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Abstract: Vaccination is the most cost-effective means in the fight against infectious diseases. Various
kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been
approved for clinical application. Though vaccines available achieved partial success in protecting
vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the
global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are
the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine
technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in
biotechnology offered the progress of vaccinology in the past few years, and lots of innovative
approaches have been applied to the vaccine design during the ongoing pandemic. In this review,
we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of
SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design
are discussed.

Keywords: vaccine design; SARS-CoV-2; COVID-19; variants

1. Introduction

The prevention and control of infectious diseases is the leading challenge to human
progress and survival, similar to the ongoing pandemic that poses an unprecedented
crisis to the world. Controlling the source of infection (isolation or quarantine), cutting
off the transmission route (wearing masks, social distancing), and protecting susceptible
populations (such as vaccination), are three major weapons fighting against infectious
diseases practically in public health [1]. Vaccines, the greatest invention in medical history,
could make vaccinated subjects less susceptible by eliciting an active immune response [2].
Vaccination has been proven a cost-effective public health intervention in history and
protected millions of people exempt from various diseases [3,4]. Thanks to past experiences
in vaccine design and manufacturing, the pipeline for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) was rapidly established to tackle this outbreak situation [5,6].
Lessons learned from severe acute respiratory syndrome coronavirus (SARS-CoV) [7],
Middle East respiratory syndrome coronavirus (MERS-CoV) [8], and influenza virus [9], etc.
made researchers design vaccines empirically, which shorted trial and error time while an
effective SARS-CoV-2 vaccine was urgently important. Additionally, the pandemic boosted
the development of vaccine technologies, and an increasing number of novel strategies
were exploited to meet the urgent need for effective vaccines.

In the hurdle against the pandemic, various kinds of vaccines were prepared and tested
for efficacy against coronavirus disease 2019 (COVID-19), including whole inactivated virus
vaccines [10], live-attenuated virus vaccines [11,12], subunit vaccines [13–15], viral vector
vaccines [16–18], DNA vaccines [19], and mRNA vaccines [20,21], etc. As of 13 December
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2022, 175 vaccines have entered clinical trials, and over 199 vaccine candidates are in the
preclinical stage [22]. Among these, mRNA vaccines represented by BNT162b2 (Pfizer-
BioNTech) [20] and mRNA-1273 (Moderna) [21] have drawn considerable attention as a
revolutionary innovation in controlling the spread of SARS-CoV-2. Produced by in vitro
transcription, mRNA can encode target proteins in the cytoplasm, thus reducing the risk of
integrating into the genome compared with DNA vaccines. Furthermore, mRNA vaccines
can induce both humoral and cellular immunity with high efficiency, which play a critical
role in defending against virus infection. Despite significant protective efficacy against
COVID-19 being reached (BNT162b2 conferred 95% protection [20], the mRNA-1273 vaccine
showed 94.1% efficacy [21]), possible immune evasion may occur owing to newly emerging
variants. Some emergent new variants of concern (VOCs) [23,24], such as Alpha (B.1.1.7),
Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), have demonstrated
increased transmissibility, infectivity, hospitalization, and mortality. These mutated strains
bring new challenges to preventing and controlling COVID-19 and decreased protective
efficacy of existing vaccines has been reported [25,26]. Vaccines that provide more effective
and broad-spectrum protection are required.

With a more profound knowledge of the immune system, besides mRNA vaccines,
some emerging concepts and advancing technologies are considered to address the
widespread public concerns about vaccine effectiveness against COVID-19. Following the
above regard, circular RNA vaccines [27], chimeric protein-based vaccines [28–31], virus
vector-based vaccines [32,33], and nanoparticle vaccines [34,35], etc., are potential powerful
candidates combating COVID-19. In fact, these vaccines embody the wisdom of optimized
design principles compared with empirically prepared candidates. To advance vaccinology
and provide some insights into this field, we summarize the state-of-the-art novel vaccine
design approaches in this review. Here we highlight the role of structure-guided vaccine
design [36,37], T-cell-based vaccines [38–40], respiratory mucosal delivery [41–43], and
enabled nanotechnologies [44,45] (Scheme 1).
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Scheme 1. Insights towards rational vaccine design. Typical approaches involved in the COVID-19
vaccine candidates are discussed, including structure-guided vaccine design, T-cell-based vaccines,
respiratory mucosal delivery, and enabled nanotechnologies. A schematic diagram is involved in
illustrating each strategy.
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2. Overview of SARS-CoV-2 and Its Variants

