative forcing of 4.5 W m−2. The third, SSP370, corresponds
to moderate to high development, wherein countries stop implementing climate change
mitigation and adaptation measures because of their need to increase energy and food
security, with a radiative forcing of 7.0 W m−2. Finally, the fourth scenario, SSP585, corre-
sponds to socioeconomic development driven primarily by fossil fuels, leaving aside the
application of any adaptation and mitigation measures to climate change, with a radiative
forcing of 8.5 W m−2. All of the above scenarios are for the year 2100 [9,65]. Scenarios
SSP245 and SSP585 can cover a wide range of possibilities, from low- to medium- and
high-emission scenarios. Therefore, they were selected to assess the impact of climate
change on the hydrological balance of the MRB.

Table 3 shows the GCMs used in this study for the historical (1970–1980) and future
(2020–2099) scenarios of precipitation, maximum temperature, and minimum temperature,
with data obtained through the https://esgf-node.llnl.gov/projects/cmip6/ (accessed on
15 July 2022) data platform of the Earth System Grid Federation (ESGF).

Table 3. Information about the Global Climate Models used.

Number Model Name Country Institution Resolution (km)

1 CNRM-CM6-1 France CNRM-CERFACS 250

2 MRI-ESM2-0 Japan MRI 100

3 ACCESS-ESM1-5 Australia CSIRO 250

4 MIROC6 Japan MIROC 250

5 MPI-ESM1-2-LR Germany MPI-M 250

6 HadGEM3-GC31-LL United Kingdom MOHC 250

7 BCC-CSM2-MR China BCC 100

8 CanESM5 Canada CCCma 500

9 GFDL-CM4 United States NOAA-GFDL 100

10 GFDL-ESM4 United States NOAA-GFDL 100

Due to the abundance of GCMs in CMIP6, it is challenging to include all of them
in climate change research. Therefore, for practical purposes, a climate model or a small
ensemble is selected, which can represent the past and present climate of the area of interest
and provide an adequate prediction of the future [66]. Furthermore, it is essential to note
that its purpose is to generate results to cover a wide range of uncertainty in climate change

https://esgf-node.llnl.gov/projects/cmip6/
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scenarios and provide the most significant possible information, which can be crucial for
evaluation in the context of climate change and decision-making.

2.6. Bias Correction and Climate Model Selection

Frequently, GCMs involve a considerable bias in precipitation and temperature, mainly
due to the influence of relief [67,68]. Therefore, bias correction is necessary to minimize
the discrepancy between the time series of climate model analysis variables and observed
data [69], in order to model the components of hydrological balance properly.

The bias correction was carried out with the CMhyd (Climate Model data for hy-
drological modeling) tool, which has several correction methods that allow for obtaining
representative simulated climate data, according to the location and historical record of
the precipitation variables and temperature, for integration into the hydrological modeling
of the basin [70]. Bias correction methods are typically designed to modify the climate
model’s mean, distribution, and variance [71]. Table 4 shows the bias correction methods
used in the present study through the CMhyd tool.

Table 4. Bias correction methods used for precipitation and temperature.

Method Description

Linear Scaling (LS) Correction of monthly values using a multiplicative (for precipitation) or an additive (for
temperature) factor based on differences between simulated and observed data

Distribution Mapping (DM) Correction method is undertaken by shifting the gamma distribution (for precipitation) or
Gaussian distribution (for temperature) using a transfer function

Given the variability between the values derived from the different GCMs available
from the CMIP6, it is necessary to compare them to select a climate model that adequately
explains the behavior of each variable in the time series relative to the reference values.

The equations of the evaluation metrics of the different GCMs used in this study are
shown below: correlation coefficient (r), Root Mean Square Error (RMSE), and standard
deviation (SD).

r = ∑n
i=1 (xi − xm)(yi − ym)√

∑n
i=1(yi − ym)

2
√

∑n
i=1(xi − xm)

2
(7)

RMSE =

√
∑n

i=1(yi − xi)

n
(8)

SD =

√
1
n

n

∑
i=1

(yi − ym)
2 (9)

where x is the average of the observed precipitation and temperature of the month i, xm is
the average of the precipitation and temperature observed during the period of analysis,
y is the average of the corrected precipitation and temperature of the month i, ym is the
average of corrected precipitation and temperature during the period of analysis, and n is
the number of months with data for precipitation and temperature.

