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Abstract: Convolutional neural networks (CNNs) have been used widely to predict biological
brain age based on brain magnetic resonance (MR) images. However, CNNs focus mainly on
spatially local features and their aggregates and barely on the connective information between distant
regions. To overcome this issue, we propose a novel multi-hop graph attention (MGA) module
that exploits both the local and global connections of image features when combined with CNNs.
After insertion between convolutional layers, MGA first converts the convolution-derived feature
map into graph-structured data by using patch embedding and embedding-distance-based scoring.
Multi-hop connections between the graph nodes are modeled by using the Markov chain process.
After performing multi-hop graph attention, MGA re-converts the graph into an updated feature
map and transfers it to the next convolutional layer. We combined the MGA module with sSE (spatial
squeeze and excitation)-ResNet18 for our final prediction model (MGA-sSE-ResNet18) and performed
various hyperparameter evaluations to identify the optimal parameter combinations. With 2788
three-dimensional T1-weighted MR images of healthy subjects, we verified the effectiveness of MGA-
sSE-ResNet18 with comparisons to four established, general-purpose CNNs and two representative
brain age prediction models. The proposed model yielded an optimal performance with a mean
absolute error of 2.822 years and Pearson’s correlation coefficient (PCC) of 0.968, demonstrating the
potential of the MGA module to improve the accuracy of brain age prediction.

Keywords: brain age prediction; brain magnetic resonance image; graph attention; self-attention;
convolutional neural network

1. Introduction

The rates of brain aging are heterogeneous across individuals, affected by various
genetic, environmental, and lifestyle conditions [1,2] The resultant biological brain age (or
simply brain age) can be predicted by applying machine learning algorithms to neuroimag-
ing data, which are assumed to reflect aging-related changes in brain tissues [3–7]. The
difference between the predicted biological brain age and chronological age represents
the brain age gap or brain age delta, which is considered an index of the deviation from
a normal aging trajectory [8,9]. A significant association exists between brain neuroimag-
ing data and neurodegenerative disorders [10], and many studies demonstrated that the
positive brain age gap, which is extracted from brain MRI, can serve as a biomarker for
degenerative neurological disorders, such as dementia [11,12], Alzheimer’s disease [13,14],
schizophrenia [15,16], traumatic brain injuries, chronic pain, and others [17,18].

Machine learning regression models need to be trained by using the brain images
of healthy subjects whose expected brain ages equate to their chronological ages. Early
approaches manually extracted anatomical features from brain magnetic resonance imaging
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(MRI), such as cortical thickness and regional or tissue-specific volumes, and fed them
into traditional regression models, such as linear regression [19], support vector regression
(SVR) [20], and Gaussian process regression (GPR) [3]. Gaun et al. predicted brain age
by partial least squares regression (PLSR) by using cortical thickness features and yielded
an MAE of 7.90 years [21]. Raw image pre-processing for feature extraction involves
multiple steps such as field-offset correction, removal of the non-brain region, and tissue
segmentation, which may be too time consuming for clinical practice. Furthermore, the pre-
engineered features may be suboptimal as they were chosen based on generic information
about the brain, not specific relevance to brain age.

Deep artificial neural networks (a.k.a. deep learning) have been used ubiquitously
in medical image analysis, encouraged by the remarkable success of convolution neural
networks (CNNs) in computer vision applications [22]. A CNN iteratively updates the
convolution-filtered features of raw or minimally processed input images in a way that
reduces a pre-defined prediction error metric. This ensures the identification of the set
of features directly suited for increasing prediction accuracy without the need for time-
consuming pre-processing steps. Since the first CNN application to brain age prediction by
Cole et al. [23], established CNN architectures verified on natural images or their variants
have emerged, including VGG, ResNet, and DenseNet [5,24,25]. More advanced CNN
architectures have since been developed to boost the representational power and improve
prediction accuracy. Lam et al. [26] employed attention modules between intermediate and
final convolution layers such that the relationship between the feature maps of different
scales is learned. Cheng et al. [27] proposed two-stage network architectures with novel
ranking losses, where the first network estimated discretized coarse ages that were further
fine-tuned to continuous ages through the second network. He et al. [28] split MR images
into two image channels representing contrast and morphometry information and used an
attention mechanism for the optimal fusion of the two channels. Zhang et al. [29] proposed
the Anatomical Feature Attention enhanced 3D-CNN (AFAC) by using both the anatomical
and deep features of brain sMRI and yielded an MAE of 2.20 years. While the source,
sample size, and age range of the training and test data varied significantly across the
studies, the resultant mean absolute errors (MAEs) ranged from 2.14 years to 5.55 years,
adequately supporting the technical feasibility of CNN-based brain age prediction.

