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Abstract: In medical imaging, deep learning models serve as invaluable tools for expediting diag-
noses and aiding specialized medical professionals in making clinical decisions. However, effectively
training deep learning models typically necessitates substantial quantities of high-quality data, a
resource often lacking in numerous medical imaging scenarios. One way to overcome this deficiency
is to artificially generate such images. Therefore, in this comparative study we train five generative
models to artificially increase the amount of available data in such a scenario. This synthetic data
approach is evaluated on a a downstream classification task, predicting four causes for pneumonia as
well as healthy cases on 1082 chest X-ray images. Quantitative and medical assessments show that
a Generative Adversarial Network (GAN)-based approach significantly outperforms more recent
diffusion-based approaches on this limited dataset with better image quality and pathological plausi-
bility. We show that better image quality surprisingly does not translate to improved classification
performance by evaluating five different classification models and varying the amount of additional
training data. Class-specific metrics like precision, recall, and F1-score show a substantial improve-
ment by using synthetic images, emphasizing the data rebalancing effect of less frequent classes.
However, overall performance does not improve for most models and configurations, except for a
DreamBooth approach which shows a +0.52 improvement in overall accuracy. The large variance of
performance impact in this study suggests a careful consideration of utilizing generative models for
limited data scenarios, especially with an unexpected negative correlation between image quality
and downstream classification improvement.

Keywords: deep learning; generative models; medical imaging; pneumonia; synthetic data

1. Introduction

The necessity for swift and dependable patient screening emerged as a key lesson from
the COVID-19 pandemic. The development of machine learning models for aiding early
pandemic clinical decisions is crucial, reducing diagnosis time and assisting emergency
medical personnel [1]. However, a significant challenge in rapidly creating models for
new infectious diseases is the limited access to high-quality data. This constraint is a
common issue in the medical field, often stemming from privacy concerns [2] and high
data acquisition costs. In radiology, all imaging modalities are affected equally (including
X-rays, computed tomography, and magnetic resonance imaging), as well as various organ
systems and diseases. Recently, as part of the COVID-19 pandemic, inflammatory changes
in the lungs have come into focus, as these are of great importance in everyday life and
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have an impact on patients’ lives as well as hospital capacities [3]. Hence, it is imperative
to effectively utilize machine learning models under scarce data conditions.

While methods like transfer learning and self-/semi-supervised learning exist, the
performance of deep learning models is notably influenced by the data quantity, as shown
theoretically [4,5] and empirically [6–8]. This study exemplifies such a scenario within the
medical domain, focusing on a limited dataset. An analysis on chest X-ray (CXR) images
pertaining to four different pneumonia causes is conducted, along with healthy patient
images, with as few as 74 images for viral/non-COVID-19 cases. The objective is to leverage
generative models to achieve reliable predictions despite the constraints of limited data.
To date, using generative models for synthetic data augmentation on limited data is an
under-explored research area. Although generative models are commonly used for larger
datasets in medical imaging with a reported increase in performance [9–13], we do not see
the same rigorous research towards scarce data scenarios, where such approaches would
be most helpful. We aim to close this gap and initiate the discussion in this area.

This study provides a comprehensive evaluation of diffusion and Generative Ad-
versarial Network (GAN)-based learning approaches, specifically aiming at improving
performance of the downstream classification task of predicting COVID-19, other viral
pneumonia, fungal pneumonia, bacterial pneumonia, and healthy cases on 1082 CXR
images. We examine five different generative approaches and provide quantitative and
medical assessments of image quality, diversity, and plausibility. The artificially gener-
ated images are used for synthetic data augmentation, where we measure the impact
on performance for five different classification models. Additionally, varying amounts
of synthetic images are added to the training data to further increase robustness of the
evaluation. Although some generative approaches outperform our baseline models by a
substantial amount, this study does not show an improvement in classification performance
on average over all architectures and configurations. Despite that, class-specific metrics
like precision, recall, and F1-score show a substantial improvement by using synthetic
images, emphasizing the data rebalancing effect for the less frequent classes. This holds
true when compared to a simple oversampling approach. Although we report better
average classification improvement on this dataset in a previous study [14], this study
deliberately does not utilize additional domain knowledge in the process, using only sim-
ple prompts for text-conditioned models and a non-domain specific text encoder instead.
Figure 1 shows a schematic representation of our research approach. The code for this
work can be found at: https://github.com/dschaudt42/synthetic_pneumonia (accessed
on 30 November 2023). The 70,000 synthetic images produced in this work are available
at: https://huggingface.co/datasets/dschaudt42/synthetic_pneumonia (accessed on 30
November 2023).

In summary, the main contributions of our work are:

• A comprehensive evaluation of diffusion and GAN-based learning approaches on a
limited pneumonia X-ray dataset, testing the applicability of generative models in a
scarce data scenario.

• Quantitative and medical assessments of image quality, diversity, and plausibility
for synthetically generated images and show large gaps between the demonstrated
generative approaches.

• Evaluation of synthetic data augmentation on a downstream classification task in a
comprehensive manner, examining multiple classification architectures and additional
image brackets for robust results. This study shows that higher quality images, as
perceived by metrics and experts, do not necessarily lead to better classification perfor-
mance. Furthermore, synthetic images can improve class-specific metrics substantially
due to a data rebalancing effect, while aggregated performance metrics do not benefit
in most cases.

https://github.com/dschaudt42/synthetic_pneumonia
https://huggingface.co/datasets/dschaudt42/synthetic_pneumonia
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Figure 1. Schematic representation of the research problem of this work and the proposed evaluation
framework.

2. Related Work

Generating high quality synthetic images is a field that gained a lot of traction with
the inception of the GAN model [15]. In medical imaging, synthetic images have been
used to translate between image modalities [16–18], enable sharing of privacy-protected
data [19,20], and improve deep learning models on diverse downstream tasks [16,19,21–23].

Al Khalil et al. [24] propose a conditional GAN model, which increases segmen-
tation performance on cardiac magnetic resonance images. The performance increase
is especially noticeable when real and synthetic images are combined during training.
Prasanna Das et al. [25] propose a conditional flow model to generate chest CT images and
validate their approach by synthetic data augmentation for a downstream classification
task of detecting COVID-19. Several GAN-based models have been proposed to improve
performance on downstream COVID-19 tasks [9–11].

