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Abstract: Stroke is a leading cause of disability and death worldwide, with a prevalence of 200 mil-
lions of cases worldwide. Motor disability is presented in 80% of patients. In this context, physical
rehabilitation plays a fundamental role for gradually recovery of mobility. In this work, we de-
signed a robotic hand exoskeleton to support rehabilitation of patients after a stroke episode. The
system acquires electromyographic (EMG) signals in the forearm, and automatically estimates the
movement intention for five gestures. Subsequently, we developed a predictive adaptive control of
the exoskeleton to compensate for three different levels of muscle fatigue during the rehabilitation
therapy exercises. The proposed system could be used to assist the rehabilitation therapy of the
patients by providing a repetitive, intense, and adaptive assistance.

Keywords: stroke; electromyography (EMG); exoskeleton; rehabilitation; gesture classification; model
predictive control (MPC)

1. Introduction

Stroke is a cerebrovascular disease characterized by an insufficient blood supply to
the brain due to a blockage (ischemic stroke) or rupture (hemorraghic stroke) of blood
vessels [1]. The consequence of the brain damage could be long-term disability or even
death. According to the World Health Organization (WHO), around one in four people
is estimated to have a stroke in their lifetime, which is the principal cause of disability
worldwide and the second leading cause of death [2]. Motor impairment of the face or
upper or lower extremities after stroke is presented in about 80% of patients [3]. The motor
dysfunction commonly includes muscle weakness, changes in muscle tone, and impaired
motor control [4,5]. In particular, the disability of the hand poses limitations to carry out
activities of daily life (ADLs), affecting the independence of the patient [4,6]. Recovery of
up to 70% of the motor function is possible with rehabilitation in the first 3 to 6 months after
the stroke event [7]. The hand, however, requires longer rehabilitation periods and reaches
lower recovery levels [8]. This challenge is partly due to the complex biomechanics of the
hand [9]. Maximal functional recovery requires a repetitive, intensive, and task-oriented
therapy [10], to repair muscle weakness and spasticity, somatosensory loss, and abnormal
coactivation of muscles during isolated finger movements [11,12].

In order to improve the rehabilitation outcome, different neurotechnologies have
been proposed in the last decade [13–16]. The use of robotics, brain–computer interfaces,
and noninvasive stimulation has showed promising results and needs to be further explored
to translate them to clinical practice [1,16,17]. In particular, prostheses and orthoses, such as
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robotic exoskeletons, could enhance rehabilitation outcomes by facilitating precise motion
control and real-time monitoring of different variables during therapy.

The data-driven control of the exoskeleton can be performed with mechanical or
electrical signals. The electrical signals include electromyography (EMG), which measures
the electrical muscle activity in response to a movement command from the central nervous
system. The muscles involved in the fingers movement are located in the forearm (extrinsic
muscles) for coarse movements and in the hand (intrinsic muscles) for fine movements.
For instance, the flexion or extension of fingers is a combination of the activation of the
extrinsic muscles: flexor digitorum superficialis, flexor digitorum profundus, and extensor
digitorum communis [18,19]. The superficial EMG can partially measure the activity of
the superficial muscles, and can detect the corresponding movement by means of signal
processing and machine learning (ML) techniques [20,21]. A standardized methodology for
EMG hand gesture recognition has been recently proposed, including the following steps:
data acquisition, data preprocessing, data segmentation, feature extraction, classification,
and performance evaluation [21].

Data acquisition consists of placing electrodes on the skin to record the electrical
activity of the muscles of interest. Different studies have used EMG systems, such as
Delsys Trigno EMG system [22–25] and Myo Armband [6,26–29]. The recorded raw data
can be filtered to reject noise and segmented in overlapped or nonoverlapped windows,
each containing an individual movement [21]. Subsequently, feature extraction in time,
frequency, or time–frequency domains is implemented. Time domain features are efficient
and can be usually implemented in real time. The most common measures are mean
absolute values (MAV), root mean square (RMS), zero-crossing (ZC), waveform length
(WL), and Willison amplitude (WA), among others [21,30]. Frequency domain features
include measures from the fast Fourier transform or power spectrum of the signal, such as
mean frequency, peak frequency, frequency ratio, and total power, among others [21,31–34].
On the other hand, time–frequency features include short-time Fourier transform and
wavelet transform [32,35–37]. The classifiers that have presented the best results are artificial
neural networks (ANs) [23,38], k nearest neighbors (kNNs), [6,39], linear discriminant
analysis (LDA), [32,40], support vector machines (SVM) [41,42], and deep learning models
such as convolutional neural networks (CNNs) [24,27,29,43]. The performance of different
machine learning and deep learning techniques for the classification of finger gestures
from EMG signals have obtained an average accuracy between 87% for deep learning and
94% for machine learning techniques (Sultana 2023). Despite the huge amount of work in
gesture recognition with EMG signals, there are very few methods in real-time classification
of gestures on embedded systems.

Once the intention of movement has been detected through machine learning tech-
niques, the exoskeleton should guide the movement of the hand in the corresponding
therapy. It is then necessary to have a control of the movement of the exoskeleton to
facilitate the human–robot interaction. In order to promote brain plasticity and foster
recovery, the exoskeleton function should be to assist the desired movement. In addition to
the tracking of a specific trajectory, the compensation for fatigue effects that can suffer the
patient during a single therapy has been minimally studied [44]. Furthermore, assist-as-
needed exoskeleton of the upper limb has been proposed specially for shoulder and wrist,
with very few studies on the hand and finger movements [45], among assist-as-needed
exoskeletons of the hand [44,46]. In this regard, the model predictive control (MPC) is a
popular technique with the ability to handle constraints, optimizing the control output
while considering the future states of the exoskeleton [47].