SARS-CoV-2 is another coronavirus that could cause fatal respiratory illness in humans
since the outbreak of SARS-CoV and MERS-CoV at the beginning of the 21st century. Same
as the other betacoronaviruses [46], SARS-CoV-2 is a positive-sense and single-stranded
RNA virus, its genome sequences are almost identical and share 79.6% sequence identity
with SARS-CoV [47] (Figure 1A). Among the encoded structural proteins (membrane (M)
protein, nucleocapsid (N) protein, Envelope (E) protein, and spike (S) protein) [48,49], the
envelope glycoprotein spike (S) confers SARS-CoV-2 crown-like appearance (corona) [50,51]
(Figure 1B,C), and more critically, the spike is a protein that binds to the angiotensin-
converting enzyme 2 (ACE2) receptor of host cells and mediates viral entry [52–54]
(Figure 1D).

The transmembrane spike glycoprotein contains two subunits, S1 (surface ectodomain)
and S2 (transmembrane domain); the receptor binding domain (RBD) of S1 is responsible
for viral attachment via ACE2, and then S2 mediates the fusion process of viral and host
membranes [55,56]. As an important target for neutralizing antibodies (nAbs) [57,58] and
also for T-cell responses [59], RBD or full-length S protein becomes the main target antigen
of choice [60]. However, high rates of gene mutations in the viral spike protein raised
concerns that emerging variants might lead to re-infection or a new wave of outbreak.
Some mutations (D614G, N501Y, etc.) could increase the tightness and affinity of binding
with the ACE2 receptor, thus increasing the infectivity of SARS-CoV-2 variants [61,62],
and evading the immune response elicited by natural infection or administrated vaccines
supposed for wild-type viruses [63,64]. Following the Delta variant, the Omicron vari-
ant, which contains at least 32 mutations in the spike protein and escapes the majority
of existing SARS-CoV-2 nAbs [65], has become the dominant strain in many countries
worldwide [24,66,67] (Figure 1E,F). Given the massive mutations in spike protein, a more
contagious variant than any other VOCs found so far may occur in the near future, collabo-
ration from interdisciplinary communication and scientific understanding of the emerging
"X variant" is required. Under the circumstance that administered vaccines are mismatched
with circulating variants, traditional formulations such as inactivated vaccines hardly
provide cross-protection, and advanced vaccine technologies are needed. The four novel
vaccine design strategies (Table 1) are discussed below, and we compared their advantages
and limits (Table 2).

Table 1. Novel vaccine design approaches utilized for SARS-CoV-2 and its variants.

Approaches Principles Examples

Structure-guided
vaccine design

The metastable prefusion conformation is the functional state
for spike proteins, stabilizing the prefusion form could preserve

neutralization-sensitive epitopes.

S-2P [37,68,69], S-6P [70], S-trimer [15,71],
RBD dimer [30,31,72], etc.

T-cell-based
vaccines

Circulating antibodies may be short-lived, or of low magnitude
and/or potency, T cells have an important role for COVID-19

outcome and maintenance of SARS-CoV-2 immunity.
Peptide vaccine [73], MVA-S [74,75], etc.

Respiratory
mucosal delivery

To elicit mucosal IgA and T-cell mediated immune responses in
the respiratory tract.

CA4-dNS1-nCoV-RBD [32,33],
Ad-vectored [43,76], intranasal subunit

vaccine [42], etc.

Nanotechnologies Multivalent display of antigen enhances B-cell responses and
can provide longer-lasting immunity than monovalent antigens.