Recently, diffusion-based models have shown improved performances over GAN-
based architectures in many domains [26–28]. He et al. [12] show that using synthetic data
from large text-to-image models is a valid approach to downstream image recognition
tasks, but do not consider smaller, more domain-specific datasets, like the ones presented
in this work. Pinaya et al. [29] use latent diffusion models to generate synthetic brain MRI
images, conditioned on the covariates age, sex, and brain structure volumes and compare
them to inferior GAN-based baselines.

Chambon et al. [30] provide experiments on fine-tuning the different components of a
Stable Diffusion model to secure domain-adaption for chest X-ray images. They found that
the pre-trained variational autoencoder and the CLIP text encoder have a sufficient domain-
adaption capabilities for chest X-ray images, and that fine-tuning the U-Net component
is critical to improve image quality. Since we want to exclude further domain knowledge
from our generation process, we also chose this approach of only fine-tuning the U-Net,
while using simple, class-specific prompts. In a follow up work, the authors fine-tune
the CLIP text encoder and report improved performance on a downstream classification
task [23].

Müller-Franzes et al. [31] compare their latent denoising diffusion model, Medfusion,
to GAN models on multiple medical imaging datasets of fundoscopy images, radiographs,
and histopathology images. Packhäuser et al. [20] compare a PGGAN [32] model with a
latent diffusion model on the ChestX-ray14 dataset [33] with a focus on privacy-enhancing
sampling. Both found that classification performance does not increase when using the
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synthetic data, but found that the diffusion model generates higher quality images than the
GAN model.

Most of the existing literature uses large amounts of samples to train generative
models, even in the medical imaging domain with large image collections, sometimes
with over 100,000 samples. Although there is undeniable evidence that generative models
and deep learning models in general perform better with more samples [4–8], we argue
that employing synthetic data is most useful in data scarce scenarios. If large datasets are
available, the need for synthetic images can certainly be challenged. In this work, we try
to test the limits of generative models in a data scarce scenario (n < 50 for some classes),
especially for downstream classification tasks.

3. Materials and Methods

We train and evaluate 5 different generative models on a limited pneumonia CXR
dataset to improve downstream classification with synthetic data augmentation. This
section describes the data, the generative models, and the training details for generative
and classification models.

3.1. Data

The dataset of this study was initially described in Schaudt et al. [14] and contains
1082 chest X-ray images from a total of 828 patients (342 female and 486 male) with ages
ranging from 18 to 89 years (mean age 52.52 ± 17.45 years). Radiographs were acquired
during chest radiography examinations due to clinical symptoms on a portable flat de-
tector (Flurospot Compact Siemens Healthcare, Erlangen Germany and DRX Evolution
Carestream, Stuttgart, Germany). The ethics board of the Medical Faculty and the Univer-
sity Hospital in Ulm approved this retrospective data evaluation study and waived the
informed consent requirement (No. 271/20). All methods were carried out in accordance
with relevant guidelines and regulations. Figure A1 in the Appendix A shows a sample
collection of 5 images per class.

3.1.1. Data Acquisition

Radiographs were retrieved through retrospective analysis of the local radiology de-
partment database. Bacterial infections were ascertained via sample material collected from
bronchoalveolar lavage or sputum, while fungal infections were confirmed through positive
microscopy or culture. Diagnosis of COVID-19 in all patients was established using nasopha-
ryngeal swabs, followed by RT-PCR assay. Virus detection and verification were performed
on bronchoalveolar lavage samples using a commercially available real-time PCR assay.

3.1.2. Data Labeling

Images were differentiated and labeled by a dedicated thoracic radiologist (CK) with
9 years of experience in lung imaging with the following distribution: 673 (62.20%) healthy
patients (H), 125 (11.56%) fungal infection (F), 110 (10.17%) COVID-19 (C), 100 (9.24%) bac-
terial infection (B), and 74 (6.84%) other viral infection (V). Table 1 shows the demographic
variables for training and validation cohorts used in this study.

3.1.3. Holdout Splits

To assess our models, a random subject-based holdout method is employed, ensuring
patient non-overlap between splits. Approximately 20% of the images are designated
as validation data, while maintaining label distribution as evenly as possible within this
constraint. Table 2 shows the exact label distribution for training and validation splits.
Prolonged training times for generative models prohibited the use of cross-validation as an
evaluation strategy.
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Table 1. Summary of demographic variables and imaging protocol variables of CXR data for training
and validation cohorts used in this study. Age and sex statistics are expressed on a patient level,
while imaging view statistics are expressed on an image level with anteriorposterior (AP) and
posterioranterior (PA) views. Reprinted from Schaudt et al. [14].

Variable Group Training Data Validation Data

Age mean ± std 51.75 ± 17.54 53.82 ± 18.05
<20 20 (2.31%) 3 (1.38%)

20–29 110 (12.72%) 29 (13.36%)
30–39 105 (12.14%) 22 (10.14%)
40–49 127 (14.68%) 28 (12.90%)
50–59 191 (22.08%) 58 (26.73%)
60–69 171 (19.77%) 26 (11.98%)
70–79 102 (11.79%) 36 (16.59%)
80–89 39 (4.51%) 15 (6.91%)

Sex
male 533 (61.62%) 134 (61.75%)

female 332 (38.38%) 83 (38.25%)
Imaging view

AP 238 (27.51%) 68 (31.34%)
PA 625 (72.25%) 149 (68.66%)

Table 2. Absolute and relative sample distribution for training and validation splits. Reprinted from
Schaudt et al. [14].

Label Training Data Validation Data

Healthy 543 (62.77%) 130 (59.91%)
Fungal infection 96 (11.1%) 29 (13.36%)
COVID-19 87 (10.06%) 23 (10.60%)
Bacterial infection 81 (9.36%) 19 (8.76%)
Viral infection 58 (6.71%) 16 (7.37%)

3.2. Image Synthesis

This subsection describes the generative models used in this work. We utilize a special
GAN model, a Denoising Diffusion Probabilistic Model (DDPM), and 3 different fine-tuning
approaches for a Stable Diffusion [34] model: standard fine-tuning, Low-Rank Adaption
(LoRA), and DreamBooth. Our aim is to compare the performance of a GAN model to more
recent diffusion-based architectures, building on the GAN proposed in Schaudt et al. [35].
Figure A2 in the Appendix A shows a collection of synthetic images for all generative
models.