CNNs focus mainly on spatially local features since small-size convolutional filters
are learned to find pixel relationships in a local neighborhood. Though more global
feature characteristics can be learned by repeating the convolutional layer followed by
a pooling layer, a CNN alone cannot efficiently capture connective information between
distant regions. This limitation may be critical particularly for brain age prediction since
different brain regions interact with one another through their neurological connections in
an orchestrated manner rather than in isolation [30]. To address this issue, deep learning
models inspired by self-attention mechanisms have been developed (e.g., Transformers).
Jun et al. [31] proposed a convolutional encoder for high-level feature extraction from
two-dimensional (2D) image sets and a Transformer that captures the dependencies of
distant slices via an attention mechanism (MAE = 3.49 years; age range = 5.82 to 75.29 years).
He et al. [32] proposed a global and local Transformer that fused the fine-grained features
obtained from image patches and the global context features obtained from the entire image
(MAE = 2.70 years; age range = 0 to 97 years).

A graph neural network (GNN) is another promising framework for utilizing the inter-
region relationship due to its suitability for graph-structured data represented by nodes and
their connections (edges). Kawahara et al. [33] proposed a GNN architecture that processes
diffusion-MRI-derived brain connectivity data while considering brain network topological
locality. Liu et al. applied graph convolutional neural networks to cortical surface mesh
data to predict brain age for pre-term neonates [34]. These methods require graph structures
of data such as tractography networks [33] or surface meshes [34], which must be generated
from raw MR images. Cai et al. proposed a graph Transformer framework to fully utilize
multi-modal MR images including T1 and diffusion tensor images. While being capable of
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learning regional and inter-modality relationships, this approach needed the registration of
multi-modal images based on the standard brain template [35].

In this work, we aim to develop neural network architectures that exploit both local
and global features directly from minimally processed raw images to improve the accuracy
of brain age prediction. To this end, we propose a novel multi-hop graph attention (MGA)
module that can be easily plugged into and complement existing CNNs to learn local
features and their inherent relationships. Since the input data type is an image, the MGA
module converts the image features extracted by the preceding convolutional layers into
graph nodes through patch splitting and embedding. The graph edges are initialized to
represent the distance score between the patch embeddings and updated in a fashion that
considers indirectly connected nodes across multi-hops based on Markov chain modeling.
That is, the inter-regional connectivity is learned during training rather than pre-defined as
in GNNs by using DTI-derived graph data. The final architecture is formed by combining
the MGA module with sSE (spatial squeeze and excitation)-ResNet18 [36] and optimizing
the MGA hyperparameters. The proposed MGA-sSE-ResNet18 is compared with estab-
lished, general-purpose CNNs as well as recent deep learning models specialized for brain
age prediction.

2. Materials and Methods
2.1. Overview of Multi-Hop Graph Attention

A schematic diagram of the proposed MGA module appears in Figure 1. Placed
between convolution layers, the module receives a feature map extracted from the preceding
convolution layer and yields an updated feature map to the following layer. The updated
feature map’s size remains identical to the input feature map such that a skip connection
can be used across the module. The MGA module first constructs graph sets by defining
nodes through patch embedding and aggregation and edges through inter-node similarity
calculations. The formed graph sets pass through a graph attention block that updates
the patch set based on multi-hop self-attention and obtains an updated feature map. This
procedure repeats for multiple sets of patches of different sizes, and the resulting feature
updates are combined to produce the module’s final output.
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Figure 1. An overview of the proposed multi-hop graph attention (MGA) module. MGA contains
k independent branches that handle patch embeddings of different sizes. Each branch constructs a
node set by using patch embedding and aggregation, as well as an edge set based on similarity scores
among the node embeddings. Graph attention is applied to update the node set with consideration
of multi-hop inter-node relationships. The updated feature patches from different branches are
ensembled to obtain a final MGA output.

2.2. Graph Construction

We obtain Np patches from the feature map of size C × H × W × D obtained from
the previous convolution layer. A patch size of C × H//
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denoted as P = {p1, p2, . . ., pNp}, P ∈ RNpxS, where S is the vectorized size of a single patch.
The parcellation occurs only along the three spatial dimensions to focus on the relationships
among the spatial regions. Since the MGA module is applied after every convolution layer,
which progressively decreases in spatial resolution, the patch size decreases as the entire
network goes deeper. We aggregate each patch’s spatial channel dimensions by using
global average pooling (GAP) and global max pooling (GMP). The two pooled tensors are
then concatenated such that the resultant tensor HNpx2 contains the highlighted feature
description of the patch set. This can be represented as H = {h1, h2, . . ., hNp}, hi ∈ R2 and
serves as a set of nodes for graph construction.