Mosaic nanoparticles [35,77,78],
Ferritin-based nanoparticles [79,80], etc.
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tious peritonitis virus, FIPV. Middle East respiratory syndrome coronavirus, MERS-CoV. Mouse 
hepatitis virus, MHV. Infectious bronchitis virus, IBV. Reproduced with permission from Ref.[46]. 
Copyright 2018, Springer Nature. (B) The molecular architecture of the SARS-CoV-2 Virus. The RBD 
of spike protein exists “up” (red) and “down” (salmon) conformation. Ribonucleoprotein, RNP. Re-
produced with permission from Ref. [50]. Copyright 2020, Elsevier. (C) Four representative tomo-
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Copyright 2020, Springer Nature. (D) S protein targets ACE2 through RBD in S1 subunit. RBD is the 
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Figure 1. Overview of SARS-CoV-2 and its variants. (A) The genomes, genes and proteins of
different coronaviruses. They are mainly constituted by positive-sense, single-stranded RNA (ssRNA),
envelope glycoproteins spike (S), envelope (E), membrane (M) and nucleocapsid (N). Feline infectious
peritonitis virus, FIPV. Middle East respiratory syndrome coronavirus, MERS-CoV. Mouse hepatitis
virus, MHV. Infectious bronchitis virus, IBV. Reproduced with permission from Ref. [46]. Copyright
2018, Springer Nature. (B) The molecular architecture of the SARS-CoV-2 Virus. The RBD of spike
protein exists “up” (red) and “down” (salmon) conformation. Ribonucleoprotein, RNP. Reproduced
with permission from Ref. [50]. Copyright 2020, Elsevier. (C) Four representative tomographic slices
of SARS-CoV-2 virions. Scale bar 50 nm. Reproduced with permission from Ref. [51]. Copyright 2020,
Springer Nature. (D) S protein targets ACE2 through RBD in S1 subunit. RBD is the receptor-binding
domain, and S1-CTD and S1-NTD are the C-terminal and N-terminal domains of S1. Reproduced with
permission from Ref. [54]. Copyright 2020, MDPI. (E) Delta and (F) Omicron variants of SARS-CoV-2.
Representative mutations in the spike protein are presented. Reproduced with permission from
Ref. [66]. Copyright 2021, Wiley.
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Table 2. Comparison of the four summarized vaccine design strategies.

Approaches Advantages Limits

Structure-guided
vaccine design

The immunogenicity and yield of target antigens
are improved

The high-resolution structures
are required

T-cell-based vaccines Stronger CD8+ T-cell responses are provided T-cell epitopes need to be identified

Respiratory mucosal delivery Mucosal immunity in the respiratory tract can be
elicited rapidly

Serological antibody titers are relatively
lower than intramuscular injection

Nanotechnologies Multivalent antigens can be displayed in one particle The nanotoxicity needs further
clinical investigation

3. Structure-Guided Vaccine Design

From the first to second to third generation vaccines, rational design rather than
empiricism is getting recognized in modern vaccinology. Progress in structural biology has
contributed greatly to the rational vaccine design in recent years [36,81], which provides an
on-the-shelf technique for the fight against emerging infectious diseases.

The spike protein of SARS-CoV-2 is a homo-trimer [37], just such as some other class I
viral glycoproteins of enveloped RNA viruses such as HIV [82,83] and influenza [84,85],
etc. Generally, sufficient neutralizing antibodies in serum or mucosal secretions induced by
vaccines play a vital role in blocking viruses. To expose neutralization-sensitive epitopes
to B cells, the prefusion-stabilized spike proteins are preferred, where enhanced antigen
homogeneity and stability are featured [86]. Following this principle, until now, some
approaches have been developed to keep the native-like prefusion conformation, and
improved immune responses were found as compared to the wild-type spike glycopro-
teins [68,71,87].