3.2.1. GAN

Our GAN [15] model is based on the StyleGAN architecture [36] and uses the WGAN-
GP-loss and Adam optimizer [37] as in Karras et al. [36]. To ensure a stable training process
on our limited study data, differentiable augmentation, as introduced by Zhao et al. [38], is
employed. In our internal testing this is a critical step to achieve high quality images from
limited data, since the primary source of training instability is the discriminator memo-
rizing the training data. To mitigate this, both real and generated images are augmented
with differentiable operations before being fed to the discriminator, facilitating generator
training through backpropagation. During training, the resolution increases progressively
to stabilize training and achieve higher resolution images. Furthermore, we find that the
original StylGAN worked very well with the differentiable augmentation approach. More
recent GAN architectures showed increased training complexity with subpar results in
our testing. Figure A3 in the Appendix A shows a collection of synthetic images for the
GAN model.



Bioengineering 2023, 10, 1421 6 of 24

3.2.2. Unconditional

The unconditional diffusion model employs a DDPM scheduler [39] in conjunction
with a U-Net model [40]. DDPM applies forward and backward diffusion processes, while
backward diffusion applies Gaussian noise to an image in a scheduled manner, forward
diffusion denoises the image again using a predictive model. The predictive model in
this case is a U-Net, which predicts the noise residual on the image. Both processes are
executed for a finite number of time steps T, starting with t = 0 sampling a real image
from the training data distribution. For sufficiently large T the forward diffusion process
produces an isotropic Gaussian distribution at t = T via a gradual process. Reversing this
diffusion process enables the generation of new images from pure noise. Figure A4 in the
Appendix A shows a collection of synthetic images for the unconditional model.

3.2.3. Fine-Tuning

A standard fine-tuning regime for Stable Diffusion is used, which is a specific type
of diffusion model for text-to-image applications [34]. Compared to regular diffusion
models, Stable Diffusion operates in latent space, and utilizes a text encoder to condition
image generation on text inputs. Images are compressed to a latent representation via
an autoencoder component to reduce dimensionality and enable faster training. As in
Rombach et al. [34], a frozen, pre-trained text encoder of a CLIP model [41] is used for
the text embeddings. The denoising process is performed by a U-Net [40], which is being
fine-tuned. Figure A5 in the Appendix A shows a collection of synthetic images for the
fine-tuning model.

3.2.4. LoRA

Low-Rank Adaption of Large Language Models (LoRA) [42] is a training technique, that
was originally proposed to efficiently fine-tune large language models. It freezes pre-trained
model weights and adds trainable layers in transformer blocks, reducing trainable parameters
substantially. In this work, LoRA is applied to fine-tune a Stable Diffusion model [34], by
applying the LoRA weights (rank-decomposition matrices) to the cross-attention layers that
relate the image representations with the prompts that describe them. This makes the training
process fast and reduces compute requirements, as well as model size. Figure A6 in the
Appendix A shows a collection of synthetic images for the LoRA model.

3.2.5. DreamBooth

DreamBooth [43] is a specified method to personalize text-to-image diffusion models
with new subjects in a few-shot manner. Similar to standard fine-tuning, the approach fine-
tunes the U-Net component on domain-specific images, while keeping the autoencoder and
text encoder frozen. To prevent catastrophic forgetting and adapt to new concepts, a prior-
preserving loss is used, which pairs images and prompts from the prior [43]. This technique
enables the generation of high-fidelity CXR images with simple pathologies through text
conditioning. However, overfitting can still occur, and image diversity remains limited.
Therefore, the number of training iterations are limited. Figure A7 in the Appendix A
shows a collection of synthetic images for the DreamBooth model.

3.3. Training Details

This subsection contains all training configurations and hyperparameter settings for
generative and classification models. Since we want to evaluate the model performance
without the integration of further domain knowledge, we use simple prompts for our
text-conditioning models and keep the text encoder weights frozen. PyTorch v1.13.1 [44] is
used to carry out the computations.

3.3.1. Generative Models

The GAN model implementation is based on Zhao et al. [45] and Seonghyeon [46].
All diffusion model implementations are based on Hugging Face [47], especially the dif-
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fusers library [48] in version 0.17.1. The Stable Diffusion weights were obtained from
the CompVis/stable-diffusion-v1-4 repository. For training and inference of the text-
conditioned models LoRA, DreamBooth, and fine-tuning, we used the following prompts:
“An X-ray image of the lung with {viral, bacterial, COVID-19, fungal} pneumonia” or in
the case of a healthy patient: “An X-ray image of the lung, healthy patient, no signs of
pneumonia”. These rather simple prompts were chosen for a clear distinction between the
classes without integrating further domain specific knowledge. We also expect that provid-
ing more image-specific prompts might not be beneficial for such a small dataset, where
detailed descriptions will most likely not repeat. Throughout the following sections, unless
noted otherwise, the architectures remain unaltered, with the exception of disabling the
built-in “safety checker” due to its high false-positive rate with medical prompts. Table 3
shows the hyperparameter configuration for all generative models. The configurations
mostly follow the default implementation, with some adaptions considering our hardware.
Note that we do not employ excessive hyperparameter optimization, due to infeasible
training times. All models were trained in a multi-GPU setting with two NVIDIA RTX 3090.
The maximum training steps are varied slightly to account for differences in training and
inference times between models. Since the GAN model can generate images much more
quickly, we increased the training iterations. The total computation time is similar for all
models, except DreamBooth, which was fine-tuned for only 1500 iterations due to sharp
decrease in image quality.

Table 3. Training settings for all generative models. GAN batchsize and learning rate is provided in
ranges and depends on the resolution of the progressive growing process.

Hyperparameter Fine-Tuning Unconditional LoRA DreamBooth GAN

optimizer Adam [37] Adam Adam Adam Adam
loss function MSE MSE MSE MSE WGAN-GP
batchsize 1 8 1 1 [16,32]
learning rate 1× 10−5 1× 10−4 1× 10−5 1× 10−6 [5× 10−4,1× 10−3]
learning rate scheduler constant cosine constant constant constant *
max training steps 15,000 13,750 15,000 1500 37,500
optimizer momentum β1, β2 0.9, 0.999 0.95, 0.999 0.9, 0.999 0.9, 0.999 0.0, 0.99
optimizer epsilon 1× 10−8 1× 10−8 1× 10−8 1× 10−8 1× 10−8

weight decay 1× 10−2 1× 10−6 1× 10−2 1× 10−2 0.0
mixed precision fp16 no bf16 bf16 no
EMA yes no no no no
resolution 512 256 512 512 256
gradient accumulation steps 4 1 4 4 -
gradient checkpointing yes no yes yes no
max gradient norm 1.0 1.0 1.0 1.0 -
lr warmup steps 0 500 0 0 0
denoising steps 50 250 50 50 -
LoRA scale - - 1.0 - -

* GAN learning rate is constant for each resolution step in the progressive growing process.