The size of a patch corresponding to each node is determined by the hyperparameter
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, more local patches will be embedded in a larger number of nodes and
the relationship will be explored by the subsequent graph attention block. We consider
multiple patch embeddings of varying sizes to offer rich representations of the input feature
map. The multiple patch sets will be processed in parallel and ensembled at the end of the
MGA module.

An edge is another component composing a graph and represents the connective
strength between local anatomical features in the present study. We define the edge eij
between two nodes hi and hj by computing a Euclidean-distance-based similarity score of
two feature embeddings Vhi and Vhj as follows:

eij := 1/
(

exp
(∥∥Vhi − Vhj

∥∥
2

))
(1)

The use of the learnable embedding V (∈R2×2) is supported by the fact that the brain
region connections are viewed based on a functional and effective linking of neural elements
rather than the direct similarity of the image features [30]. The graph based on this edge
definition is undirected since eij = eji for all i, j < Np, and therefore, the corresponding edge
matrix, denoted as E, is symmetric. It is noteworthy that the similarity score between the
same node embedding is 1, implying that every node can receive attention not only from
its neighbors but also itself.

2.3. The Multi-Hop Neighborhood of Nodes

In this section, we modify the edge matrix E to consider both the direct and indi-
rect neighborhood of the node set through a statistical model of multi-hop connections
among the nodes. We consider a random event of moving from one node to another in
the state space defined as Ω = {h1, h2, . . ., hNp}. The transition may simply occur be-
tween two nodes, but it can also occur sequentially in three or more nodes (e.g., ẽ46, ẽ14,
and ẽ11 in Figure 2). Denoting the outcome of the t-th transition by X(t) with time step
t ∈ T = {0, 1, 2, . . ., m} (m ∈ R), we model the similarity score (i.e., edge) as the conditional
probability of transitioning from state hj to hi, expressed as P(X(t) = hi|X(t − 1) = hj). To
equate the summation of all the edges entering a specific node to 1, the edge matrix is
row-wise normalized to Ẽ = D−1E, where D is a diagonal matrix with diagonal element
dii = ∑j eij. The normalized edge matrix Ẽ is stochastic, satisfying the following equations
for all i, j = {0, . . ., Np}: {

1 ≥ ∼
e ij ≥ 0

∑
Np
j=0

∼
e ij = 1

(2)

Typical implementations of graph attention networks (GATs) consider the influence of
a node in the first-order domain adjacent to it when integrating a graph structure [37,38].
To enhance the representational capacity of the graph network, we modify the edge matrix
such that it considers up to mth-order neighborhood information.
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Consider an m-hop transition probability that a process currently in state hj transi-
tions to state hi through m (>=1) hops, denoted by ẽij

(m). We assume that the transition
event satisfies the key Markov property, i.e., depends only on the most recent state. Then,
ẽij

(m) can be expressed as below by using the Chapman–Kolmogorov equation:

∼
e
(m)

ij = P
(
X(m) = hi

∣∣X(0) = hj
)

= ∑
Np
k=0 P

(
X(m) = hi, X(m − 1) = hk

∣∣X(0) = hj
)

= ∑
Np
k=0 P(X(m) = hi|X(m − 1) = hk)·P

(
X(m − 1) = hk

∣∣X(0) = hj
)

= ∑
Np
k=0

∼
e ik·

∼
e
(m−1)
kj

(3)

where ẽij
(0) is set to ẽij for initialization. Equation (3) indicates that the probability of m-

hop transitions occurring equals the multiplication of the products of all the intermediate
transitions recursively. In matrix form, this can be written as follows:

∼
E
(m)

=
∼
E

∼
E
(m−1)

=
∼
E
(2) ∼

E
(m−2)

= · · · =
∼
E

m
(4)

Accounting for zero-hop up to m-hop transitions, we obtain the m-th order edge matrix,

denoted as
∼
E
(m)

∀ , as follows:

∼
E
(m)

∀ =
∼
E + β

∼
E
(2)

+ β2
∼
E
(3)

+ · · ·+ βm−1
∼
E
(m)

=
m

∑
k=1

βk−1
∼
E

k
(5)

where β is a hyperparameter ranging from 0 to 1, which increases the weight on edge
matrices for smaller hops.