Motivated by the potential use of robotic exoskeleton systems to assist in the recovery
of hand motor function, our study proposes a system for real-time identification of hand
gestures from EMG signals implemented in an embedded system. In addition, a closed-loop
control system was developed in an exoskeleton with the aim of compensating the effects of
muscle fatigue in hand joint rehabilitation therapies. A model predictive control technique
is implemented to drive the exoskeleton by following a joint trajectory given by the therapy,
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but also considering an estimation of the driven velocity according to the EMG-based
muscular effort detected within the control loop. Figure 1 details the proposed system.

Figure 1. System architecture.

2. Materials and Methods
2.1. Data Acquisition

In this study, we selected five movements of interest, due to their importance in
hand dexterity and fine motor skills: index-thumb pinch (IT-P), middle-thumb pinch
(MT-P), ring-thumb pinch (RT-P), pinkie-thumb pinch (PT-P), and closed hand (CH) (see
Figure 2) [48–50]. The EMG system selected was the Myo Armband (Thalmic Labs) that
recorded eight differential channels at a sample rate of 200 Hz. The signals acquired were
sent via Bluetooth low energy (BLE) to the selected embedded platform, a Jetson Nano
development kit, for the digital signal processing stage. The access to data followed the
Generic ATTribute Profile (GATT) protocol, where the Myo system is the server that is
subscribed to the GATT client.

The bracelet was located in the forearm 2 cm below the upper edge of the cubital fossa.
By keeping a constant location of the sensor and the user’s skin clean, the measures main-
tained high repeatability. Five healthy volunteers (three males and two females) between 20
to 29 years of age, who did not present any alteration in hand motor function, performed
the movements of interest. The subjects were all right-hand dominant, with an average
forearm circumference of 26.0 cm ± 3.5 cm. They were asked to perform 10 repetitions of
each movement in five different series (10 repetitions × 5 movements × 5 series). Each
repetition lasted 2 s, and a resting period of 2 min was awarded between the series to pre-
vent fatigue. A screen connected to the Jetson Nano showed the sequence of instructions to
guide the volunteers during the experiment. A total of 1250 observations were obtained,
250 per gesture.

Figure 2. Gestures of interest in rehabilitation therapy. Modified from previous work in [51].

The recorded EMG signals did not show power line noise; thus, the broadband signal
(0–100 Hz) was used. The segmentation of hand movements was defined by the experiment
with nonoverlapped windows of 2 s.

2.2. Feature Extraction

According to the literature and our previous work [6], we selected features of the
EMG signals in the time domain for gesture identification purposes. The five features for
each of the eight channels were mean absolute values (MAV), Willison amplitude (WAMP),
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variance (VAR), wavelength (WL), and zero-crossing (ZC) (Table 1). For each movement,
a 1 × 40 feature vector was obtained.

Table 1. Time features extracted from the EMG signals.

Feature Formulation

Mean Absolute Value (MAV) 1
N

N
∑

i=1
|xi|

Willison amplitude (WAMP)

N
∑

i=1
f (|xi − xi+1|)

f (x) =
{

1 x ≥ 5mV
0 x < 5mV

Variance (VAR) 1
N−1

N
∑

i=1
x2

i

Waveform length (WL)
N−1
∑

i=1
|xi+1 − xi|

Zero-crossing (ZC)

N−1

∑
i=1

f (xi+1, xi)

f (xi+1, xi) =


1, if xi+1 > 0 and xi < 0

1, if xi+1 < 0 and xi > 0

0, otherwise

Because the difference in order of magnitude of features varied from 102 to 105, we
normalized them. The method used for normalization was min–max feature scaling which
rescales the individual features in the range [0, 1] (see Equation (1)).

xnorm =
x− xmin

xmax − xmin
(1)

2.3. Gesture Classification

Machine learning algorithms were designed to classify the five hand gestures. Due to
the hardware limitations of the Jetson Nano processor, we selected classic machine learning
methods: (i) support vector machine (SVM), (ii) K-nearest neighbors (KNN), and (iii) linear
discriminant analysis (LDA). From the 1250 observations, 70% were used for training
and validation of the algorithms, and the remaining 30% were used for evaluation of
the classifiers.

A cross-validation was applied with five folds of balanced datasets for training and
validation. In this process, parameters of the classifiers were optimized to improve perfor-
mance: the solver for LDA; the regularization parameter, the kernel function, the number
of degrees for a polynomial kernel, and the kernel coefficient for SVM; and the number of
neighbors, the distance, and the type of internal algorithm for KNN.

Once the gesture classification models were optimized, the performance was eval-
uated using metrics such as accuracy, specificity, and sensitivity, given for the follow-
ing expressions:

• Sensitivity:
TP

TP + FN
• Specificity :

TN
TN + FP

• Accuracy:
TP + TN

TP + FP + TN + FN
where TP, FN, FP, and TN are defined according to the confusion matrix in Figure 3.
The gesture classification stage was used to control the movement of the corresponding
finger in the exoskeleton.
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Figure 3. Multiclass confusion matrix. TP are true positives for class k. TN are true negatives for class
k. FP are false positives for class k. FN are false negatives for class k.