3.3.2. Classification Models

We demonstrate the effect of synthetic data augmentation on the same study data as
in Schaudt et al. [14] in a downstream classification task. To validate our approach, we
train multiple model architectures with this process: ResNet50 [49], EfficientNet-B0 [50],
EfficientNet-B1 [50], ConvNeXt-T [51], and ConvNeXt-S [51]. A broader selection of older
and newer state-of-the-art models were chosen, which have been used extensively in
academic literature. All experiments were repeated 5 times to increase the robustness
of our results. Baseline models were trained for all architectures without synthetic data
augmentation as a point of reference. All models were pre-trained on ImageNet [52],
providing well-calibrated initial weights. Unlike traditional transfer learning, we update
all gradients to account for shifts in image distribution. ImageNet’s diverse dataset differs
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significantly from our desaturated CXR data. The final layer was replaced with a linear
layer featuring 5 output nodes, one for each class.

We employ an augmentation pipeline for all classification models to increase image
variations and reduce overfitting during model training, which is common for many image
domains [53–55]. This pipeline was inspired by the winning solution to the 2021 SIIM-
FISABIO-RSNA Machine Learning COVID-19 Challenge [56] and is shown in Table 4.
Augmentations are carried out by the Albumentations library [57]. All classification models
use an Adam [37] optimizer with β1, β2 = 0.9, 0.999 momentum and cross-entropy loss
with a batchsize of 8. The learning rate is initialized at 1× 10−4 and follows a cosine
annealing function. All models are trained for 60 epochs. To alleviate overfitting, a dropout
layer was added before the classification layer with p = 0.5.

Table 4. Augmentation pipeline for classification models. Augmentations are carried out with
Albumentations library [57].

Augmentation Parameters Probability

Resize height=224, width=224 1.0
ShiftScaleRotate scale_limit=0.5, rotate_limit=10, shift_limit=0.1 1.0
One of: 0.9

[CLAHE, clip_limit=4.0, grid_size=(8,8) 1.0
RandomBrightnessContrast, brightness_limit=0.2, contrast_limit=0.2, brightness_by_max=True 1.0

RandomGamma] gamma_limit=(80,120) 1.0
One of: 0.9

[Sharpen, alpha=(0.2,0.5), lightness=(0.5,1.0) 1.0
Blur, blur_limit=7 1.0

MotionBlur] blur_limit=7 1.0
One of: 0.9
[RandomBrightnessContrast, brightness_limit=0.2, contrast_limit=0.2, brightness_by_max=True 1.0

HueSaturationValue] hue_shift_limit=20, sat_shift_limit=30, val_shift_limit=20 1.0
Normalize mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) 1.0

4. Results

In this section, we examine the results of the five generative methods presented in
the following categories: generative performance, medical assessment, and classification
performance. In generative performance, we look at the performance metrics FID [58] and
MS-SSIM [59] to quantify the fidelity and diversity of the generated images. In medical
assessment, a dedicated thoracic radiologist (C.K.) with 9 years of experience in lung
imaging assessed the quality and plausibility of the generated images from a medical
perspective. In classification performance, the effect of synthetic data augmentation on a
downstream classification task is evaluated.

4.1. Generative Performance

Generated images should be similar to the underlying, real image distribution (fi-
delity), and ideally show a large variability in possible outcomes (diversity). Fidelity and
diversity can be measured by the Fréchet Inception Distance (FID) [58] and the Multi-Scale
Structural Similarity Index (MS-SSIM) [59], respectively. Both metrics are commonly used
in generative image tasks. We calculate the FID based on the final 2048 feature layer of
a pre-trained Inception V3 [60] model, as is standard. The distance is calculated by com-
paring 50 synthetic images of each class to 50 real images. The MS-SSIM (Gaussian kernel
size 11; sigma, 1.5), which is a generalization of the SSIM [61], is calculated by a pairwise
comparison of all combinations of the same 50 synthetic images and taking the average.
Lower values of FID and MS-SSIM show larger fidelity and diversity. It should be noted
that the metrics used are contingent on the reference samples and implementation, making
direct comparisons with other studies challenging [62].
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Figure 2 shows the FID values during the training for all models and classes. Inter-
estingly, FID values do not simply decrease during training for all models, but can also
increase towards the middle or end of the training process. This is especially apparent for
DreamBooth, LoRA, and fine-tuning models, where the FID increases from the start or later
during training. The LoRA model sees a sharp drop in FID values in the beginning and
shows another decline towards the end of training.
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Figure 2. FID curves during training for all models.

Figure 3 illustrates this by showing image samples of the LoRA model from different
training iterations, while images from iteration 500 exhibit the largest FID values and a
low quality, the quality improves substantially in iteration 2000. In iteration 7500 the FID
rises again and the quality decreases, as shown clearly by a faulty image. In the end of the
training process, the FID decreases again slightly and quality seems to increase, while not fully
reaching earlier levels. This non-monotonic FID progression confirms the general usefulness
of monitoring the FID values during the training process to pick the best model iteration.

Another noteworthy observation is a difference in FID curves between classes. Healthy
images generally have lower FID values than the pathological classes, which might stem
from a substantial difference in quantity of the underlying real images. Figure 4 shows
the MS-SSIM values during the training for all models and classes. In this case, the larger
quantity of healthy images seems to be a disadvantage, as they generally produce higher
MS-SSIM values and therefore show a lower diversity.

Table 5 shows the resulting minimum FID and MS-SSIM values for all models and
classes. The GAN model shows the lowest FID values for all classes by a sizable margin,
followed by unconditional and fine-tuning models. DreamBooth and LoRA models gen-
erally show larger FID values and therefore lower fidelity images. The MS-SSIM values
are mostly similar for the minimum FID iterations, with unconditional and DreamBooth
models having slightly higher values.
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Figure 3. Non-monotonic FID progression for LoRA model, showing 4 random samples per iteration.
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Table 5. Minimum FID (↓) values for all classes and models with corresponding MS-SSIM in
parenthesis. Significant values in bold.