∼
E
(m)

∀ is no longer symmetric, which violates the requirement of the undirected graph

that
∼
e
(m)

∀,ij should be equal to
∼
e
(m)

∀,ji . Therefore, the final multi-hop edge matrix is defined as a

summation of
∼
E
(m)

∀ and
∼
E
(m)T

∀ in Equation (6):

E(m)
∀ :=

(
∼
E
(m)

∀ +
∼
E
(m)T

∀

)
/2 (6)

Note that a larger m allows for more global relationships to be considered in the
node-set H, but this may undermine the relative importance of local relationships. This
tradeoff will be investigated by experiments with varying m values (Section 4.1).
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2.4. Updating Nodes via Graph Attention

We update the node set by adapting the masked graph self-attention proposed by
Velickovic et al. [39]. The attention coefficient
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(
WT [Vhi ∥ Vhk]

) (7)

where || is the concatenation operation, W is a learnable weight matrix (∈R4×2), and Ni
is the subset of H that is related to the target node hi. In conventional graph networks,
all edges eij are binary, representing a direct connection (one) or disconnection (zero)
between nodes hi and hj [40–42]. The masked self-attention (within the subset Ni) can
be implemented by computing W[Vhi || Vhj] only for hi and hj whose edge values are
1 s. In our work, edges have continuous values due to the use of distance-based scores
(Equation (1)) and are therefore made binary by using a threshold θ:

E(m)
∀ =

{
1, i f E(m)

∀ > θ
0, otherwise

(8)

where θ is empirically chosen as the average of
∼
E∀i,i+1 over i = {1, 2, . . ., Np−1}. This

value represents the average edge strength between directly connected nodes, which is the
only connection considered in conventional GNNs. The updated output patch set P′Np×S

is obtained thereafter by an attention-weighted linear transformation of the input patch
set PNp×S:

p’i = ∑
j∈Ni

(
αij · pj

)
(9)

The set of updated local patches is combined to form an updated whole feature map
of size C × H × W × D. Recall that k updated feature maps will be available through the
parallel processing of k patch sets obtained by using different
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. For each of the parallel
processing, different patch-embedding matrices V (in Equation (1)) and weight matrices W
(in Equation (7)) are used. The resultant k feature maps are averaged and passed over to
the following convolution layer.

2.5. MGA-sSE-ResNet18

Figure 3 presents the overall architecture of the proposed model for brain age pre-
diction. While the MGA module can be incorporated flexibly into any CNN, we choose
ResNet18 combined with the spatial squeeze-and-excitation (sSE) module, hereafter termed
sSE-ResNet18 as a backbone model. sSE-ResNet18 has been well validated in numerous
prediction tasks including brain age prediction [43,44]. The model starts with a convolu-
tional layer (the grey box in Figure 3) and consists of eight consecutive blocks (the dotted
box) followed by a pooling layer and one FC layer for regression. Each block contains two
convolutional layers, followed by one sSE module (orange) combined in parallel with one
MGA module (green). The outputs of the sSE and MGA modules are combined through
averaging. Skip connections are used across the parallel combination of sSE and MGA
modules as well as the two convolutional layers.

The number of transition hops m, the patch split ratio

Bioengineering 2024, 11, x FOR PEER REVIEW 4 of 17 

scores among the node embeddings. Graph attention is applied to update the node set with consid-
eration of multi-hop inter-node relationships. The updated feature patches from different branches 
are ensembled to obtain a final MGA output. 

2.2. Graph Construction 
We obtain Np patches from the feature map of size C × H × W × D obtained from the 

previous convolution layer. A patch size of C × ϒ × W//ϒ × D//ϒ and a stride of min(H//
ϒ, W//ϒ, D//ϒ) are used where ϒ is a hyperparameter. The set of patches is denoted 
as P = {p1, p2, …, pNp}, P ∈ ℝNpxS, where S is the vectorized size of a single patch. The par-
cellation occurs only along the three spatial dimensions to focus on the relationships 
among the spatial regions. Since the MGA module is applied after every convolution 
layer, which progressively decreases in spatial resolution, the patch size decreases as the 
entire network goes deeper. We aggregate each patch’s spatial channel dimensions by 
using global average pooling (GAP) and global max pooling (GMP). The two pooled 
tensors are then concatenated such that the resultant tensor HNpx2 contains the high-
lighted feature description of the patch set. This can be represented as H = {h1, h2, …, hNp}, 
hi ∈ ℝ2 and serves as a set of nodes for graph construction. 