One of the most important contributions of our work relies on the efforts made
towards the implementation of the classification process on an embedded device. Having
an embedded device as the core to support these techniques allows the implementation of
a flexible, light, portable, and low-power demanding device that eases the rehabilitation
process, also being closer to what is desired in a final product. Such an embedded device
would improve the usability for the operators of the system, also reducing the intrinsic
load on the recovering patient.

We selected Google Colaboratory (or Colab) to train the models in an offline fashion.
Utilizing Python, on Google Colab, we integrated different libraries to ease the training and
testing processes: Scikit-learn (https://scikit-learn.org/stable/, accessed on 15 November
2022) (machine learning models), Numpy (https://numpy.org, accessed on 15 November
2022) (mathematical functions), Pandas (https://pandas.pydata.org, accessed on 15 Novem-
ber 2022) (data analysis), Seaborn (https://seaborn.pydata.org, accessed on 15 November
2022) (statistical data visualization), and JobLib (https://joblib.readthedocs.io/en/stable/,
accessed on 15 November 2022) (model export). Although it was not particularly necessary,
we were also able to train the models in our embedded platform, but with an obvious
increase in the processing time.

The online classification process for all models (LDA, SVM and KNN) was imple-
mented on the selected embedded device, the Jetson Nano development kit. In this
deployment, we also utilized Python as our base language and integrated JobLib (model
import) and Numpy (mathematical functions). All reported values were generated and
extracted on this embedded device and later compared to the results achieved with Google
Colab, as a validation step.

2.4. Exoskeleton

The exoskeleton was developed based on the mechanical design introduced by Cui
et al. [52]. Each finger of the exoskeleton had a single active degree of freedom (DOF) and
three mechanical connections (links) corresponding to the three phalanges: metacarpopha-
langeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP). Overall,
the mechanism had an 8-bar with 10 joints. The thumb was not included in this study, as it
was considered as a passive support for the pinch movements. Each finger was driven
by an Actuonix P-series L12 linear servo-actuator with a speed range between 2 mm/s
and 7 mm/s. The actuator is driven by a standard PWM-driven linear position control.
The inset in Figure 4 (module A) details the proposed exoskeleton prototype.

In previous work reported in [6], we applied the well-known Newton–Euler formalism
to model the exoskeleton dynamics, considering each finger as a serial chain of connected
rigid body links. Equations of motion were derived by propagating joint velocities and ac-

https://scikit-learn.org/stable/
https://numpy.org
https://pandas.pydata.org
https://seaborn.pydata.org
https://joblib.readthedocs.io/en/stable/
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celeration from the base to each distal phalange. By solving the inverse dynamics problem,
spatial forces and applied torques were found for each joint of the exoskeleton. The dynam-
ics model described in [6] was validated using a ©VICON-driven motion-captured visual
tracking system, where the resultant exoskeleton’s joint motion was compared against the
motion generated by each individual finger while following the proposed rehabilitation
trajectories. Overall, we obtained a mean squared error (MSE) of 0.33%.

2.5. Muscle Fatigue

In previous work [44,53], we developed a method to characterize muscle fatigue from
several volunteers. The approach was aimed at assessing hand motion deficiency based
on the extraction of relevant features from the EMG signals associated with the muscle
condition as an indirect measure of fatigue. Muscle fatigue is defined as the process of
declining output force during sustained activity. Likewise, fatigue can be detected by
extracting EMG features that correlate higher to muscle condition changes. In addition, it
can be classified into three levels: nonfatigue, transition to fatigue, and fatigue.

Here, we focus on the identification of EMG signals from the forearm aimed at de-
tecting different levels of fatigue when the hand is performing a motion. We implemented
artificial neural networks (ANNs) to classify three muscular condition levels correspond-
ing to the levels obtained in the dataset. All the subjects in this dataset do not present
any hand movement disorder or impairment. Several methods for feature extraction and
ranking methods from sEMG signals are implemented and evaluated in the subject groups.
In particular, eleven features in time and four features in frequency-domain are extracted,
followed by two different ranking methods to assess the relevance of various features for
discriminating the muscular condition levels. Finally, three feedforward backpropagation
ANNs were trained, one for each muscular condition level. Figure 5 presents the overall
architecture for muscle fatigue characterization.

Model Predictive Control 
(MPC)

Feature 
extraction

ANN classification

Fuzzy-driven
velocity assistance

Exoskeleton

Exoskeleton 
dynamics model 

EMG processing
(embedded system)

Gesture 
Classification

Trajectory generation

Muscle fatigue

Reference

EMG data

State-variables

Actuation

CVA
Pathology that generates focal dysfunction of brain tissue
due to an imbalance between:
         The contribution of 𝑂2 or other substrates
         What the brain really requires

Maximum force
production

Force
fluctuation

Fig. 1: Closed-loop control architecture. Joint references are input based on the therapy motions presented for each finger, while a 
 Fuzzy model determines the adjusted-velocity based on the detection of muscular effort. The MPC drives the exoskeleton’s velocity by

tracking the joint references, but also predicts muscular effort to counterbalance the final velocity output.
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Fig. 6: Therapy of flexion and extension of the finger with speed as a
train of pulses. Comparison of both controllers behavior of the speed
and position signals and the actuator with respect to the reference.