Additionally, the Taylor diagram was also used to evaluate the capability of the
different climate models, since it allows for visualizing the correlation coefficient (r), Root
Mean Square Error (RMSE), and standard deviation (SD) [72]. Therefore, it can be used to
measure the precision and consistency of each variable [73].

3. Results and Discussion
3.1. Model Calibration and Validation

The MRB is located in the upper part of the Rio Balsas Hydrological Region (BRHR)
and was delimited from the Mariscala Hydrometric Station (MHS). Currently, the BRM
presents a high level of alteration in the discharge of surface runoff, caused mainly by the
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change in land use from temperate and tropical forests to agricultural, livestock and urban
use; furthermore, this basin belongs to the high areas of the BRHR, which together produce
at least 25% of the drinking water consumed in the metropolitan area of Mexico City [74].
The MHS was neglected and presents a discontinuous record of stream flow information,
having the most complete record for the period from 1970 to 1980 and ceasing to operate in
1995. For this reason, the period from 1970 to 1980 was used to develop this research.

The first two years were the warm-up to adjust the initial soil content. Table 5 shows the
sensitivity analysis results and the set of parameters adjusted during calibration obtained
using the SWATCUP software’s SUFI-2 algorithm.

Table 5. Calibration of the parameters that influence the production of surface runoff in the MBR.

Ranking Parameter
Default Range Calibrated Range

Fitted Value Type
Lower Limit Upper Limit Lower Limit Upper Limit

1 LAT_TTIME 0.00 180.00 0.00 21.11 7.72 hru

2 HRU_SLP −0.20 0.20 −0.23 −0.15 −0.19 hru

3 SOL_K −0.80 0.80 −0.48 −0.36 −0.42 sol

4 RCHRG_DP 0.00 1.00 0.03 0.09 0.06 gw

5 CN2 −15.00 15.00 −9.51 −6.90 −8.21 mgt

6 SOL_Z −0.35 0.35 0.25 0.39 0.32 sol

7 SLSOIL −0.10 0.10 −0.07 −0.02 −0.10 hru

8 CH_K2 5.00 130.00 9.92 27.38 18.65 rte

9 GW_REVAP 0.02 0.20 0.08 0.13 0.11 gw

10 ESCO 0.00 1.00 0.23 0.34 0.28 hru

11 ALPHA_BNK 0.00 1.00 0.50 0.62 0.56 rte

12 SLSUBBSN −0.30 0.30 0.06 0.10 0.09 hru

13 SURLAG 0.00 10.00 6.75 8.50 7.62 bsn

14 GW_DELAY 0.00 500.00 236.74 331.27 284.00 gw

15 EPCO 0.00 1.00 0.44 0.57 0.50 hru

16 GWQMN 0.00 5000.00 3031.08 3614.05 3322.56 gw

17 CH_K1 0.00 300.00 3.68 79.88 41.78 sub

18 ALPHA_BF 0.00 1.00 0.57 0.96 0.76 gw

19 SOL_AWC −0.35 0.35 0.04 0.08 0.06 sol

20 DEP_IMP 0.00 6000.00 5033.51 5654.88 5344.20 hru

During the execution of the SWATCUP, three iterations were carried out with 1500 sim-
ulations each, with the NSE objective function. Therefore, according to the sensitivity
analysis results and the attributes of the MRB, the parameters LAT_TTIME, HRU_SLP,
SOL_K, RCHRG_DP, and CN2 significantly influence surface runoff production.

