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Abstract: There is no doubt that brain tumors are one of the leading causes of death in the world. A
biopsy is considered the most important procedure in cancer diagnosis, but it comes with drawbacks,
including low sensitivity, risks during biopsy treatment, and a lengthy wait for results. Early iden-
tification provides patients with a better prognosis and reduces treatment costs. The conventional
methods of identifying brain tumors are based on medical professional skills, so there is a possibility
of human error. The labor-intensive nature of traditional approaches makes healthcare resources
expensive. A variety of imaging methods are available to detect brain tumors, including magnetic res-
onance imaging (MRI) and computed tomography (CT). Medical imaging research is being advanced
by computer-aided diagnostic processes that enable visualization. Using clustering, automatic tumor
segmentation leads to accurate tumor detection that reduces risk and helps with effective treatment.
This study proposed a better Fuzzy C-Means segmentation algorithm for MRI images. To reduce
complexity, the most relevant shape, texture, and color features are selected. The improved Extreme
Learning machine classifies the tumors with 98.56% accuracy, 99.14% precision, and 99.25% recall.
The proposed classifier consistently demonstrates higher accuracy across all tumor classes compared
to existing models. Specifically, the proposed model exhibits accuracy improvements ranging from
1.21% to 6.23% when compared to other models. This consistent enhancement in accuracy emphasizes
the robust performance of the proposed classifier, suggesting its potential for more accurate and
reliable brain tumor classification. The improved algorithm achieved accuracy, precision, and recall
rates of 98.47%, 98.59%, and 98.74% on the Fig share dataset and 99.42%, 99.75%, and 99.28% on
the Kaggle dataset, respectively, which surpasses competing algorithms, particularly in detecting
glioma grades. The proposed algorithm shows an improvement in accuracy, of approximately 5.39%,
in the Fig share dataset and of 6.22% in the Kaggle dataset when compared to existing models.
Despite challenges, including artifacts and computational complexity, the study’s commitment to
refining the technique and addressing limitations positions the improved FCM model as a noteworthy
advancement in the realm of precise and efficient brain tumor identification.

Keywords: brain cancer; tumor detection; fuzzy c-means; MRI images; extreme learning; glioma; malignant

1. Introduction

During the aging process, brain cells lose their ability to control themselves, leading
to the development of brain tumors. As tumors grow in cells, they increase pressure on
the brain and negatively affect overall health [1,2]. The tumors can damage normal tissues,
overgrow in the brain, and replicate in other parts of the body [2–4]. Disease symptoms
vary depending on tumor size, and the main challenge is diagnosing the type of tumor
because they vary in both location and size [5]. It has been shown that early diagnosis
reduces the severity and mortality of brain tumors [6].
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Brain tumors, though comparatively rare in the spectrum of cancers, pose significant
challenges due to their intricate location and potential impact on vital brain functions.
Incidence rates vary, with an estimated annual occurrence of approximately 14 new cases
per 100,000 people. According to the National Brain Tumor Society, there has been a 300%
increase in brain tumor-related deaths over the past thirty years [7]. Gliomas, comprising as-
trocytoma’s and glioblastomas, are among the most common primary brain tumors. While
overall incidence remains relatively low, the burden is substantial, given the complexities
associated with diagnosis, treatment, and the potential life-altering consequences. Brain
tumors exhibit a diverse age distribution, affecting individuals across the lifespan. Pediatric
brain tumors are a leading cause of cancer-related mortality in children, emphasizing the
urgency for specialized care and research in this population. In adults, the incidence rises
with age, and certain types, such as meningiomas, are more prevalent in older individu-
als. Understanding age-related patterns is critical for tailoring diagnostic approaches and
treatment strategies to the unique needs of distinct age groups. Identifying specific risk
factors for brain tumors remains challenging, as many cases lack clear etiological markers.
However, certain genetic predispositions, exposure to ionizing radiation, and hereditary
conditions may elevate risk. The impact of brain tumors on quality of life is profound, as
these tumors can disrupt cognitive function and sensory abilities. Symptoms vary based on
tumor location and size, affecting patients’ daily lives and necessitating comprehensive care
approaches that address both medical and psychosocial aspects. Untreated brain tumors
can be fatal.