The size of a patch corresponding to each node is determined by the hyperparameter 
ϒ. With a larger ϒ, more local patches will be embedded in a larger number of nodes and 
the relationship will be explored by the subsequent graph attention block. We consider 
multiple patch embeddings of varying sizes to offer rich representations of the input 
feature map. The multiple patch sets will be processed in parallel and ensembled at the 
end of the MGA module. 

An edge is another component composing a graph and represents the connective 
strength between local anatomical features in the present study. We define the edge eij be-
tween two nodes hi and hj by computing a Euclidean-distance-based similarity score of two 
feature embeddings Vhi and Vhj as follows: 𝑒 ∶=  1/(𝑒𝑥𝑝( 𝐕𝐡 − 𝐕𝐡 )) (1)

The use of the learnable embedding V (∈ ℝ2×2) is supported by the fact that the brain 
region connections are viewed based on a functional and effective linking of neural ele-
ments rather than the direct similarity of the image features [30]. The graph based on this 
edge definition is undirected since eij = eji for all i, j < Np, and therefore, the corresponding 
edge matrix, denoted as E, is symmetric. It is noteworthy that the similarity score between 
the same node embedding is 1, implying that every node can receive attention not only 
from its neighbors but also itself. 

2.3. The Multi-Hop Neighborhood of Nodes 
In this section, we modify the edge matrix E to consider both the direct and indirect 

neighborhood of the node set through a statistical model of multi-hop connections among 
the nodes. We consider a random event of moving from one node to another in the state 
space defined as 𝛀 = {h1, h2, …, hNp}. The transition may simply occur between two nodes, 
but it can also occur sequentially in three or more nodes (e.g., ẽ46, ẽ14, and ẽ11 in Figure 2). 
Denoting the outcome of the t-th transition by X(t) with time step t ∈ T = {0, 1, 2, …, m} (m ∈ ℝ ), we model the similarity score (i.e., edge) as the conditional probability of 
transitioning from state hj to hi, expressed as P(X(t) = hi|X(t −1) = hj). To equate the 
summation of all the edges entering a specific node to 1, the edge matrix is row-wise 
normalized to Ẽ = D−1E, where D is a diagonal matrix with diagonal element dii = ∑j eij. The 
normalized edge matrix Ẽ is stochastic, satisfying the following equations for all i, j = {0, 
…, Np}: 

, the number of branches k,
and the multi-hop weight coefficient β are key hyperparameters of the proposed model,
determined through iterative search. The effect of m was first examined in the range from
1 to 8 while
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= 2 and 4 were used for two branches (k = 2) with a multi-hop weight
coefficient β = 1. Different combinations of the patch split ratio and number of branches
were examined subsequently, including k = 1 with
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= 2, 4, or 6; k = 2 with
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= 2 for both
branches; k = 2 with
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β was last examined from 0.7 to 1.0 at the interval of 0.05. The detailed information for
MGA-sSE-ResNet18 is outlined in Table 1, where the hyperparameter values for the MGA
module are based on the fine-tuning results shown in Section 4.1.
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Figure 3. Overview of the proposed MGA-sSE-ResNet18 for brain age prediction. The dotted box, a
key network component, consists of two convolutional layers followed by a parallel combination of
the sSE and MGA modules and is repeated eight times. Residual connection applies across the two
convolutional layers and across the combination of the sSE and MGA modules.

Table 1. Detailed settings for MGA-sSE-ResNet18. Building blocks are stacked in table cells, where
the two cells for sSE and MGA modules are in the same row indicating their parallel connection.
The detailed structure of MGA appears in Figure 1 while its hyperparameter values of m = 3, k = 2,
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3. Experiments
3.1. Dataset

Three-dimensional whole brain T1-weighted MR images of 2788 healthy subjects
were obtained from seven public datasets: OpenNeuro [45], COBRE [46], Open fMRI [47],
INDI [48], IXI [49], FCP1000 [50], and XNAT [51]. The demographic information and
example images of the datasets are shown in Table 2 and Figure 4, respectively. The MRI
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subjects were aged between 20 and 70 years with a mean of 37.53 years and a standard
deviation of 16.50 years. There were 1337 males and 1451 females among the subjects, with
the two sex groups having similar age distributions with p < 0.001. Minimal pre-processing
was performed on the collected brain MR images by using the Statistical Parametric Map-
ping version 12 (SPM12) software package (University College London, UK) running in
MATLAB version R2017b (the MathWorks Inc., Natick, MA, USA). Specifically, MR images
were resampled to an isotropic voxel size of 1.2 mm × 1.2 mm × 1.2 mm with a matrix
size of 101 × 101 × 121. The histogram equalization and N4 bias field correction [52] were
performed to harmonize the MR images from multiple sources. All the images were scaled
by using min–max normalization.