The average surface runoff observed at the MRB stream flow measurement hydromet-
ric station was 24.38 m3 s−1, while hydrological modeling gave a value of 23.76 m3 s−1.
The performance of the SWAT model showed good results in simulating surface runoff pro-
duction during the calibration stage (R2 = 0.86; NSE = 0.83; PBIAS = 13.93%) and validation
stage (R2 = 0.78; NSE = 0.76; PBIAS = −17.03%) as shown in Figure 4. Therefore, it meets
the evaluation criteria [60]. In general, the model simulation result slightly underestimates
the high flows that occur during the rainy season.
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Based on the hydrological modeling of the MRB, the baseline corresponded to the
values of the hydrological balance components from 1972 to 1980. Table 6 shows the
monthly precipitation values (PCP), surface runoff (SR), lateral flow (FL), evapotranspira-
tion (ET), water yield (WY), and potential evapotranspiration (PET). Generally, the annual
and monthly averages of a basin’s different hydrological balance components show a direct
relationship between precipitation and its other components. According to Desai et al. [75],
the largest volume is released to the atmosphere through evapotranspiration, mainly due
to the association between the spatial distribution of plant cover and temperature; in the
particular case of the MRB, this accounts for 65.68% (481.80 mm) of precipitation. WY refers
to the annual amount of water that leaves the basin, with a value of 13.63% (99.97 mm).
Finally, the value of SR is only positive during the rainy season because the MRB is char-
acterized by hydrological droughts during the third part of the year, with which flow
production decreases considerably [75].

Table 6. Components of the monthly hydrological balance of the MRB.

Month PCP (mm) SR (mm) FL (mm) ET (mm) WY (mm) PET (mm)

January 5.88 0.02 0.37 5.92 1.32 121.2

February 2.34 0.00 0.34 4.70 1.19 132.02

March 4.79 0.00 0.32 5.01 1.16 175.57

April 33.71 0.14 2.13 24.94 2.99 184.88

May 80.21 0.94 6.18 51.48 7.52 187.79

June 155.82 4.04 16.82 84.23 20.09 154.89

July 127.71 2.60 14.95 82.59 17.15 156.14

August 106.41 2.18 11.42 74.09 13.71 154.51

September 149.91 5.25 16.55 78.75 20.62 137.94

October 43.24 0.64 7.12 40.76 8.42 133.52

November 19.49 0.46 2.71 21.36 4.05 117.93

December 4.03 0.00 0.74 7.97 1.75 112.92
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3.2. Assessment and Selection of Climate Models

The selection of the GCM consisted of the analysis of the precipitation, maximum
temperature, and minimum temperature monthly time series for the historical period
1970–1980. This was based on the results of the evaluation metrics, correlation coefficient
(r), Root Mean Square Error (RMSE), and standard deviation (SD), as well as the visualiza-
tion of the Taylor diagram prepared in the R−Studio software version 1.4.1106 with the
package plotrix.

Table 7 shows the evaluation metrics for maximum temperature (Tmax), minimum
temperature (Tmin), and precipitation (Prec) metrics for the ten GCMs used in this study.
In general, the maximum and minimum temperature showed a better fit compared to
precipitation, and the Linear Scaling method (LS) obtained better results compared to the
Distribution Mapping method (DM).

The minimum temperature (Tmax) and maximum temperature (Tmin) have a value
of r greater than 0.85, except in the case of the GCM GFDL-CM4: this value is less than or
equal to 0.80 in precipitation. The value of the RMSE varies for the maximum temperature
from 1.74 to 3.30 ◦C month−1, the minimum temperature from 1.42 to 2.98 ◦C month−1,
and the precipitation from 45.80 to 77.71 mm month−1.

Table 7. Evaluation metrics of GCMs with Linear Scaling method.