Diagnosing and treating brain tumors is a complex challenge for medical professionals.
Prompt detection and early treatment initiation are key factors in improving survival
rates for brain tumor patients [6]. Unlike biopsies for other body parts, brain tumor
biopsies require surgical intervention, making them more complicated. This underscores
the importance of non-surgical methods for precise diagnosis. The size and severity of a
brain tumor cannot be determined by traditional images. The treatment response may be
delayed due to some existing constraints. Medical professionals use magnetic resonance
imaging (MRI) and computed tomography (CT) images to identify the brain’s normal and
abnormal tissue [8]. Recognizing brain tumors manually is tedious and error-prone process,
but automatic detection accurately identifies their regions, shape, boundaries, and position.
By detecting, segmenting, and classifying brain tumors in medical images, computer-aided
diagnosis can detect them [9].

Brain tumors have been identified using MRI images because they are accurate and
can segment the affected area accurately. It is possible to extract accurate and highly
relevant features from MRI images, which help to predict brain tumors [10]. Cluster-based
segmentation divides MRI images into subcategories and indicates the region of interest
(ROI) in every scan [11]. With clustering, tumor size can be reliably identified, thereby
enabling effective treatment and reducing mortality risk [12]. High-similarity pixels are
grouped into a separate region and separated from low-similarity pixels.

According to the American Brain Tumor Association [13], the standard classification
system for brain tumors ranges from grade I to IV. Grades I and II, known as low-grade
gliomas, are typically benign and grow slowly, while grades III and IV, referred to as high-
grade gliomas, are malignant and grow quickly. If not treated, a low-grade brain tumor
may progress to a high-grade, more dangerous form. Regular monitoring through MRI or
CT scans every six months to a year is recommended for patients with grade II gliomas.
Brain tumors can affect individuals of any age and have varying effects on the body.

Low-grade gliomas (grades I and II) are generally considered curable with complete
surgical removal, while high-grade (grades III and IV) malignant brain tumors are treated
with radiation, chemotherapy, or a combination of both. Malignant gliomas include both
grade III and IV gliomas, also known as anaplastic astrocytoma’s, which are mid-grade
tumors that grow more abnormally and rapidly than lower-grade tumors. The most
severe form of astrocytoma, known as glioblastoma, is a grade IV tumor characterized by
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unusually rapid blood vessel growth and the presence of necrosis. Glioblastomas are the
most aggressive and rapidly growing tumors in this classification.

Segmentation in medical imaging is crucial for identifying affected tumor tissues. It
involves dividing an image into sections or segments with similar attributes like color,
texture, contrast, brightness, and gray level. In brain tumor segmentation, there is a need
to distinguish tumor tissues, including edema and necrotic cells, from normal brain tissues
and solid tumors, like white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF),
using MRI or other imaging methods.

MRI images of brain tumors can be segmented using K-means clustering with high
precision [14]. Based on a study that classified brain tumors, local-level features were
identified [15]. Membership in the fuzzy C-Mean (FCM) is not a measure of the degree of
the corresponding data. The values of each element range from 0 to 1. The improved FCM
algorithm is a type of soft clustering that assigns membership levels to each data point
for multiple clusters, rather than forcing a hard categorization into a single cluster. This
method is particularly useful in medical imaging, where the boundaries between different
tissue types, such as tumor and normal brain tissue, can be ambiguous or overlapping.
In [16], the authors used the FCM approach to generate membership and typicality values
for unlabeled clustering data. An FCM technique can be used to generate membership and
possibility under practical point models or cluster centers [17]. Some works implemented
FCM techniques, both adaptive and non-adaptive for determining local spatial element
weights [18,19].

When dealing with various levels of noise, probabilistic FCM proved to be more
reliable and effective. An exponential FCM clustering technique has been proposed to
overcome FCM’s noise condition limitation [20]. The exact details of tumors are not
identified in most existing models, and it is difficult to segment the precise location of
tumors. There is difficulty identifying tumor margins and areas, and limited features can
reduce classification error rates. This leads us to propose an improved FCM that is capable
of detecting tiny brain tumors with high accuracy. A color and texture feature extraction
approach were applied after segmentation to MRI images. To classify brain tumors, the
extreme learning machine (ELM) was developed.

The proposed study makes a substantial advancement in brain tumor detection and
segmentation compared to existing works by introducing an improved Fuzzy C-Means
(FCM) clustering algorithm. In contrast to traditional clustering techniques, the enhanced
FCM model excels in identifying minute brain tumors and showcases superior perfor-
mance in accurately categorizing diverse tumor types. The algorithm’s ability to han-
dle uncertainty, reduce variability in segmentation results, and provide a nuanced ap-
proach with degrees of membership, non-membership, and hesitation degree represents a
significant breakthrough.

Research Contributions

➢ The study contributes by utilizing the Fig share and Kaggle datasets for brain tu-
mor detection. These datasets provide a diverse and comprehensive set of brain
images, ensuring the applicability and robustness of the proposed methods across
various scenarios.