Fig. 7: Constant velocity finger flexion and extension therapy. Behavior of the speed signal of the MPC speed controller as a function of the desired
joint trajectory given by the reference signal and of the speed estimated from the muscular effort with the diffuse system for the CAD model and
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In order to achieve accurate classification of the levels, signal filtering is required
to remove external noise. The Myo Armband comes with high-pass and notch filters
that enable sufficient noise filtering in the EMG signals, mostly during muscular activity.
However, we encountered a strong influence on the electrical activity of the muscles during
the resting stage. This influence was reduced by applying the z-score standardization
method. After the proper filtering, the EMG signals were segmented into windows of 1 s
with an overlapping of 30%.

We defined 9 characteristics to form the feature vector; 5 features in the time domain
and 4 in the frequency domain. In this sense, the feature vector ψ has 100 elements formed
by the 9 extracted features for the 8 channels of the Myo device plus other 28 features for
muscle coactivation. Table 2 presents the mathematical formula for the extracted features.

Table 2. The features extracted from each sEMG signal. xi represents the EMG signal in a segment
i, N denotes length of the EMG signal. Assuming that the frequency spectrum is divided into M
frequencies, f j represents the jth frequency of the signal’s spectrum 1 ≤ j ≤ M, and Pj the power
of f j.

Acronym Name Domain # Feat. Equation

ACNI Cumulative
integration time 1

1
N

N

∑
i=1

xi−1 + xi
2

4 i

ZC Zero crossing time 1

∑N−1
i=1 sgn(xixi−1)

∩|xi − xi+1| ≥ threshold

sgn(x) =
{

1, if x ≥ threshold
0, otherwise

MTW Multiple time
window time 6

∑N−1
i=0 (Wixi)

2 Hamming
∑N−1

i=0 Wix2
i Trapezoidal

∑N−1
i=0 Wix2

i Slepian

CFM Contraction force
muscular time 1

VRMS
VRMS(rest)

MCA Muscle
co-activation time 28

VRMS(m)

VRMS(j)

ASD Average of
spectral density frequency 1

1
N

M

∑
j=1

Pj

MNF Mean frequency frequency 1
∑M

j=1 f jPj

∑M
j=1 Pj

MDF Median frequency frequency 1
MDF

∑
j=1

Pj =
M

∑
j=MDF

Pj =
1
2

M

∑
i=1

Pj

PR Power rate frequency 1
max(P)
min(P)

2.6. Model Predictive Control (MPC)

The model predictive control (MPC) technique allows establishment of the driven
signal for the exoskeleton and adaptation of the system based on the EMG signals. Fur-
thermore, any change in the muscular condition can be predicted, by following an iterative
finite-horizon optimization of the system, considering both the dynamics equations of
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motion of the exoskeleton and the input EMG data [54]. In this regard, Table 3 summarizes
the most relevant design parameters of the MPC controller [51,55].

Since the optimization model is highly dependent on the state variables of the ex-
oskeleton, we used the Matlab Simscape Multibody Dynamic Toolbox © to compute the
corresponding equations of motion in order to feedback the several state variables such
as the joint positions, velocities, and moments. The MPC optimization algorithm uses the
feedback to minimize the mean square error (MSE) between the actuation controller output
and the reference signal. Figure 4 details the proposed closed-loop control scheme.

3.2 Data acquisition system

(a) (b) (c)

(d)

Figure 3.4: Hand position and time sequences for each exercise: a) open and close the hand, b)

flexion and extension of the wrist, c) spread fingers, and d) pinch-grip of the fingers.

Figure 3.5: Hand position for the pinch-grip exercise and the time sequence for each level.
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Fig. 4. Membership functions of fuzzy logic system.
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Fig. 5. Velocity behavior when the muscular condition change between: (a) levels 1-2 (b) level 2-3. Also, the distribution of the velocity ranges obtained
with the testing data is presented in (c).

TABLE III
CLASSIFICATION PERFORMANCE COMPARISON WITH DIFFERENT

NUMBER OF HIDDEN LAYERS FOR THE MUSCLE CONDITION LEVELS.

Level HL Nodes NMSE TPR TNR
1 288 0.11 0.78 0.61

1 2 66-76 0.12 0.84 0.59
3 20-14-84 0.12 0.85 0.57
1 238 0.22 0.75 0.47

2 2 60–53 0.22 0.78 0.46
3 99–96–65 0.19 0.80 0.47
1 286 0.19 0.76 0.51

3 2 100-59 0.18 0.85 0.52
3 54–95–27 0.16 0.74 0.52

Secondly, the SFIS was trained with the output of the three
classifiers with one hidden layer selected. The data variance
and distribution of each level were used as indicators for the
performance validation of the SFIS. For the learning process,
the parameters of the SFIS were initialized and adjusted by
using the least-squares and backpropagation gradient descent
methods.

Four membership functions were assigned to the SFIS,
as shown in Fig. 4. These clusters enable to achieve the be-

haviour defined by the fuzzy rules in Table I. The intersection
between clusters defines the input states, as follows:

• Input 1 (In1):
– the intersection of clusters 1 and 4 define the

fatigue level (BL).
– the intersection of clusters 1 and 2 define the

transition-to-fatigue level (TL).
– the intersection of clusters 2 and 3 define the non-

fatigue level (NL).
• Input 2 (In2):

– The cluster function 1 defines the BL level.
– the intersection of clusters 2 and 3 define the

transition-to-fatigue level (TL).
– the intersection of clusters 2 and 4 define the NL

level.
• Input 3 (In3):

– the intersection of clusters 1 and 2 define the
fatigue level (BL).