GCM Method of
Bias Correction

r RMSE SD

Tmax Tmin Prec Tmax Tmin Prec Tmax Tmin Prec

CNRM-CM6-1
LS 0.90 0.91 0.74 1.75 1.61 52.04 3.80 3.75 66.53

DM 0.89 0.91 0.63 1.82 1.60 66.67 3.83 3.75 79.12

MRI-ESM2-0
LS 0.90 0.92 0.73 1.74 1.51 53.73 3.82 3.73 68.88

DM 0.90 0.91 0.61 1.81 1.59 68.60 3.85 3.76 80.43

ACCESS-ESM1-5
LS 0.86 0.93 0.70 2.13 1.47 58.69 3.97 3.72 75.14

DM 0.86 0.91 0.60 2.15 1.58 77.71 3.98 3.77 93.62

MIROC6
LS 0.86 0.93 0.70 2.08 1.42 56.90 3.92 3.70 70.99

DM 0.88 0.91 0.60 1.92 1.60 71.49 3.84 3.77 83.83

MPI-ESM1-2-LR
LS 0.88 0.92 0.80 1.91 1.56 45.80 3.90 3.76 65.33

DM 0.89 0.91 0.71 1.88 1.61 57.20 3.89 3.78 74.21

HadGEM3-GC31-LL
LS 0.88 0.89 0.70 1.89 1.77 57.64 3.87 3.82 73.58

DM 0.87 0.90 0.61 2.03 1.75 69.78 3.93 3.81 82.01

BCC-CSM2-MR
LS 0.87 0.92 0.65 2.03 1.53 65.72 3.92 3.73 80.63

DM 0.88 0.91 0.62 1.90 1.59 70.28 3.86 3.75 84.56

CanESM5
LS 0.89 0.93 0.76 1.87 1.44 50.53 3.87 3.72 69.11

DM 0.89 0.93 0.71 1.87 1.48 57.10 3.87 3.74 74.04

GFDL-CM4
LS 0.61 0.66 0.72 3.24 2.98 54.66 2.93 3.23 70.31

DM 0.59 0.67 0.60 3.30 2.95 74.34 3.01 3.20 88.88

GFDL-ESM4
LS 0.88 0.92 0.72 1.94 1.51 54.37 3.89 3.74 68.71

DM 0.87 0.92 0.59 2.02 1.52 74.07 3.92 3.75 86.62

The Taylor diagram offers a concise statistical summary of the evaluation metrics
(r, RMSE, and SD) between the observed and corrected climate variables (precipitation
and temperature) of the different GCMs. Figure 5 shows the Taylor diagram, where both
the x-axis and the y-axis indicate the SD; the black dashed lines represent the r between
the observed and corrected variable; the RMSE of the corrected variable is proportional
to the distance from the x-axis identified as “observation” (cyan contours) and the SD is
proportional to the radial distance from the point of origin (blue contours).
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With the LS method, two climate models were highly accurate for the maximum
temperature, with r values greater than 0.90 and an RMSE lower than 1.75 ◦C month−1; the
most accurate GCM was MRI-ESM2-0. Seven climate models were also highly precise for the
minimum temperature, with r values above 0.93 and an RMSE lower than 1.50 ◦C month−1;
the most accurate GCM was MIROC6. However, in the precipitation variable, the GCMs
yielded r values between 0.7 and 0.8, with the most accurate GCM being MPI-ESM-1-2-LR.

Likewise, with the DM method, two climate models were highly accurate for the maxi-
mum temperature, with r values greater than 0.89 and an RMSE lower than 1.85 ◦C month−1;
similarly, the most accurate GCM was MRI-ESM2-0. In addition, seven climate models
were highly precise for the minimum temperature, with r values varying from 0.86 to 0.90
and an RMSE lower than 1.60 ◦C month−1; the most accurate GCM was MIROC6. In the
same way, the precipitation variable of the GCMs yielded r values between 0.6 and 0.7,
with the most accurate GCM being CanESM5.
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In general, the GCM MPI-ESM-1-2-LR achieved the best performance according to the
evaluation metrics between the time series of the variables analyzed, compared to the values
observed in the historical period through the LS method of bias correction. Therefore, we
used the information from this GMC for the hydrological modeling of the MRB. Likewise,
it was used as the basis for deriving the climate scenarios SSP245 and SSP585, which
correspond to radiative forcing levels of 4.5 W m−2 and 8.5 W m−2, respectively, for the
year 2100.