➢ A novel contribution lies in the proposal of an improved fuzzy C-Means clustering
algorithm. This technique specifically addresses the challenge of detecting minute
tumors, showcasing an advancement in the ability to identify smaller lesions that
might be overlooked by traditional methods.

➢ The research conducts an extensive investigation by evaluating the proposed im-
proved fuzzy C-Means clustering against five state-of-the-art segmentation models.
This comparative analysis contributes valuable insights into the strengths and weak-
nesses of different segmentation approaches, providing a basis for selecting optimal
methods in brain tumor detection.
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➢ The study introduces a rigorous evaluation framework by incorporating key metrics
such as accuracy, precision, recall, and F1-score. These metrics offer a comprehen-
sive assessment of the proposed approach’s performance, allowing for a nuanced
understanding of its effectiveness in comparison to existing models.

➢ A significant research contribution is the demonstration of fast and accurate tumor
detection achieved by the proposed approach. This highlights the practical viability
of the method in real-time scenarios, contributing to the efficiency of brain tumor
detection over existing state-of-the-art approaches.

2. Literature Review

This section discusses the literature review for brain tumor detection and classification.
Cherukuri et al. [21] employed Xception as the foundational architecture and introduced
a multi-level attention network (MANet) incorporating both spatial and cross-channel
attention mechanisms on the 3064 T1W-CE MRI datasets, achieving an accuracy of 96.51%.
An inherent drawback of long-short-term memory (LSTM) networks is their heightened
computational cost and the need for intricate network tuning. LSTMs, being more intricate
than CNNs and RNNs, present challenges in debugging and issue identification. Guan
et al. [22] initially enhanced the visual quality of input images through contrast optimiza-
tion and nonlinear strategies. Subsequently, tumour locations were determined using
segmentation and clustering techniques. These locations were then utilized in conjunc-
tion with the corresponding input image, feeding into Efficient Net for feature extraction.
Despite achieving an accuracy of 98.04% with fivefold cross-validation on the T1W-CE
MRI dataset, this study suffers from increased computational costs due to the necessity of
training multiple networks. Badža et al. [23] proposed an advanced CNN with 22 layers
for classifying three tumour types (meningioma, glioma, and pituitary) in the T1W-CE
MRI dataset. Employing subject-wise and record-wise tenfold cross-validation on both
augmented and original image databases, they obtained the highest accuracy of 96.56%
on the 3064 T1W-CE MRI datasets. Deepak et al. [24] utilized deep learning and machine
learning, modifying a pre-trained Google Net with the Adam optimizer. Incorporating
SVM or KNN instead of the classification layer within the transfer learning model im-
proved accuracy to 92.3%, 97.8%, and 98% for Google Net, SVM, and KNN, respectively,
with fivefold cross-validation on the T1W-CE MRI dataset. However, this research faces
challenges, including the relatively poor performance of the transfer-learned model as an
independent classifier and significant misclassification in meningioma class samples.

Díaz-Pernas et al. [25] proposed a method for brain tumours segmentation and classi-
fication on the T1W-CE MRI dataset using sliding window segmentation with a N window.
Applying data augmentation to prevent overfitting, the classification CNN with three path-
ways for feature extraction achieved an accuracy of 97.3% on the T1W-CE MRI dataset. The
limitation includes the lowest sensitivity for meningioma due to lower contrast intensity
between the tumours and healthy areas. Alhassan et al. [26] introduced a CNN with a
hard swish based RELU activation function involving image pre-processing and HOG
feature descriptor utilization; this method achieved an accuracy of 98.6% for brain tumours
classification on the T1W-CE MRI dataset.

Ghassemi et al. [27] employed a pre-trained deep convolutional neural network as
a GAN discriminator (DCGAN) with a SoftMax layer within the GAN discriminator.
They achieved an accuracy of 95.6% for brain tumours classification on the T1W-CE MRI
dataset. A drawback is the limitation of GAN due to a network size of 64, preventing the
use of pre-trained architectures as discriminators that require larger input sizes. Noreen
et al. [28] utilized deep learning and machine learning, applying fine-tuned Inception-v3
and Xception for feature extraction and classification with SVM, KNN, random forest (RF),
and ensemble techniques. The Inception-v3-Ensemble method produced the best testing
accuracy of 94.34% among all proposed methods but suffered from time-consuming and
high computational costs.
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Gumaei et al. [29] proposed a regularized extreme learning machine (RELM) as a
hybrid feature extraction method, including min–max normalization for pre-processing
and PCA-NGIST for feature extraction; this method achieved an accuracy of 94.233% with
fivefold cross-validation on the T1W-CE MRI dataset. Haq et al. [30] developed a DCNN
technique for brain tumours detection and classification, involving pre-processing with
N4ITK, normalization, and data augmentation. They used a Google Net variant model
with and without conditional random fields (CRF), achieving 97.3% and 95.1% accuracy,
respectively, on the T1W-CE MRI dataset. A disadvantage is the model’s unsuitability
for classification tasks involving small amounts of data and challenges with erroneous
information from various imaging modalities.