Table 2. Demographic information of the brain MRI dataset for brain age prediction.

Nsamples Female Male Mean Age Min Age Max Age

OpenNeuro 542 323 219 26.71 20 69
COBRE 71 22 49 36.45 20 65

Open fMRI 353 170 183 35.85 20 69
INDI 696 398 298 50.23 30 69
IXI 123 61 62 50.54 30.89 69.55

FCP1000 835 477 358 27.50 20 69
XNAT 168 0 168 63.46 42 69
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3.2. Experimental Settings

We randomly divided the age-labeled brain MR images into three subsets with similar
age distributions: (1) the training dataset (70%, 1951 samples), (2) the validation dataset
(15%, 419 samples), and (3) the test dataset (15%, 418 samples). Data augmentation was
performed by using random rotation and translation during training. The rotation angle
was between −20◦ and 20◦, and the translation distance was within [–6, 6] voxels for each
direction with uniform probability. The primary training parameters were batch size = 12,
an Adam optimizer with an initial learning rate of 0.005, and a weight decay of 0.0001. The
learning rate decreased by 0.1 every 70 epochs to stabilize the convergence. The hybrid loss
function based on Spearman’s rank correlation coefficient and traditional mean squared
error (MSE) was used as proposed by Cheng et al. [27]. The drop path was applied to each
MGA branch to mitigate overfitting and accelerate the learning process by reducing the
model parameters [53]. To compensate for the systemic bias toward the mean age of the
training dataset, a linear age-bias correction procedure was performed as suggested in [54].
The final network was chosen based on the performance of the validation dataset. Each
method’s predictive performance was evaluated by calculating the mean absolute error
(MAE) and Pearson correlation coefficient (PCC) on the test dataset. All the model training
and testing were implemented with two NVIDIA A6000 GPUs (total memory of 96 GB).

3.3. Comparisons with Other Models

The proposed MGA-sSE-ResNet18 was first compared with the same backbone, but
the MGA module was replaced with multi-head self-attention (MSA-sSE-ResNet18), the key
component in attention-based architecture such as Transformers and Vision Transformers
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(ViTs) [55,56]. Both MGA and MSA employ query-key-based self-attention between patch
embeddings but differ in the scope of the key vectors to attend to and the type of alignment
functions. MSA was applied after the patch embedding combined with positional encoding
as in ViTs. MSA was implemented by using a patch size of five, an embedding size of
512 per patch, and six attention heads.

We compared the proposed model with popular CNNs for natural image recogni-
tion. The compared network architectures included (1) ResNet18 (the most established
CNN model), (2) sSE-ResNet18 (ResNet18 incorporating channel squeeze and a spatial
excitation block), (3) DenseNet121 (as an example of a CNN model with a large number
of parameters) [57], and (4) MoblieNetV2 (as an example of lightweight models) [58]. We
also performed comparisons with novel CNN-based architectures specifically designed for
brain age estimation, including (5) simple fully convolutional networks (SFCNs) [8] and
(6) two-stage age networks (TSANs) by using the ranking loss [27]. These two methods
were chosen as they yielded superior performance by using 3D CNN-based architectures
with the input of the 3D T1-weighted MR images only as in this study. The SFCN optimized
a lightweight CNN model and showed a state-of-the-art performance when using a large
training dataset (n = 12,949). The TSAN predicted the rough brain ages at the first stage
and then fine-tuned the prediction with the discretized brain age as an additional input.
The learning environment of all the compared models was set to the same as described in
Section 3.2, except for the SFCN and TSAN, which used the hyperparameters that were
used in the original papers.

The proposed MGA module was incorporated into two backbone networks, ResNet18
and sSE-ResNet18, for comparisons. We investigated the sex label’s effect as an additional
input to our final model MGA-sSE-ResNet18, inspired by its similar use in the TSAN. We
converted the sex label into a two-dimensional one-hot encoding vector and concatenated
it with the feature vectors extracted from the last block of convolutional layers and MGA
modules (i.e., immediately prior to the fully connected layers).