3.3. Impact on Precipitation and Temperature

In the MRB, the baseline mean annual precipitation is 733.55 mm, and the mean
annual temperature is 19.43 ◦C. However, climate change scenarios foresee changes in both
variables. The SSP245 scenario of GCM MPI-ESM-1-2-LR predicts a decrease in precipitation
and a rise in the mean annual and monthly temperature. In the case of precipitation, a
reduction of 44.44 mm is projected in the short term (2025–2049), 76.42 mm in the medium
term (2050–2074), and 83.71 mm in the long term (2074–2099), while temperature will
increase by 1.60 ◦C in the short term (2025–2049), 2.31 ◦C in the medium term (2050–2074),
and 2.57 ◦C in the long term (2075–2099). Figure 6 illustrates the monthly behavior of both
variables for the SSP245 scenario, showing a decrease in precipitation mainly during the
rainy period and a rise in monthly mean temperature from November to April.
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Figure 6. Behavior of precipitation and temperature under the SSP245 climate scenario of GCM
MPI-ESM-1-2-LR.
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The SSP585 scenario of GCM MPI-ESM-1-2-LR predicts a decrease in precipitation and
an even more impactful increase in mean annual temperature. Regarding precipitation, a
reduction of 54.29 mm is predicted in the short term (2025–2049), 115.27 mm in the medium
term (2050–2074), and 225.83 mm in the long term (2074–2099), whereas temperature will
increase by 1.79 ◦C in the short term (2025–2049), 3.00 ◦C in the medium term (2050–2074),
and 4.77 ◦C in the long term (2075–2099). Furthermore, Figure 7 shows the monthly
behavior of both variables for the SSP585 scenario.
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Figure 7. Behavior of precipitation and temperature under the SSP585 climate scenario of GCM
MPI-ESM-1-2-LR.

Figure 8 shows the spatial distribution of changes in mean annual precipitation. The
SSP245 climate scenario clearly shows a decrease in precipitation from 5% to 10% in the
short term, and from 10% to 15% in the medium and long term. In contrast, in the SSP585
climate scenario, the percentage of change goes from 5% to 10% in the short term to 15% to
20% in the medium term, and, finally, from 30% to 35% in the long term.

Similarly, the spatial distribution of the mean annual temperature is shown in Figure 9.
For the SSP245 climate scenario, the increase in temperature changes from 5% to 10% in the
short term to 10% to 15% in the medium and long term although, in the latter, the sub-basins
show increases of 15% to 20%. Under the SSP585 climate scenario, the percentage of change
goes from 5% to 10% in the short term, from 15% to 20% in the medium term, and, finally,
from 20% to 25% in the long term, with some sub-basins showing rises above 30%.
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3.4. Impact on Hydrological Balance Components

The impact of climate change was evaluated from the results of the hydrological
modeling of the MRB (baseline), and the corrected projection of scenarios SSP245 and
SSP585 of the GCM MPI-ESM-1-2-LR predicts that the spatial distribution of plant cover
and soil, and their properties, remain constant. Therefore, the variation in the hydrological
balance components corresponds only to the short-, medium-, and long-term effects of the
change in precipitation and temperature.

The hydrological response of the MRB under the SSP245 and SSP585 climate scenarios
under different time horizons and at the annual level of the hydrological balance compo-
nents precipitation (PCP), potential evapotranspiration (PET), evapotranspiration (ET), and
water yield (WY) are shown in Table 8.
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Table 8. Changes in the components of hydrological balance in the MRB with GCM MPI-ESM1-2-LR.

Month Variable (mm) Baseline (mm)

Short Term
(2025–2049)

Medium Term
(2050–2074)

Long Term
(2075–2099)

Value
[Difference (%)]

Value
[Difference (%)]

Value
[Difference (%)]

SSP245

PCP 733.55 689.12 (−6.06) 657.14 (−10.42) 649.85 (−11.41)

PET 1769.31 1866.74 (5.51) 1919.17 (8.47) 1936.60 (9.45)

ET 481.80 586.58 (21.75) 563.12 (16.88) 560.69 (16.37)

WY 99.97 56.71 (−43.27) 54.50 (−45.48) 52.58 (−47.40)

SSP585

PCP 733.55 679.27 (−7.40) 618.29 (−15.71) 507.73 (−30.79)

PET 1769.31 1893.17 (7.00) 1961.43 (10.86) 2059.84 (16.42)

ET 481.80 579.94 (20.37) 535.67 (11.18) 441.79 (−8.30)

WY 99.97 55.58 (−44.40) 48.78 (−51.21) 38.98 (−61.01)