– the intersection of clusters 2 and 4 define the
transition-to-fatigue level (TL).

– the intersection of clusters 4 and 2 define the non-
fatigue level (NL).

Figures 5(a)-(b) show velocity (v) modulation patterns ac-
cording to the levels transition i,e. EMG muscular condition.

512
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Figure 5. EMG-based muscle fatigue characterization.

Table 3. Selection criteria of design parameters for MPC.

Parameter Value Additional Considerations

Sample Time (ts) 0.001 s The plant works at that sample time.

Prediction Horizon (HP) 20

Control Horizon (HC) 2
The higher its value, better response but greater

the computational load.

Constraints
(C-MV and C-MO)

C-MV = −inf,inf
C-MO = −0.007, 0.007 ms−1

Soft constraints: can leave the range minimally
Hard constraints: cannot leave the range

Recommended: not all constraints hard, optimal
mathematical expression could not be found.

Weights
(W-MV and W-MO)

W-MV = 0 and W-MO = 0.135
Controls the deviation of the manipulated variable

from the reference.

State-Estimator (SE) Faster or slower
Faster: faster response and shorter settling time, but

higher computational load.

Close-loop
performance (CLP)

Robust or aggressive
Robust: less peak and allows for smoother towards the reference.

Aggressive: Movement more abrupt.
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The MPC is primarily driven by a velocity reference, which is defined by applying
cubic-spline interpolation methods based on the EMG-based gesture classification shown
in module B from Figure 4. This reference is the therapy motion that drives the exoskeleton.
Further details regarding EMG data interpolation and trajectory generation can be found
in previous work reported in [44].

in addition to the reference velocity, the MPC also requires the exoskeleton’s state
variables, concretely, the positions and velocities controlled by the linear actuator. Both
variables are used for the MPC constraints shown in Table 3, but only the velocity was
used as the manipulated variable. The MPC was trained by using a velocity reference ramp
signal with a slope of 0.1 (speed increase given by the fuzzy model), within a range between
0 mm/s and 7 mm/s. This enables the MPC to learn the kinematics range of motion and
the rate of change between velocities. In addition, a predominant tracking in the speed
over the position was achieved, being key to the goal of actively assisting the patient.

Furthermore, the MPC configuration allows a direct coupling with EMG data associ-
ated with different velocity levels to counteract muscle fatigue, as shown in module C from
Figure 4. In previous work reported in [44,56], we used a feedforward back propagation
artificial neural network (ANN) to classify the EMG extracted features into three levels
of muscular condition change, correlated with muscle fatigue levels, e.g., low, normal,
and high fatigue. These levels were input into a Fuzzyfication model composed of sev-
eral velocity-defined membership functions translated to 1647 fuzzy rules that generate
the output velocity. Depending on the combination of the ANN inputs, the logic system
increases, decreases, or maintains the output value. When the ANN inputs indicate that
the muscular effort is high, the model will increase the output velocity while the ANN
inputs do not change. Otherwise, the output velocity decreases when the ANN inputs
indicate minimal muscular effort. Overall, a Sugeno-Fuzzy inference MISO model is in
charge of these logical combinations based on the EMG classification generated by the
ANN. As mentioned, further details are found in [44,56].

Here, the EMG-based velocity data are used as another input to the MPC controller,
with the aim of predicting muscle fatigue to modulate the actuation signal and compensate
the assistance motion accordingly. As observed in module D from Figure 4, the actuation
output is generated as a function of motion reference, the EMG-based velocity assistance,
and the state variables of the system. Using the MPC constraints parameters, the EMG-
derived velocity input has a priority in terms of tracking, allowing the controller to properly
compensate muscle fatigue independently of the therapy motion reference.

3. Results
3.1. Gesture Classification

The EMG signal characteristics presented in Section 2.2 were extracted and used as
the input of the classifiers. The feature vector of size 1× 40 was defined as

[MAV, WAMP, VAR, WL, ZC]

where each feature denoted a vector that contains the corresponding characteristic for each
of the eight channels.

Three different classifiers were implemented (LDA, SVM, and KNN), where 70% of
the events, corresponding to 175 examples per gesture (balanced events), were used for
training and validating the model parameters.

In training, the three classifiers obtained a correct classification rate (accuracy) greater
than 0.95, 0.97, and 0.78 for LDA, SVM, and KNN, respectively. The SVM classifier per-
formed best with 0.98± 0.02 accuracy, followed by LDA with 0.97± 0.02 and KNN with
0.89± 0.11. The gestures that obtained the highest and lowest correct prediction rate on
average were the closed hand and the ring-thumb pinch with 1.00± 0.00 and 0.88± 0.12,
respectively. Figure 6 shows the results.

Accuracy with the highest average index was the closed hand with 0.97 ± 0.10,
while the gesture with the lowest average correct index was the heart-thumb pinch with
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0.72± 0.15. In the case of the average rate of the classifiers, the LDA was positioned
with the best performance of 0.93± 0.03, followed by the SVM with a performance with
0.86± 0.03. Ultimately, KNN returned 0.69± 0.04.

LDA SVM KNN
solver svd C 0.1 # neighbors 10

gamma 1 algorithm ball tree
kernel polynomial power parameter 2
degree 3
decision function one vs one

LDA
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Figure 6. Confusion matrices of the three trained models applied to the subject. Gesture labels are
defined in Figure 2.