4. Results
4.1. Hyperparameter Evaluation in MGA-sSE-ResNet18

Figure 5 displays the effect of the hop size on the performance of the proposed
MGA-sSE-ResNet18. The MAE on the test dataset (in solid blue) mirrors a V-shaped
curve for hop sizes m = 1 through 5 and saturates for m larger than 5. This implies that
incorporating indirect connections across the nodes in the MGA module improves the
representational power. Yet, considering the relationships of too many nodes may lead to
worse generalizations. Overfitting induced by a large m is also confirmed by the training
MAE (in solid red), which decreases over m nearly monotonically and becomes very low
when m > 5. The optimal performance is achieved with m = 3, which results in the minimal
MAE of 2.957 years and maximal PCC of 0.9584.

Figure 6 illustrates the effect of different patch combinations determined by the number
of attention branches k and patch split ratio
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= 6. When
two patch split ratios were used through two branches (k = 2),
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MAE than the two other combinations (
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= {2,2}, {2,6}) and all cases of a single branch.
This implies that MGA benefits from the ensemble of different scales of patch division and
feature re-calibration.

The effect of the weight coefficient β is shown in Figure 7, where smaller β values
emphasize small-hop edge matrices (Equation (5)). The value β = 0.8 was optimal, resulting
in the lowest MAE of 2.822 years. Based on the fine-tuning results, the MGA module’s final
hyperparameters were set to m = 3, k = 2,
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graph corresponding to the condition is shown in Figure 8. These values were used in all
subsequent experiments for model comparisons.
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Figure 8. Training and validation loss graph of MGA-sSE-ResNet18. From around 400 epochs onward,
the validation loss converges at approximately 2.7 years, which is slightly smaller than the test loss
(2.8 years reported in Table 3) and demonstrates effective generalization of our model for unseen data.

Table 3. Comparisons with other models including four generic CNNs, two brain age prediction
models, and three MGA-CNN combinations.

Model MAE PCC

ResNet18 3.249 0.948
sSE-ResNet18 3.239 0.956
DenseNet121 3.340 0.961
MobileNetV2 3.295 0.950

SFCN 3.233 0.949
TSAN 2.892 0.956

MSA-sSE-ResNet18 3.216 0.960
MGA-sSE-ResNet18 2.822 0.968

MGA-ResNet18 3.065 0.955
MGA-sSE-ResNet18

(with sex label) 2.859 0.960

4.2. Comparison with Multi-Head Self Attention (MSA)

Figure 5 contains the prediction results of MSA-sSE-ResNet18, which is the same as
the proposed architecture except that MGA is replaced with MSA. MSA-sSE-ResNet18
yields nearly the same test error as MGA-sSE-ResNet18 with m > 5 (the dotted blue line in
Figure 5). Those results are because MGA becomes closer to MSA due to the increasing
scope of query-to-key attention with increasing m. MSA-sSE-ResNet18 yields a higher MAE
(3.216 years) than the proposed MGA-sSE-ResNet18 with an optimal m of three and subop-
timal β of 1.0 (2.957 years). These findings indicate that it is beneficial to consider important
embeddings selectively rather than collectively when calculating the self-attention coeffi-
cients. It is noteworthy that using MSA instead of MGA with m = 3 lowers the training error
(MAE = 1.071 vs. 1.539 years) while increasing the test error. This implies that pruning the
neighbor nodes for self-attention helps enhance the generalizability of the prediction model.

4.3. Comparison with State-of-the-Art Models

Table 3 summarizes the comparison of four general-purpose CNNs (ResNet18, sSE-
ResNet18, DenseNet121, and MobileNetV2) and two representative brain age prediction
models (the SFCN and TSAN) in terms of the MAE and PCC. All the values were obtained
after applying the bias correction to the immediate outputs of the prediction models.

Among the four generic models, sSE-ResNet18 yielded the lowest MAE with im-
provement over the plain ResNet18 on account of the spatial recalibration of the sSE block.
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Thus, sSE-ResNet18 was chosen as the backbone network to which the MGA module was
connected. DenseNet121 offered the largest MAE presumably due to excessive model pa-
rameters, which could not be well optimized by using a limited training dataset. The TSAN
revealed the lowest MAE among the six reported models after running both stages. The
SFCN underperformed compared with the TSAN, yielding an MAE > 3.0 years, presumably
because it was designed for a large training dataset (>10 k).