The most widely used strategy is proline mutation [88], which influenced the design of
the vaccine critically during the ongoing pandemic. Encouragingly, the S-2P strategy (com-
prising proline substitutions) is broadly applicable and could be regarded as a universal
manner in different coronaviruses [89,90]. As a key target antigen for vaccine develop-
ment, the spike protein of coronaviruses is in a metastable prefusion conformation, and
maintaining its neutralization-sensitive epitopes is indispensable to improve antigenic-
ity and protein expression. Under the guidance of the protein-engineering strategy, two
consecutive proline substitutions in the S2 subunit were screened, and it was determined
that this construct could promote homogeneous preparations of prefusion spikes. For
the spike protein of SARS-CoV-2, its Cryo-EM structure in the prefusion conformation
was rapidly resolved within one month, which was assisted by the S-2P strategy (proline
substitutions at residues K986 and V987) to obtain a high titer of prefusion-stabilized
S ectodomain [56] (Figure 2A). The atomic-level structural information has guided and
accelerated the vaccine’s design and development, including mRNA vaccines [21,68], ade-
novirus vector-based vaccines [91,92], recombinant protein vaccines [93–95], etc. Upon
the basis S-2P, S-6P (HexaPro) comprising six beneficial proline substitutions was tried,
and positive results were obtained [37,96] (Figure 2B,C). The higher yield and enhanced
stability of HexaPro than the S-2P construct demonstrated a promising antigen design, and
some vaccine candidates are being developed [87,97].

Besides proline mutation, Trimer-Tag was another choice for keeping the native-like
prefusion form of trimeric spike proteins [71,98] (Figure 2D). Specifically, the human C-
propeptide of α1(I) collagen (Trimer-Tag) was capable of self-trimerization via disulfide
bonds, thus forming a disulfide bond-linked homotrimer. By fusing Trimer-Tag to the
C-terminus of the ectodomain of wild-type SARS-CoV-2 S protein, the vaccine candidate,
S-Trimer, was prepared. S-trimer keeps the crucial antigenic epitopes necessary for viral
neutralization, and this construct represents a universal stabilization approach for other
trimeric antigens. In phase 2 and 3 trials, two doses of the S-Trimer vaccine plus CpG and
alum showed significant protection against circulating SAR-CoV-2 viruses, including the
delta variant [15].
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As immunodominant epitopes, RBD accounts for 90% of serum neutralizing activ-
ity [58,99] and is an attractive antigen target besides the spike protein mentioned above.
Similarly, structure-guided vaccine design was involved. The receptor-binding motif (RBM)
is an important recognition site of nAbs and interacts with ACE2 directly. The crystal
structure reveals the RBD-dimer fully exposes dual RBMs [100] (Figure 2E); this inspires
a structure-based design that the tandem repeat single-chain dimer may achieve higher
vaccine efficacy than the conventional monomeric form [101]. Up to now, disulfide-linked
dimer [102], interferon (IFN)-armed dimer [72], flexible pentapeptide (GGGGS)-engineered
dimeric RBD [103], etc. are developed, and these vaccines appear safe and elicit strong an-
tiviral immune responses. In particular, a COVID-19 vaccine candidate, ZF2001 (disulfide-
linked RBD dimer), has been authorized for emergency use in China [30] (Figure 2F).
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Figure 2. Structure-guided vaccine design. (A) Structure of SARS-CoV-2 spike protein in the prefusion
conformation. The "up" conformation is the receptor-accessible state, and the "down" conformation
corresponds to the receptor-inaccessible state. Reproduced with permission from Ref. [56]. Copyright
2020, AAAS. (B) The electron microscope density map of trimeric HexaPro and (C) Four proline
substitutions (F817P, A892P, A899P and A942P) unique to HexaPro. Based upon general protein
stability principles, 100 structure-guided spike designs were characterized, and 26 individual substi-
tutions can increase protein yields and stability. Through the combination of beneficial substitutions,
HexaPro with six proline substitutions was chosen to owe to its higher expression level and heat
stability. Reproduced with permission from Ref. [37]. Copyright 2020, AAAS. (D) Illustration of
S-Trimer with homo-trimeric prefusion conformation. Briefly, the spike protein was fused with the
human C-propeptide of α1(I) collagen, which is capable of self-trimerization via disulfide bonds.
Reproduced with permission from Ref. [71]. Copyright 2020, Springer Nature. (E) The overall
structure of the SARS-CoV-2 RBD bound to ACE2. RBD core is in cyan, RBM is in red, and ACE2 is in
green. Reproduced with permission from Ref. [100]. Copyright 2020, Springer Nature. (F) Schematic
diagram of RBD-dimer. Homotypic or chimeric dimers were constructed to elicit broader protection
against emerging variants. Reproduced with permission from Ref. [30]. Copyright 2022, Elsevier.