Model/Class Viral Healthy Fungal COVID-19 Bacterial Mean

GAN 91.33 (0.36) 76.27 (0.35) 95.43 (0.4) 112.74 (0.38) 101.86 (0.33) 95.52
DreamBooth 147.65 (0.41) 135.24 (0.48) 149.64 (0.41) 170.17 (0.48) 142.74 (0.48) 149.09
Fine-tuning 127.45 (0.41) 81.20 (0.37) 125.10 (0.41) 135.52 (0.37) 116.76 (0.36) 117.21
Unconditional 118.66 (0.67) 79.31 (0.67) 123.36 (0.39) 131.58 (0.38) 117.36 (0.34) 114.05
LoRA 166.86 (0.37) 124.18 (0.37) 163.68 (0.41) 177.75 (0.37) 144.11 (0.41) 155.32

mean 130.39 99.24 131.44 145.55 124.57

4.2. Medical Assessment

Quantitative distance metrics can be a good first indicator of image quality, but they
do not provide any medical assessment of image quality or pathological plausibility of
the synthetic images. We argue that an evaluation by a human expert is critical in such a
sensitive medical setting. A dedicated thoracic radiologist (C.K.) with 9 years of experience
in lung imaging has therefore assessed the quality and plausibility of the generated images
from a medical perspective.

The quality of an image was assessed on a scale of 1 (lowest quality) to 5 (highest
quality). Important aspects of the quality assessment are that thorax and lungs are shown
as a whole, so that the anatomy is reproduced correctly and to scale. The sharpness and
contours must be reproduced correctly. If a pathology was present, it was evaluated ac-
cording to its characteristic appearance on a scale from 1 to 3 (1 = completely inappropriate,
2 = partly characteristic, 3 = characteristic). Important aspects of the plausibility assessment
are to what extent the typical appearance of pneumonia is reproduced. This includes
the density, the sharpness compared to the lungs, the relationship to other anatomical
structures (heart, pleura) as well as the distribution pattern within both lungs (centrally
emphasized, peripherally emphasized, division into the individual lung lobes).

Figure 5 shows the assessment of four synthetic image samples with high/low quality
and high/low plausibility scores. In (a, b) the anatomical structures are reproduced
realistically and the proportions are accurate. The pleura, diaphragm, heart contour and
hilar vessels are reproduced with absolute precision. The breast shadow is also reproduced
exactly in (a), which simulates a woman as the gender of the patient. The quality rating is
accordingly rated score 5 without any gradations. The healthy state in image (a) is shown
regularly with a quality score of 5. The bacterial pneumonia in (b) is rather atypical, a
suspect bronchial carcinoma from the simulated image is more realistic. It does not reflect
peripheral inflammation in the sense of bronchopneumonia or lobar pneumonia, hence
the assessment of plausibility as inappropriate (score 1). Image (c) appears artificial in
appearance, the diaphragm contours, the heart silhouette and the bones are not realistically
reproduced, the image quality is only rated with score 1. In contrast, no pathology of the
lung parenchyma is recognizable, but this is still realistic and therefore rated as score 3
in terms of plausibility. Image (d) also appears artificial in appearance, in particular the
hints of foreign material/lines and heart contours are unrealistic (quality score 1). The
inflammations of the lungs described also seem unrealistic for any type of pneumonia; a
fungal infection is unrealistically shown (plausibility score 1).

We assessed 25 synthetic images of each class for each model in quality and plausibility,
totaling 625 images. Figure 6 shows the results of the assessment for all models and classes.
A Kruskal–Wallis test [63] confirms that the difference between models for both quality
and plausibility is significant with p < 0.0001. A Dunn–Bonferroni post hoc test [64]
on quality shows significant differences (p < 0.05) between most models, except for the
GAN-unconditional pair (p = 0.713), the unconditional-fine-tuning pair (p = 0.51), and the
DreamBooth-LoRA pair (p = 0.3).
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(a)   Healthy | Quality: 5 | Plausibility: 3 (b)   Bacterial | Quality: 5 | Plausibility: 1

(c)   Healthy | Quality: 1 | Plausibility: 3 (d)   Fungal | Quality: 1 | Plausibility: 1

Figure 5. Medical assessment of quality and plausibility for 4 synthetic image samples. (a) Healthy
case with high quality and plausibility. (b) Bacterial case with high quality but low plausibility.
(c) Healthy case with low quality but high plausibility. (d) Fungal case with low quality and plausibility.

The assessment confirms that the GAN model generates the highest quality and most
plausible images, followed by the unconditional and fine-tuning models. DreamBooth and
LoRA models seem significantly weaker than the other models. Additionally, the healthy
images have higher quality and plausibility on average than the other classes. This is mostly
due to larger image quantity and reiterates on the merit of larger data for generative models.
Table 6 aggregates the assessment results for all models. It should be noted that the medical
assessment was not used to filter images based on quality for the downstream classification
task. Although this might affect the classification task, we deliberately want to omit the
integration of further domain knowledge to obtain an unbiased estimation of downstream
performance. Furthermore, a comprehensive medical assessment of 70,000 synthetic images
would be infeasible.

Table 6. Medical assessment of quality and plausibility for all models with mean ± std over all classes.

Model Quality Plausibility

DreamBooth 1.64 ± 0.87 1.26 ± 0.54
Fine-tuning 2.94 ± 1.07 2.00 ± 0.81
GAN 3.62 ± 1.06 2.25 ± 0.80
LoRA 1.31 ± 0.65 1.06 ± 0.25
Unconditional 3.27 ± 1.01 2.02 ± 0.74
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Figure 6. Medical assessment of quality and plausibility for all models. Red line shows median values.

4.3. Classification Performance

The effect of using the generated images as synthetic data augmentation to improve
a classification downstream task is examined, utilizing synthetic images from the lowest
FID iterations for all generative models. A selection of these final images is shown in the
Appendix A. The performance is measured on multiple model architectures: ResNet50 [49],
EfficientNet-B0 [50], EfficientNet-B1 [50], ConvNeXt-T [51], and ConvNeXt-S [51]. The
respective baseline models do not use additional synthetic images for training and their
performance has been reported in Schaudt et al. [14]. To gain a better understanding
on the synthetic data augmentation methodology, five different generative models with
five different classification architectures are benchmarked and also vary the amount of
additional synthetic images. All classification model trainings have been repeated 5 times
with a different seed to obtain a robust and comprehensive outlook on the expected
performance gain. Since the GAN model can generate images much more quickly than
the diffusion-based models (in about 1/10th time), we want to examine this advantage by
adding even more synthetic images into the training. The +5000 and +10,000 image brackets
are therefore only evaluated for the GAN model, since generating such large quantities
would be unfeasible for the other models in our setting.