The temperature rise was directly reflected in PET; this component increased signifi-
cantly versus the baseline in both climate scenarios. Under the SSP245 climate scenario,
PET would increase to 1866.74 mm year−1 in the short term, 1919.17 mm year−1 in the
medium term, and 1936.59 mm year−1 in the long term. Similarly, under the SSP585 climate
scenario, PET would increase to 1893.17 mm year−1 in the short term, to 1961.43 mm year−1

in the medium term, and 2059.84 mm year−1 in the long term.
The hydrological balance of the MRB indicates that a higher percentage of PCP will

be consumed by ET instead of contributing to surface runoff, since the baseline ET was
481.80 mm year−1. Still, it would increase by up to 20.36% under the climate change scenarios
analyzed. Under the SSP245 climate scenario, PET would rise to 586.58 mm year−1 in the
short term, 563.13 mm year−1 in the medium term, and 560.70 mm year−1 in the long term.
Similarly, under the SSP585 climate scenario, PET would increase to 1893.16 mm year−1 in
the short term, 535.68 mm year−1 in the medium term, and 441.80 mm year−1 in the long
term. A decrease is observed along different time horizons, which is consistent with the
decrease in precipitation, reflecting the exchange of energy in the soil–water–atmosphere
processes [76].

Additionally, the future hydrological balance of the MRB points to a general decrease
in WY, which will decrease by up to 47.40% and 61.01% under the climate scenarios
SSP245 and SSP585, respectively. This is consistent with the figures reported in various
studies [77–79]. Furthermore, the monthly decrease in WY coincides with the decrease in
precipitation from May to October, as shown in Figures 10 and 11.

The decrease in precipitation and the increase in atmospheric evaporative demand
due to the increasing warming of the planet toward the end of the 21st century will lead to
a decrease in WY in the MRB and, consequently, lower availability of water resources in
the basin [38,77]. This should be considered by resource managers in the development of
management plans [79]. Furthermore, the increased frequency of droughts will impact the
growth and development of the main crops, affecting their quality and yield [80]. This has
a more significant effect in areas with semi-arid to arid climates, that is, in areas with less
availability of water resources [71,77].
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Figure 11. Behavior of water yield under the SSP585 climate scenario of GCM MPI-ESM-1-2-LR.

4. Conclusions

The SWAT hydrological model was calibrated and validated for the 1972–1980 period
in the River Mixteco Basin (MRB). Based on evaluation metrics such as R2, NSE, and PBIAS,
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the SWAT model’s performance is satisfactory for the given period of flow information
availability. As a result, this model is recommended for predicting the potential impact of
climate change on a basin scale.

The MPI-ESM1-2-LR climate model corrected by the linear scaling method adequately
represented the behavior of precipitation and maximum and minimum temperatures.
Therefore, it was used as the basis to analyze future scenarios of the impact of climate
change in the MRB. This model projects a decrease in precipitation of 83.71 mm year−1 to
225.83 mm year−1 and a temperature rise between 2.57 ◦C and 4.77 ◦C under different time
horizons for the climate scenarios SSP245 and SSP585, respectively.

In general, hydrological modeling predicts significant short-, medium-, and long-term
changes in the components of the hydrological balance of the MRB under the climate
scenarios SSP245 and SSP585, as they project a significant increase in the water demand
of the plant cover, which is above the baseline, thereby affecting all components of the
hydrological balance.

The MRB’s water yield (WY) will decrease significantly under the climate scenarios
SSP245 and SSP585. In the medium development scenario, with the establishment of mitiga-
tion and adaptation measures for climate change, a WY reduction of approximately 47.40%
is expected. In contrast, in the most adverse scenario, i.e., socioeconomic development
driven mainly by fossil fuels, WY is projected to experience a reduction of 61.01%.

Both scenarios evaluated project a marked reduction of the water available in the MRB.
Therefore, designing and implementing short-, medium-, and long-term adaptation and
mitigation measures is urgent. This will counteract environmental degradation and restore
ecosystem services to benefit current and future generations.

Finally, it is necessary to reestablish constant monitoring of the MRB with a daily and
hourly record by installing a network of automatic hydrometric stations at the outlet of
the basin and intersection of its main rivers. Monitoring the MRB will allow for analyzing
and understanding the behavior of surface runoff and quality and quantity of water, with
which decision-makers will have sufficient information to generate actions aimed at the
comprehensive management of the basin’s water resources.
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