4. T-Cell-Based Vaccines

Traditionally, antiviral vaccines rely on the induction of nAbs, and the efficacy of
vaccines is dependent on the monitoring of sera antibody titers. Humoral immunity alone
is insufficient to end the current COVID-19 pandemic and prevent a recurrence, owing to
the genetic evolution and short-lived antibodies [104,105]. Recent findings point out that
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cross-reactive T-cell responses, especially tissue-resident memory T cells in the respiratory
tract, could provide efficient heterologous immunity for respiratory infections [106–108]. T-
cell-base immune response has been engaged to develop robust and long-lasting protective
vaccines for SARS-CoV-2 [73,109,110] (Figure 3), and a combination of both humoral and
cellular immunity might presumably be the most effective strategy. T cells have been
recognized as a key element for tumor immunotherapy, and various works of research
have leveraged cytotoxic T cells to attack tumors, but for antivirus treatment, associations
between viruses and T cells are lacking; more attention should be paid to the functions of
T cells.
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responses, T-cell responses are preserved across different vaccine platforms. (A) SARS-CoV-2 and
emerging variants. (B) Prediction of conserved T-cell epitopes. 91% and 94% of CD4+ and CD8+

T-cell epitopes are conserved on average, respectively. (C) T-cell responses in donors vaccinated with
mRNA-1273, BNT162b2, Ad26.COV2.S, or NVX-CoV2373. (D) 71% memory B cells against variants
on average are observed, and 42% for Omicron. (E) T-cell epitope repertoire analysis revealed a
median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells. (F) 90% CD4+ (84% against
Omicron) and 87% CD8+ (85% against Omicron) of memory T-cell responses were preserved against
variants on average. Reproduced with permission from Ref. [110]. Copyright 2022, Elsevier.
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To fulfill in silico prediction of immunogenic and conserved T-cell epitopes, some
computational tools have been developed [111,112], thus providing precise guidance for
antigen selection. Briefly, T-cell epitopes are determined by the specific algorithm and
validated by experiments. Notably, the identification of mutationally constrained cytotoxic
T lymphocytes (CTLs) epitopes in people with diverse HLA alleles is extensive, where the
whole proteome of SARS-CoV-2 is defined [38]. What is more, some studies have advanced
to elucidate multiple protective mechanisms of current administrated vaccines, and critical
roles of T cells have been renewed [113–116]. However, the knowledge about T-cell-based
immunity for virus control is limited so far. The relationship between nAbs and T-cell
immune response, whether the magnitude of T-cell immune response is enough for durable
efficacy, and how to tune the T-cell repertoire approximately, etc., are largely undetermined.
Collectively, to fully leverage both nAbs and CTLs for next-generation vaccine design,
much remains to be dissected.

5. Respiratory Mucosal Delivery

The respiratory tract is the first line of defense against SARS-CoV-2, and intramus-
cularly injected vaccines are poor at controlling viral replication and nasal shedding in
the upper respiratory tract [117]. However, intranasal vaccination could trigger robust
protective immune responses at the initial invasion site of infection [118], showing the
remarkable capacity to destroy the life cycle of respiratory pathogens. Besides non-invasive
needle-free delivery, intranasal vaccination possesses a superior advantage in eliciting
sterilizing immunity in the upper airway rather than only the lower respiratory tract, thus
not only offering defense against symptomatic diseases but also preventing asymptomatic
transmissions [119,120] (Figure 4A).

Mucosal immunity is a complex framework. The respiratory epithelial layer, innate
immunity, and adaptive mucosal immunity constitute the defense lines against mucosal
pathogens. Among these, mucosal secretory IgA (sIgA) antibodies and resident memory
T (TRM) cells are vital for adaptive immune responses [121]. To develop fully competent
mucosal vaccines, applicable antigens, mucosal adjuvants, and delivery vesicles should be
comprehensively considered to reach fine-tuned formulations.