Figure 7 shows the spread between specificity and sensitivity, similar to what is
obtained from an ROC curve (receiver operating characteristic) obtained in the evaluation
phase for each model and gesture. As shown in the figure, the heart-thumb and ring-
thumb pinch exercises (blue triangle and green square) did not have the highest sensitivity
values, with mean values of 0.929, 0.863, and 0.696 for LDA, SVM, and KNN, respectively.
In the case of specificity, the gestures have an average value very close to each other in
each classifier. It is highlighted that the closed-hand gesture presents a high specificity.
Regarding each classification model, the LDA obtained the highest sensitivity and the
highest specificity. On the other hand, KNN presents the lowest sensitivity and specificity.
Table 4 shows the metrics mentioned for each subject with respect to the classifier with the
best performance, that is, the LDA.
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Figure 7. ROC data obtained from the classification of hand movements. The results presented are
divided into the three implemented classifiers: LDA, SVM, and KNN. Gesture labels are defined in
Figure 2.
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Table 4. Sensitivity, specificity, and accuracy values during training and evaluation of the LDA model
for each volunteer.

Training Test

Sen. Spe. Acc. Sen. Spe. Acc.

Volunteer 1 0.98 0.99 0.98 0.96 0.99 0.96

Volunteer 2 0.97 0.99 0.97 0.93 0.98 0.94

Volunteer 3 0.97 0.99 0.97 0.89 0.97 0.90

Volunteer 4 0.97 0.99 0.97 0.94 0.98 0.94

Volunteer 5 0.95 0.97 0.94 0.90 0.97 0.90

Average 0.97 0.99 0.97 0.92 0.98 0.93

3.2. MPC Control of the Exoskeleton

Experiments were conducted to analyze the performance of the ANNs and the Fuzzy
system used to classify muscle fatigue according to the three levels defined in Section 2.5.
The ANN-based classifiers were trained with all features and the number of hidden layers
(HL) were modified. Therefore, we tested three ANNs per level. The statistical validation
metric used to compare and analyze the performance of the classifiers was the sensitivity,
specificity, and the normalized mean square error (NMSE). Figure 8 shows ROC curves for
each muscle condition level. We observed that both false predicted rate and true predicted
rate increased for all the levels and ANN classifiers.

For the level 1, the classifier with two hidden layers obtained better specificity and
sensitivity values. For the level 2, better results were obtained with three hidden layers.
For the level 3, there is not a significant differences among the tested ANNs. Overall,
the level 1 obtained a better relation between the true predicted rate and false predicted rate.

Based on the reported numerical results, the ANN-based classifier with one hidden
layer was selected as the input for the Sugeno Fuzzy Inference System (SFIS). This selection
was mainly based on the lowest NMSE and fast computational performance.
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Figure 3.15: Performance metric by changing the size of the � vector; the order of the elements in the � vector is according to both

ranking methods. The performance curves belonged to the classifiers obtained by the test 1 (using the dataset 2). The curves presented in a-e

correspond to ranking method 1 and the curves in f-j correspond to ranking method 2.

69
Figure 8. Receiver operating characteristic (ROC) curves obtained for EMG-based muscle fatigue
classification using ANNs, according to the setup presented in Figure 5. Results were obtained for
each motion exercise (Ex) based on the gestures from Figure 2.

As detailed in Figure 4, the output velocity generated by the fuzzy model is used as an
input to the MPC controller. This EMG-based-driven velocity is then used by the controller
to counteract muscle fatigue issues. Therefore, the performance of the MPC controller was
evaluated in terms of the reference tracking error, and the muscle fatigue compensation.
The mean squared error (MSE) metric was used to that purpose. In Figure 9a, a ramp-
based velocity signal for flexion and extension was used as a reference, which translated
into a quadratic (accelerated) position. This test was carried out in order to observe the
behavior of the MPC under constant acceleration. The predominant reference to the MPC
corresponds to the velocity reference trajectory rather than the EMG-based input generated
by the module C in Figure 4. In terms of tracking, the results reported a maximum
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MSE of 4.96× 10−8. Table 5 shows the MSE numerical results for different profiles of
input velocities, corresponding to seven repetitions of opening and closing finger motions.
As observed, the MPC obtained insignificant tracking errors, even for input references up
to 7 mm/s. It is important to highlight that the Actuonix P-series L12 linear servo-actuator
comes with an integrated low-level position control loop. In this regard, the proposed MPC
controller is a high-level loop in charge of regulating the actuator’s velocity, by generating
ramp-based references to the integrated low-level position control. As a result, our system
is able to track the desired input velocity reference, but also to control the actuator’s
linear position. In this sense, the small errors observed in Figure 9a during the changes in
acceleration at t = 3 s and t = 9 s, respectively, are due to the integrated low-level position
control, since the actuator detects minimum changes of 0.3 mm.
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(a) MPC reference tracking
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(b) MPC fatigue compensation
Figure 9. MPC−driven exoskeleton velocity control. The input reference was defined with accelerated
sections, considering both positive and negative slopes. In (a), the MPC tracks the desired velocity
profile for both finger flexion and extension therapy motions. In (b), the MPC considers an EMG-based
velocity input associated with muscle fatigue (∀t : 0 6 t 6 5), forcing the MPC controller to counteract
the assistance motion by given priority to the EMG input data rather than the reference tracking.

Table 5. Therapy of flexion and extension of the finger with variable speed and accelerated posi-
tions (7 repetitions). MSE for MPC controllers of position and speed for 7 opening/closing cycles,
varying vin.