Table 7 reports the accuracy for the presented classification models, trained with
additional synthetic images from the presented generative models. The best model is
ConvNeXt-S, trained with 250 additional synthetic images from the unconditional model
with 81.11% accuracy. This is a notable increase of +2.58 percentage points from the baseline
variant, while the best performing models for each architecture all use synthetic images,
the results show a large variation in performance across all methods and image brackets.
Many configurations even see a decline in classification performance.

Table 8 shows aggregated results as the average change in accuracy in percentage
points for all models from baseline over all additional image brackets. The only generative
model with a positive impact on classification performance over all classification models
is DreamBooth with an average improvement of 0.52. Interestingly, specific generative
models can have a substantially higher than average impact on performance for specific
classification models. This suggests that some model combinations fit very well together,
while others do not. The classification model that shows the highest improvement on
average across all generative models is ConvNeXt-S with an increase of 0.12 over baseline.
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Table 7. Accuracy of classification models trained with additional synthetic images from the presented
generative models. Between +100 and +10,000 images per class have been mixed into the training
data. All results are reported as mean ± std of 5 independent training runs. Significant values are
in bold.

Model/Architecture ResNet50 EfficientNet-B0 EfficientNet-B1 ConvNeXt-T ConvNeXt-S

Baseline 78.25 ± 1.14 78.71 ± 1.22 77.60 ± 1.19 78.25 ± 1.47 78.53 ± 0.37
+100
DreamBooth 75.94 ± 1.44 79.54 ± 0.75 79.35 ± 1.50 78.06 ± 1.39 79.26 ± 1.77
Fine-tuning 76.22 ± 1.88 77.05 ± 1.76 77.33 ± 1.47 77.42 ± 1.57 80.37 ± 1.07
GAN 77.14 ± 2.19 77.97 ± 1.68 78.43 ± 1.28 78.99 ± 1.59 76.96 ± 2.00
LoRA 74.84 ± 1.56 76.13 ± 0.98 77.60 ± 0.63 78.43 ± 2.19 76.77 ± 1.71
Unconditional 75.67 ± 1.18 75.67 ± 0.84 78.53 ± 1.35 77.88 ± 1.30 79.45 ± 1.61
+250
DreamBooth 78.25 ± 1.14 78.71 ± 2.41 79.91 ± 1.81 79.54 ± 1.66 78.62 ± 2.27
Fine-tuning 77.97 ± 1.11 76.96 ± 1.24 78.06 ± 1.64 76.68 ± 0.75 79.54 ± 1.56
GAN 76.31 ± 2.45 74.65 ± 1.34 76.87 ± 1.32 76.77 ± 1.59 78.16 ± 2.05
LoRA 73.82 ± 1.47 76.31 ± 1.39 76.87 ± 1.25 78.53 ± 1.03 79.08 ± 1.86
Unconditional 75.94 ± 1.22 76.22 ± 0.75 78.89 ± 1.28 79.17 ± 1.5 81.11 ± 1.89
+500
DreamBooth 76.77 ± 0.80 79.54 ± 1.11 78.99 ± 2.11 78.43 ± 1.50 78.34 ± 2.47
Fine-tuning 75.02 ± 2.25 75.02 ± 2.32 77.51 ± 0.74 77.42 ± 0.77 77.05 ± 1.81
GAN 76.41 ± 1.28 74.29 ± 2.72 76.77 ± 1.71 77.60 ± 3.86 78.80 ± 1.05
LoRA 73.73 ± 1.65 76.59 ± 1.25 78.16 ± 1.26 78.34 ± 0.41 77.79 ± 1.88
Unconditional 78.16 ± 1.95 77.97 ± 0.79 78.53 ± 1.32 79.82 ± 2.23 80.28 ± 1.83
+750
DreamBooth 78.25 ± 0.89 77.05 ± 1.11 79.72 ± 1.37 79.17 ± 2.53 78.89 ± 1.63
Fine-tuning 76.22 ± 1.35 77.51 ± 1.53 77.51 ± 0.98 76.87 ± 1.38 77.79 ± 1.83
GAN 75.58 ± 1.72 74.75 ± 2.27 75.58 ± 1.27 79.45 ± 1.92 77.70 ± 2.07
LoRA 74.65 ± 1.62 75.94 ± 2.13 76.68 ± 1.45 77.60 ± 1.47 78.06 ± 1.95
Unconditional 78.25 ± 1.32 77.24 ± 1.61 78.16 ± 2.66 78.34 ± 1.46 78.53 ± 2.31
+1000
DreamBooth 79.08 ± 1.39 80.46 ± 1.71 79.82 ± 1.47 78.71 ± 2.30 79.26 ± 1.54
Fine-tuning 78.06 ± 0.95 75.39 ± 1.81 76.13 ± 1.68 76.96 ± 1.17 78.71 ± 0.84
GAN 76.59 ± 1.22 73.73 ± 1.51 75.02 ± 2.30 79.17 ± 1.35 78.06 ± 1.39
LoRA 76.31 ± 1.50 76.41 ± 0.98 77.51 ± 1.73 77.60 ± 1.97 78.06 ± 1.50
Unconditional 78.71 ± 1.22 75.85 ± 1.26 76.41 ± 2.21 78.34 ± 1.70 78.34 ± 1.67
+5000
GAN 73.64 ± 1.25 75.21 ± 1.47 76.13 ± 1.18 76.13 ± 1.63 78.80 ± 1.54
+10,000
GAN 74.47 ± 1.95 76.50 ± 1.05 75.30 ± 1.56 78.71 ± 0.98 79.72 ± 2.04

Figure 7 shows the average change in classification accuracy for all generative models
from baseline per additional image bracket over all classification models, while Dream-
Booth favors larger quantities of synthetic images, the unconditional model shows an
improvement for intermediate quantities, which decreases again for +750 and +1000 im-
ages. Both fine-tuning and GAN models show decreased performances for larger quantities,
with a slight incline towards the maximum quantities. This could suggest that even more
images might have a positive impact. The LoRA models are largely invariant under differ-
ent image quantities. Varying the amount of additional synthetic images for training does
not follow a clear pattern and seems to depend largely on the specific generative model.
For cases where classification accuracy first decreases and then increases could be due to
the classification model shifting from learning original features towards generated features.
In general, the change in classification accuracy between different models could result from
the models ability to generate classifiable features.