Learning from the licensed mucosal vaccines in past decades, some mucosal-delivered
vaccine candidates for SARS-CoV-2 have been developed, including virus-vectored vac-
cines [43,76,122], live attenuated vaccines [32,33,123], and intranasal subunit vaccines [42],
etc. (Figure 4B). Whereas the adenovirus is a mature and easily modified system, Ad viral
vector vaccines are highly concerned, the inserted gene can express spike proteins in vivo
and then the specific immune responses are activated. For influenza-based vaccines, the
influenza viruses encoding RBD of spike protein are conditionally replicated (cold-adaptive,
preferred for 33 ◦C), which means attenuated in humans. Subunit vaccines are usually
administered via the intramuscular route, intranasal injection may take advantage of induc-
ing mucosal immunity in the nasal compartment, which is desirable for defending against
SARS-CoV-2. Notably, an orally administered aerosolized Ad5-nCoV vaccine has just been
licensed for emergency use as a sequential booster in China (Clinical trial NCT05043259).
The orally administered aerosolized Ad5-nCoV was confirmed safe and highly immuno-
genic after two-dose priming with CoronaVac (an approved inactivated COVID-19 vaccine)
in clinical studies [124]. This would bolster the global efforts in developing respiratory
mucosal-delivered COVID-19 vaccines.
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Figure 4. Respiratory mucosal delivery. (A) Intranasal vaccination can efficiently induce serum
IgG, mucosal IgA, and tissue-resident cellular responses, thus potentially providing sterilizing
immunity in the upper respiratory tract. Reproduced with permission from Ref. [120]. Copyright
2021, AAAS. (B) Representative mucosal-delivered vaccine candidates. (a) Adenoviral vaccine
encoding stabilized spike protein. Copyright 2020, Elsevier. (b) Live attenuated influenza vaccine-
based SARS-CoV-2 vaccine. Nonstructural protein 1, NS1. Deletion of NS1, dNS1. Copyright 2022,
Elsevier. (c) An intranasal subunit vaccine. Copyright 2021, Elsevier. Reproduced with permission
from Refs. [33,42,122].

6. Nanotechnologies

The thriving nanotechnologies-based platforms provide an appealing option for
COVID-19 vaccine preparation [125]. Owing to their good immunogenicity, stable structure
and strong ability to display foreign proteins, nanoparticle vaccines attracted broad interest
in recent years. In fact, virus-like particles (VLPs) are a type of natural nanoparticle platform
which have been broadly employed commercially for vaccine manufacturing [126], such as
hepatitis B virus (HBV) [127] and human papillomavirus (HPV) [128]. Self-assembled by
viral proteins without genetic materials, VLPs possess nanoscale size and regular structure,
which are well-arranged mimics of original viruses. Furthermore, nanoarchitectures with
modular nanocages for the display of antigens have distinct advantages: enrichment of
antigens (enhanced antigen valency) [129,130], multivalent display of antigens (broadly pro-
tective responses against mutated strains) [131,132] (Figure 5A,B). As mimics of nano-scaled
viruses, nanoparticle vaccines can serve as a rational platform for vaccine development.