Position Speed

2 mm/s 1.7161 × 10−7 3.5368 × 10−8

3 mm/s 1.7062 × 10−7 4.1654 × 10−8

4 mm/s 1.7617 × 10−7 4.5063 × 10−8

5 mm/s 1.8025 × 10−7 4.7184 × 10−8

6 mm/s 1.8367 × 10−7 4.8616 × 10−8

7 mm/s 1.8631 × 10−7 4.9636 × 10−8

In Figure 9b, the same input reference was applied; however, the predominant tracking
was assigned to the EMG-based input rather than the velocity reference trajectory generated
by the module B in Figure 4. Under this configuration, the proposed MPC controller was
integrated with the fuzzy-driven module C described in [44]. As observed, ∀t : 0 6 t 6 5,
the MPC discards the velocity reference, forcing the exoskeleton to compensate the as-
sistance motion based on the EMG input associated with muscle fatigue. In this case,
the controller increases the driven-velocity of the therapy up to 10 mm/s during the flexion
motion in order to counteract a possible compromise of the patient’s muscle.

Further experiments were conducted to analyze the EMG-based muscle fatigue com-
pensation provided by the MPC. Figure 10 shows the results. In this test, the velocity
reference trajectory was defined as PWM (pulse width modulation) instead of the ramp
signal used in the previous experiment. The yellow-colored line corresponds to the velocity
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assistance calculated from the EMG-data, after the classification of the three levels of mus-
cular fatigue, as explained in module C from Figure 4. As mentioned, the MPC determines
an output driven-velocity between the trajectory reference (red line) and the EMG input
reference (yellow line), given the tracking priority to the EMG-based muscle fatigue input.
This functionality is reflected by the blue line, which counteracts the behavior exhibited by
the EMG data (opposite motion direction), when the velocity of the fuzzy system is less
than the reference. Contrarily, when the fuzzy-driven assistance velocity is higher than the
reference, both responses exhibit a direct relationship.

Furthermore, the MPC was also able to predict the changes from flexion–extension–
flexion, as observed at t = 2.5 s, t = 5.2 s, and t = 7.8 s, respectively, improving the motion
assistance provided by the exoskeleton.

CAPÍTULO 3. METODOLOGÍA

El comportamiento del sistema ante los cambios de fatiga provenientes del paciente por medio del sistema difuso en

simulación, se encuentra en la Figura 3.32, donde la señal roja es la trayectoria articular deseada, la señal amarilla representa los

cambios de velocidad provenientes del sistema difuso y la señal azul es la salida del controlador que responde ante estos cambios

para compensar el efecto de fatiga muscular. Como es posible evidenciarlo, la señal azul actúa para compensar el efecto generado

por estos cambios, prediciendo así la velocidad del sistema ante los cambios generados por la fatiga muscular.

Figura 3.32: Terapia de flexión y extensión del dedo índice a velocidad constante. Comportamiento de la señal de velocidad del
controlador MPC de velocidad en función de la trayectoria articular deseada dada por la señal de referencia y de la velocidad

estimada a partir del esfuerzo muscular con el sistema difuso.

Del comportamiento observado en la Figura 3.32 es posible caracterizar los comportamientos esperados del controlador

MPC para compensar los efectos de fatiga muscular según el estado en el que se encuentre y si su valor absoluto es mayor, menor

o igual que la referencia. Dichos comportamientos esperados con respecto a la compensación de fatiga muscular por parte del

controlador MPC se resumen en la TABLA 3.17. De ahí, se establecen los siguientes comportamientos:

Cuando el valor absoluto de la señal amarilla es menor que el valor absoluto de la señal roja y no hay un estado de fatiga

muscular, la señal amarilla y la señal azul actúan de la misma manera, es decir, tanto la señal amarilla como la señal azul

incrementarán su valor de velocidad.

Cuando el valor absoluto de la señal amarilla es menor que el valor absoluto de la señal roja y hay un estado de fatiga

muscular, la señal amarilla y la señal azul actúan de forma opuesta, es decir, mientras la señal amarilla decrementa su valor

de velocidad, la señal azul incrementa su valor de velocidad.

Cuando el valor absoluto de la señal amarilla es mayor que el valor absoluto de la señal roja y no hay un estado de fatiga

muscular, la señal amarilla y la señal azul actúan de forma opuesta, es decir, mientras la señal amarilla incrementa su valor

de velocidad, la señal azul decrementa su valor de velocidad.

Cuando el valor absoluto de la señal amarilla es mayor que el valor absoluto de la señal roja y hay un estado de fatiga

muscular, la señal amarilla y la señal azul actúan de la misma forma, es decir, tanto la señal amarilla como la señal azul

decrementarán su valor de velocidad.

Cuando el valor absoluto de la señal amarilla es igual que el valor absoluto de la señal roja ya sea que haya o no haya un

estado de fatiga muscular, la señal amarilla y la señal azul actúan de la misma forma, es decir, tanto la señal amarilla como

la señal azul decrementarán su valor de velocidad si hay un estado de fatiga muscular o incrementarán su valor si no hay un

estado de fatiga muscular.
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Figure 10. MPC−driven muscle fatigue compensation based on EMG input data.

Finally, the numerical results are consigned in Table 6 by comparing both the simula-
tion and experimental tests with the exoskeleton’s testbed. As detailed in both scenarios,
the correlation metrics obtained during reference tracking (nonfatigue) and those with the
EMG-based fatigue input demonstrate the performance and accuracy of the proposed MPC
control system for smart rehabilitation assistance.