To examine class specific performances, we focus on the classification model with the
best overall accuracy, which is ConvNeXt-S. Table 9 shows the precision, recall, and F1-score
for all generative models for each class. The metrics have been calculated based on the
best performing image bracket for each generative model. We also include a ConvNeXt-S
model trained with randomly oversampled classes as a simpler approach to rebalance
class distribution during training. Generative approaches show higher recall values for
most classes, with sizable differences for some classes (LoRA 0.36 vs. baseline 0.1 for viral
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cases). All pathological classes show substantially higher recall and F1 values for generative
approaches, especially for bacterial, fungal, and viral cases. The baseline model shows the
best precision and F1 values for healthy cases, as well as the best precision for COVID-19.
This is not very surprising, since these classes are the most frequent and do not benefit as
well from the rebalancing effect of synthetic data augmentation. Despite the lower accuracy
of the generative approaches, class-specific performances can suggest the use of generative
models in imbalanced learning scenarios. This holds true when compared to a simple
oversampling approach, which does perform worse for most classes and completely misses
the bacterial cases.

Table 8. Average change in accuracy in percentage points for all models from baseline over all
additional image brackets. All results are reported as mean ± std of 5 independent training runs.
Significant values are in bold.

Model/Architecture ResNet50 EfficientNet-B0 EfficientNet-B1 ConvNeXt-T ConvNeXt-S Overall

DreamBooth −0.59 0.35 1.96 0.53 0.34 0.52
Fine−tuning −1.55 −2.32 −0.29 −1.18 0.16 −1.04
GAN −2.52 −3.41 −1.3 −0.13 −0.22 −1.51
LoRA −3.58 −2.43 −0.24 −0.15 −0.58 −1.40
Unconditional −0.90 −2.12 0.50 0.46 1.01 −0.21

mean -1.88 -2.09 0.02 -0.10 0.12
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Figure 7. Average change in classification accuracy for all models from baseline per additional
images bracket.

Table 9. Precision, recall, and F1-Score for all generative models for each class. Baseline and
oversampling models as a reference. Significant values for each class and metric in bold.

Bacterial COVID-19 Fungal Healthy Viral

Precision
Baseline 0.3260 ± 0.0498 0.8292 ± 0.0573 0.4946 ± 0.0141 0.9641 ± 0.0028 0.1329 ± 0.1097
Oversampling 0.0000 ± 0.0000 0.6425 ± 0.0970 0.4073 ± 0.0987 0.9287 ± 0.0176 0.2697 ± 0.0461
DreamBooth 0.4618 ± 0.0550 0.7466 ± 0.0933 0.5085 ± 0.0592 0.9368 ± 0.0209 0.1826 ± 0.1581
Fine-tuning 0.2955 ± 0.1510 0.7164 ± 0.0696 0.6073 ± 0.0537 0.9503 ± 0.0221 0.5112 ± 0.1291
GAN 0.4569 ± 0.0595 0.8144 ± 0.1343 0.5506 ± 0.0414 0.9348 ± 0.0179 0.0848 ± 0.1291
LoRA 0.3778 ± 0.0697 0.7160 ± 0.1297 0.5669 ± 0.0936 0.9501 ± 0.0029 0.3738 ± 0.0928
Unconditional 0.4254 ± 0.1318 0.7038 ± 0.0405 0.6390 ± 0.0673 0.9391 ± 0.0135 0.4383 ± 0.1233
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Table 9. Cont.

Bacterial COVID-19 Fungal Healthy Viral

Recall
Baseline 0.3474 ± 0.0976 0.7478 ± 0.0928 0.5517 ± 0.0899 0.9923 ± 0.0049 0.1000 ± 0.0848
Oversampling 0.0000 ± 0.0000 0.7913 ± 0.0577 0.4207 ± 0.2291 0.9969 ± 0.0038 0.3500 ± 0.1837
DreamBooth 0.3684 ± 0.1104 0.8174 ± 0.0174 0.5034 ± 0.1536 0.9954 ± 0.0038 0.1375 ± 0.1275
Fine-tuning 0.3474 ± 0.2297 0.7478 ± 0.0887 0.6276 ± 0.1142 0.9892 ± 0.0062 0.2375 ± 0.0468
GAN 0.4000 ± 0.1511 0.8000 ± 0.0443 0.5931 ± 0.2108 0.9877 ± 0.0038 0.0875 ± 0.1458
LoRA 0.3053 ± 0.0614 0.8087 ± 0.0976 0.4138 ± 0.1731 0.9954 ± 0.0038 0.3625 ± 0.1075
Unconditional 0.2842 ± 0.0714 0.7826 ± 0.1603 0.6690 ± 0.0516 0.9923 ± 0.0000 0.2625 ± 0.0729

F1-Score
Baseline 0.3307 ± 0.0579 0.7793 ± 0.0296 0.5179 ± 0.0386 0.9780 ± 0.0016 0.1136 ± 0.0949
Oversampling 0.0000 ± 0.0000 0.7046 ± 0.0696 0.3958 ± 0.1615 0.9615 ± 0.0080 0.2868 ± 0.0864
DreamBooth 0.3943 ± 0.0486 0.7767 ± 0.0456 0.4990 ± 0.0983 0.9651 ± 0.0109 0.1452 ± 0.1224
Fine-tuning 0.3071 ± 0.1677 0.7252 ± 0.0324 0.6069 ± 0.0340 0.9692 ± 0.0112 0.3164 ± 0.0465
GAN 0.4054 ± 0.0550 0.7983 ± 0.0536 0.5507 ± 0.0959 0.9604 ± 0.0093 0.0854 ± 0.1368
LoRA 0.3272 ± 0.0304 0.7447 ± 0.0428 0.4613 ± 0.1171 0.9722 ± 0.0030 0.3546 ± 0.0660
Unconditional 0.3321 ± 0.0764 0.7325 ± 0.0906 0.6497 ± 0.0341 0.9649 ± 0.0071 0.3266 ± 0.0876

5. Discussion

Surprisingly, we found that higher image quality does not translate to better per-
formance on a downstream classification task. Looking at the accuracy, most models
performed worse with synthetic data augmentation, which is in line with Müller-Franzes et
al. and Packhäuser et al. [20,31]. Only the DreamBooth model leads to an overall improve-
ment across all examined classification architectures. We can only guess why image quality
does not translate to improved classification models. Images from DreamBooth and LoRA
models seem to exhibit higher contrast and unrealistic visibility of the bone structure and
appear more cartoon-like in general. This could lead to an indirect regularization effect,
leading models to broader areas of the loss function and reduce overfitting. Additionally,
those models are pre-trained and already had exposure to limited amounts of chest X-ray
images, which could potentially increase image diversity.