4.4. Ablation Study about MGA

Table 3 also shows that MGA’s incorporation into two backbones (ResNet18 and sSE-
ResNet18) resulted in improvements over both original networks. Particularly, our final
model, MGA-sSE-ResNet18, reduced the MAE by 0.417 years compared to sSE-ResNet18
and achieved the lowest MAE among all the models compared. The improvement made
by MGA is reflected in the scatter plots of the prediction outcomes on the test dataset
(Figure 9). Compared to sSE-ResNet18, MGA-sSE-ResNet18 reduced the prediction bias
and variance, as represented by the red line being closer to the blue line and narrower yellow
band, respectively, in Figure 9b. Notably, MSA-sSE-ResNet18 outperformed the compared
models except the TSAN. This implies that the strategy of extracting feature patches offers
utility for considering the relationship between distant regions. MGA better handles the
resultant graph-structured data than MSA by attending to the node neighborhood more
optimally. Finally, the additional input of sex information into MGA-sSE-ResNet18 did not
reduce the MAE (MAE = 2.859 vs. 2.822 years with and without the sex label).
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5. Discussion

We developed a multi-hop graph attention module and proposed an MGA-incorporated
CNN architecture (MGA-sSE-ResNet18) for predicting brain age based on 3D T1-weighted
MR images. MGA represents a novel graph self-attention module that learns the inter-node
relationships of graph data formed through patch embeddings of the preceding convolution
layer’s output. The capability of considering multi-hop-connected nodes invokes a key
MGA feature. This was achieved by deriving an edge matrix accounting for multi-hop tran-
sitions across nodes and applying masked attention to the resultant node neighborhood.
By applying convolution layers and MGA alternately, the proposed architecture could
extract local and global features, the effectiveness of which is verified by demonstrating an
improved prediction accuracy over previously reported CNN-based models. The pursuit
of both local and global features adheres to ongoing research on self-attention-aided convo-
lutional networks in the natural image domain [59,60]. We expect that, aside from brain
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age prediction, MGA is applicable to other image-based prediction tasks due to its effective
feature extraction and flexible integration into CNNs.

The fine-tuning of the hyperparameter m (number of hops) indicates that it is critical
to consider the appropriate node neighborhood when implementing masked self-attention
in MGA (Figure 5). By performing gate operations on the edge matrix, MGA considers only
nodes that are relevant to the target node. The gate operation can be viewed as a simplified
version of pruning, used often in tree algorithms [61]. Pruning removes non-significant
branches in a tree to mitigate overfitting. Similarly, MGA removes irrelevant nodes after
constructing the edge matrix, which improves the model’s generalizability. Another related
finding was that MSA integrated with the same backbone (MSA-sSE-ResNet18) yielded
nearly the same MAE as the proposed MGA-sSE-ResNet18 with a large m. This is consistent
with the fact that as m increases, the node neighborhood expands, and accordingly, MGA
aligns closely with MSA.

ResNet18 combined with an sSE (spatial SE) block served as a backbone network
with which the MGA module was integrated. The sSE module spatial-wise recalibrates
feature maps by using channel-wise squeeze and spatial-wise excitation. Another earlier
reported type of SE module applies the squeeze and excite operations in the opposite
dimensions, performing channel-wise re-calibration (channel SE or cSE) [62]. While the
initial applications of the cSE and sSE blocks were classification and segmentation, respec-
tively, sSE was chosen based on our experimental finding that sSE-ResNet18 outperformed
cSE-ResNet18 as well as plain ResNet18 in brain age prediction. Note that, accordingly,
MGA-sSE-ResNet18 produced a lower MAE than MGA-ResNet18 as reported in Table 3.

The proposed method has the advantages of the capability to learn both local and
global image features and flexibility in combination with existing convolutional neu-
ral networks. Nevertheless, it also involves some limitations, summarized as follows:
(1) Generally present in graph algorithms, MGA requires expansive memory for training,
particularly when the network is configured for 3D input. With a total GPU memory of
96 GB available, we could implement only up to two branches of patch embedding (k = 2)
without encountering memory errors. (2) The size of the labeled dataset in this study was
limited (2788) compared to other recent studies (e.g., 14,503 subjects in [1]). This may have
limited the performance of the proposed and compared networks, some of which were
optimized with larger datasets. (3) The lack of validation in diseased patients poses another
limitation. This study focused on improving the accuracy of brain age prediction for healthy
subjects, which serves as an essential tool for estimating deviations from normal aging.
The value of brain age estimation should, however, be assessed in a cohort of patients with
degenerative neurological diseases.

6. Conclusions

We proposed a multi-hop graph attention module (MGA) integrated into a 3D CNN for
brain age prediction based on 3D brain MR images. MGA successfully learns the relation-
ships between the multi-hop-connected nodes of a graph set formed through the patch split
and embedding of feature tensors. By interleaving MGA with conventional convolutional
layers, the proposed architecture can extract the local and global features of anatomical
brain images and enhance the representational capacity. This reflects the improved accuracy
of brain age prediction compared to previously reported convolutional models.
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