Table 6. Expected muscle fatigue compensation performance measures between MPC and Ref-
Fuzzy (EMG).

Simulation Results Experimental Results

Non-Muscle
Fatigue Muscle Fatigue Non-Muscle

Fatigue Muscle Fatigue

Correlation Flexion = 0.95
Extension = 0.84

Flexion = 0.96
Extension = 0.99

Flexion = 0.95
Extension = 0.96

Flexion = 0.91
Extension = 0.95

MSE 8.94 × 10−7 2.57 × 10−6 9.48 × 10−7 1.01 × 10−6

RMSE 9.45 × 10−4 1.60 × 10−3 9.74 × 10−4 1.00 × 10−3

4. Discussion

Three different classifiers (LDA, SVM, and KNN) were implemented to classify hand
movements based on electromyography (EMG) features. The proposed classifiers were
evaluated based on the accuracy, sensitivity, and specificity. During training, the SVM
classifier obtained the highest accuracy (0.98), while LDA obtained the highest average
performance rate (0.93). The closed-hand gesture obtained the highest correct prediction
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rate (1.0), while the heart-thumb pinch obtained the lowest. The LDA classifier had the
highest sensitivity and specificity and performed the best overall. The LDA results in
terms of sensitivity, specificity, and accuracy (above 0.9) demonstrate the effectiveness of
EMG-based gesture recognition for prosthetic devices and rehabilitation purposes.

For muscle fatigue, we followed comprehensive methods and protocols from the
specialized literature in this field [57,58]. Since we are not still working on real post-stroke
patients, we relied on 18 healthy volunteers to emulate possible scenarios of muscle fatigue,
according to the three levels of muscular condition defined in Figure 5. In order to induce
muscle fatigue in our volunteers, we used one gesture: pinch-thumb grip, as shown by the
insets in Figure 5. As mentioned, this EMG-based fatigue characterization was conducted
on previous work reported in [53]. For instance, our approach aims to assess the subject’s
muscular capability associated with the muscle condition, as an indirect measure of fatigue,
considering that muscle fatigue is defined as the process of declining output force during
sustained activity [57]. It is worth highlighting that most of the existing body of work
classified the fatigue for the upper and lower limbs in particular [58–60], while few works
classified muscular fatigue for the hand [61,62]. In Figure 8, ROC curves were obtained to
demonstrate the accuracy of detecting EMG-driven muscle condition changes, according
to the levels of muscle fatigue previously defined, by combining the hand exercises and
EMG acquisition protocols from Figures 2 and 5. In this paper, we took a step further,
using both EMG datasets as inputs to the model predictive control (MPC), in order to
trigger the exoskeleton’s assistance based on increasing or decreasing the velocity of the
exercise motions.

The proposed MPC approach enabled the exoskeleton to adapt the driven rehabili-
tation velocity, according to the muscle effort detected from the EMG dataset, achieving
correlations of > 0.9 with the EMG-based velocity input. More importantly, the proposed
system was also able to predict a change in the muscular condition to properly compensate
through the exoskeleton. In terms of reference tracking, the MPC obtained negligible mean
square errors. Although the simulation models and the experimental tests did not consider
external factors such as the payload caused by the patient’s hand, the results reported in
this paper are an important step towards the precise and optimal assistance under real
clinical scenarios.

The performance of our proposed MPC controller was evaluated in terms of the
reference tracking error and the muscle fatigue compensation using the EMG-based-driven
velocity. The MPC obtained insignificant tracking errors, even large input references (up to
7 mm/s for ramp reference). The MPC was also able to predict changes with minimum
error from flexion–extension–flexion (speed polarity change on PWM reference), improving
the motion assistance provided by the exoskeleton. The proposed MPC control system for
smart rehabilitation assistance demonstrated accurate and efficient performance for both
nonfatigue and EMG-based fatigue inputs.

Most of the body of work in this field reports the use of adaptive controllers driven
solely by the EMG signals. Here, our control technique allows for two input references:
the joint trajectory of the rehabilitation exercise and the estimation of velocity according to
the detected muscular effort. These multiple inputs not only allowed for an outstanding
precision in the tracking, but also enabled the MPC to seek a balance between the desired
rehabilitation and the EMG-based muscular effort, as observed in the results reported by
Figure 10.

5. Conclusions

Our study validates the performance of a system for real-time identification of hand
gestures from EMG signals implemented in an embedded system, as well as a closed-loop
control system developed in an exoskeleton for compensating the effects of muscle fatigue
in hand joint rehabilitation therapies.

The proposed MPC approach enables the exoskeleton to modulate the driven reha-
bilitation velocity according to the muscle effort detected from the EMG dataset, and the
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system also predicts a change in the muscular condition to properly compensate through
the exoskeleton. To the best of the authors’ knowledge, applying a model predictive control
(MPC) approach with two input references is a novel work in the field, enabling the ex-
oskeleton to accurately track and apply the therapy reference while considering muscular
fatigue disturbances. As a result, the controller triggers the assistance when needed, while
softly forcing the patient to fulfill the therapy exercise.

Upcoming work will be focused on implementing the fuzzy model and the embedded
MPC into a system on chip (SoC) platform, since neural engine cores will increase the
computational response of the MPC controller while enabling machine learning models to
process EMG signals in real time.
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