It could also be the case that our quality and plausibility assessment does not accurately
evaluate whether the generated images hold features that are relevant to classification
models. We think that the appearance of typical pathological patterns should, in theory,
be the decisive feature used by classification models. Due to the black box nature of these
models, it is not possible to finally conclude which features are being used for classification.
Even attribution methods like GradCAM [65] do not map pixel attributions to features in a
meaningful way or aggregate the information over many images. Although there might be
other metrics for a medical assessment that correlate better with classification performance,
we think that the chosen ones are meaningful from the perspective of a human evaluator
and present the medical perspective.

Some models benefited more from synthetic data augmentation than others. For
example, ConvNeXt-S shows an average improvement of 0.12 percentage points, while
EfficientNet-B0 shows a decrease in accuracy of −2.09 percentage points on average. Since
EfficientNet-B0 and EfficientNet-B1 show very different improvements (−2.09 pp. vs.
0.02 pp.), model size alone is not a decisive factor to predict model improvement from
synthetic data augmentation. More recent architectures with higher capacity show larger
improvements on average. We also examined the effect of adding different amounts of
synthetic images to the training data. The results are inconclusive with some models
benefiting from more images (DreamBooth and LoRA), while others show a performance
decline (GAN and fine-tuning). Since the behavior seems to be model-specific, we suggest
to experiment with different settings, especially when inference times are short and new
images can be generated quickly.

Class-specific metrics like precision, recall, and F1-score, have shown that synthetic
data augmentation beats the baseline performance on most classes. This is especially true
for classes with low frequency like viral and fungal pneumonia. In cases of imbalanced
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learning problems, synthetic data augmentation to rebalance class distributions provide a
meaningful benefit. This technique performs better than a simple oversampling approach
in this study, but comparisons to other sampling methods [66–68] might be an interesting
direction for further research. Although we could not confirm an overall improvement for
a downstream classification task in this study, we did not cherry-pick model configurations
where generative models exhibit sizable improvements over baseline models, but opted
to give a comprehensive and robust outlook on the expected performance increase over
many different scenarios instead. Furthermore, the usefulness of synthetic data exceeds
the synthetic data augmentation approach, for example by using synthetic samples from a
different institution for pre-training as shown in [69] for 3D medical images.

Distinguishing between different pneumonia types has advantageous clinical implica-
tions, since they require different treatment regimes. Early indications of the cause can help
facilitate effective drug treatments, for example in the use of antibiotics or antimicrobial
drugs. If the pneumonia is caused by an infectious disease like COVID-19, controlling
virus spread becomes an important task and early evidence of such diseases can be very
helpful. Early diagnosis and appropriate treatment are essential to prevent complications
and improve outcomes. In cases of immunosuppression, e.g., after bone marrow trans-
plantation, a precise differentiation between different infections can be challenging and of
crucial importance for the patient. A fast and correct identification is therefore necessary for
the survival of the patient. The use of AI can help to break down and identify the correct
infection which can often be very similar in appearance [70].

Our work has limitations. We did not fine-tune the text encoder component of our
Stable Diffusion models, which could lead to improved image quality, although recent
literature seems to be indecisive on this effect [23,30]. We also chose rather simple prompts
for text-conditioning of our Stable Diffusion models. Although more detailed prompts
could lead to better results, we deliberately wanted to measure the effect of synthetic data
augmentation without including further domain knowledge. We have already shown that
incorporating domain knowledge can help to improve classification models on this study
data [14]. This also applies to filtering generated images for quality and plausibility before
using them on the downstream classification task. Since human evaluation is infeasible for
large quantities of images, employing another classification model to filter out bad images
could be a promising future approach.

6. Conclusions

In this work, five different generative models for a small pneumonia chest X-ray
dataset were evaluated, giving a quantitative and medical assessment of image quality and
pathological plausibility. Furthermore, the usefulness of these models as part of a synthetic
data augmentation on a downstream classification task was examined. We compare a GAN-
based model with diffusion and latent diffusion models on five different classification
model architectures to obtain a comprehensive overview of the expected performance
gain for synthetic data augmentation. Images generated by the GAN model have shown
the best quality in both quantitative and medical assessment and are most plausible as
they outperform more recent architectures. Unconditional DDPM and fine-tuning of a
Stable Diffusion model follow closely, while the recent fine-tuning approaches LoRA and
DreamBooth did not achieve satisfying results in this study.

Interestingly, synthetic healthy findings often exhibit higher quality than pathological
findings. Aside from being the most frequent class in this study, we assume that pathologi-
cal patterns increase image complexity and vary far more than a normal healthy state. We
found that the quantitative assessment based on the FID score leads to the same ranking
in image quality than our medical assessment. Therefore, we rate the FID score as a solid
measure for image quality. Furthermore, image quality and medical plausibility are closely
correlated. We have shown that FID scores can fluctuate significantly during training
for generative models and therefore advocate to track these metrics closely to decide for
the best model checkpoints. In conclusion, this study gives a realistic estimation on the
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expected performance gain of synthetic data augmentation in a scarce data scenario and
encourages many possible directions for further research.
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Appendix A. Image Collections

Healthy Viral Bacterial COVID-19 Fungal

Figure A1. Sample images from original dataset.

https://huggingface.co/datasets/dschaudt42/synthetic_pneumonia
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Figure A2. Sample synthetic images from all classes and methods.
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Figure A3. Sample synthetic images from GAN model for all classes.
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Figure A4. Sample synthetic images from unconditional DDPM model for all classes.
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Figure A5. Sample synthetic images from fine-tuning model for all classes.
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Figure A6. Sample synthetic images from LoRA model for all classes.
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Figure A7. Sample synthetic images from DreamBooth model for all classes.
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