Through rational or computational design, lots of self-assembly nanoparticle vaccines
with antigens optimization have been developed to combat the SARS-CoV-2 pandemic,
and some inspiring results have been reported in preclinical and clinical studies [133,134].
Among various formats, mosaic nanoparticle vaccines have become the research focus
and take the potential to revolutionize the field of vaccine development [35,78,135]. Scaf-
folded by self-assembled protein nanoparticle platforms, such as I53-50 [78] and Spy-
Catcher003 [35,135], etc., distinct spike/RBD antigens from the SARS-CoV-2 prototype
and its variants could be co-displayed in the tailored mosaic nanoparticles (Figure 5C,D).
Mosaic nanoparticle vaccines could elicit cross-reactive immune responses, demonstrating
broad protection potential for SARS-CoV-2, as well as current and future emerging vari-
ants. And notably, both matched and mismatched viral challenges could be protected by
mosaic nanoparticle vaccines [135]. Although nanoparticle vaccines have shown brilliant
prospects, there are still some concerns that should not be ignored. Firstly, the design of
nanoparticle vaccines has not yet reached the most cost-effective design scheme, and their
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biological distribution and metabolic clearance need to be further studied. Secondly, how
to achieve large-scale manufacturing, sustainability and reproducibility of nanoparticle
vaccines remain to be solved. Last but not the least, more research is urged to elucidate
the interactions between nanoparticles and the body’s immune system. Altogether, further
studies are expected to verify the safety and efficacy of COVID-19 mosaic nanoparticle
vaccines in the real world.
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Figure 5. Nanoparticle vaccines. Nanoparticles can drain into lymph nodes, and their unique physical
properties (size, shape, charge, etc.) are beneficial for antigen presentation while interacting with
resident DCs. (A) Nanoparticles could engage stronger interactions between antigen and B cell and
between B cell and the follicular helper T-cell (Tfh), resulting in stronger immunity. Reproduced with
permission from Ref. [125]. Copyright 2019, Elsevier. (B) High valency enables robust activation
and effector differentiation of B cells. Reproduced with permission from Ref. [129]. Copyright 2020,
Elsevier. (C) Schematic diagram of SARS-COV-2 HexaPro bearing nanoparticle vaccines. Different
antigens were genetically fused to I53-50A1, and an excess pentameric I53-50B.4PT1 was added at
an equimolar ratio for co-assembly in vitro. Reproduced with permission from Ref. [78]. Copyright
2022, Springer Nature. (D) Mosaic nanoparticles were constructed by the SpyCatcher-SpyTag system.
SpyCatcher is derived from a Streptococcus pyogenes surface protein, which can bind the 13-amino-acid
peptide SpyTag. This system is widely applicated for protein ligation. Reproduced with permission
from Ref. [35]. Copyright 2021, AAAS.

7. Challenges and Future Perspective

Despite tremendous efforts that have been devoted to providing highly-effective vac-
cines against SARS-CoV-2 and emerging variants, there are many challenges to be solved
to halt the pandemic. Firstly, the frequent mutations bring immune-escaping and break-
through infection. Though various vaccine candidates, as discussed above, demonstrated
distinguished protection effects in preclinical and clinical studies, some breakthrough infec-
tions have been reported [136,137]. Evolving variants have a profound uncertainty on the
efficacy of currently available vaccines, which warrants further study and updated vaccines
are called for. Moreover, the identification of conserved epitopes may be a good choice.
Secondly, how long the immune responses post-vaccination will maintain remains to be
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explored [138,139]. Once waning immunity occurs, rapid transmission and asymptomatic
spread of COVID-19 may pose a high risk to global public health. In this case, heterologous
prime-boost vaccination may extend the duration of protection [140–142]. More follow-
up studies are needed to determine the longevity of immunity. Thirdly, the majority of
vaccines are thermo-sensitive; they rely on cold chain storage and transportation, which
makes vaccine delivery complicated. To achieve the equitable distribution and conve-
nient management of vaccines, thermo-stable vaccines are preferred. Lastly, individual
differences, including gender, age, etc., may affect vaccine-induced immunity [143,144].
Associations incorporated require further investigation and understanding of these factors
offer opportunities for the rational design of next-generation vaccine candidates.

Besides, novel and affordable adjuvants with optimal efficacy and safety profiles are
urged for COVID-19 vaccines. Only a few adjuvants have been licensed for clinical usage
in the pandemic, such as aluminum salts, Matrix-M, etc. [6,95]. Generally, adjuvants can
enhance immune responses and reach antigen dose-sparing. Screening and selecting proper
adjuvants for COVID-19 vaccines will enable more potent vaccine formulations.

8. Conclusions

Benefiting from the interdisciplinary studies of molecular biology, structural biology,
bioinformatics, and materials science, to date, various kinds of vaccines have been approved
to combat COVID-19, and the results from clinical trials are encouraging. In the past three
years, clinically approved vaccines have demonstrated powerful effects in reducing severe
COVID-19 and mortality. Nonetheless, effective vaccines are still in shortage worldwide to
stem the ongoing SARS-CoV-2 pandemic and drive the world to return to pre-pandemic
normalcy. We should move forward without hesitancy to address continuing challenges
at the phase that the next round of global pandemic may arrive, and insights into novel
vaccine design are necessary. In summary, this review provided detailed vaccine design
insights into the COVID-19 pandemic to advance the development of desired vaccines with
safety and long-term efficacy.
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