Ghosal et al. [31] employed a DCNN-based SE-ResNet-101 architecture, fine-tuned
to fit training data, achieving an overall accuracy of 89.93% and 93.83% without and with
data augmentation, respectively. Nawaz et al. [32] utilized a custom Corner Net with
DenseNet-41 base network and one-stage detector, achieving 98.8% accuracy based on
the T1W-CE MRI dataset, providing a low-cost solution to brain tumours classification.
Verma et al. [33] suggested Hyper-Sphere Angular Deep Metric-based Learning (HSADML)
with Mobile Net as the backbone network, achieving 98.69% overall accuracy based on
the T1W-CE MRI dataset. The suggested method enhanced intra-class separability and
decreased intra-class variability. However, the research did not emphasize the backbone
network, leaving room for introducing attention-based domain-specific networks.

Cinar et al. [34] applied image cropping and various data augmentation techniques,
designing a CNN from scratch for brain tumour classification. They achieved overall accu-
racies of 98.09%, 98.32%, and 96.35% with different training and testing dataset divisions,
demonstrating categorization without relying on deep networks. A drawback is the long
training period without transfer learning, making it impractical for larger datasets. Deepak
et al. [35] proposed a custom CNN model, achieving accuracy improvements from 94.2%
to 95.8% with SVM using a fivefold cross-validation method. Deepak et al. [36] introduced
deep feature fusion and majority voting approaches, enhancing CNN predictions for three
types of brain tumours but increasing computational complexity due to training with
multiple loss functions.

Kumar et al. [37] employed three CNN models—Alex Net, ResNet 50, and Inception
V3—resizing images, normalizing between [0] and [1], and applying augmentation tech-
niques. They achieved accuracies of 93.51%, 98.24%, and 92.07%, respectively. Despite
demonstrating the efficiency of CNN architectures in identifying enhanced MRI brain
tumour images, the work has limitations, including the computational slowness of CNNs
with operations like max pooling, the prolonged training time for multiple layers, and the
demand for substantial training data.

Diverse methodologies and algorithms have been explored in prior works for brain
tumour classification, each with its own set of limitations. Deep learning approaches, while
capable of extracting features directly from input data, entail high complexity, fixed input
image sizes, and costly computational requirements. The selection of an appropriate deep
learning model with optimal hyperparameters remains a challenging task in previous
works. To address these limitations, this research minimizes pre-processing steps and
carefully chooses optimization models with suitable parameters.

3. Materials and Methods

The proposed framework for brain tumor detection and classification is shown in
Figure 1. It consists of four stages, including image preprocessing, segmentation, feature
extraction, and classification, that are further explained below. We gathered brain tumor
images from different datasets. In the first stage, we proposed an improved hybrid contrast
enhancement based on the absolute mean deviation and the kurtosis function to enhance
the contrast of the brain tumor images. In the second stage, we proposed the improved
fuzzy model to segment the brain tumor images. In the third stage, the feature extraction
process extracts the shapes, textures, and colors of the segmented brain tumor images. In



Bioengineering 2024, 11, 266 6 of 25

the final stage, the enhanced ELM model correctly identified four types of brain tumors:
pituitary, no tumor, meningioma, and glioma tumors.
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Figure 1. Brain tumor detection and classification flow diagram.

We collected MRI images from two open-source libraries: the Fig share [38] and Kaggle
datasets [39]. In Table 1, we describe the image distribution of different brain MRI tumors.

Table 1. Class-wise MRI tumor distribution.

Class Fig Share Kaggle

meningioma 708 306

Pituitary 930 300

Glioma 1426 300

No tumour - 405

Figure 2 shows sample image classes of brain tumors. It has three subfigures, and we
explain each subfigure below:

(a) Glioma:

Glioma is a category of brain tumor that originates from the glial cells, which are
supportive cells in the brain. These tumors can occur in various parts of the brain and
spinal cord. Gliomas are known for their diverse and aggressive nature, often infiltrating
surrounding brain tissues. They are classified into different types, such as astrocytoma’s,
oligodendrogliomas, and ependymomas, based on the specific glial cell they originate
from. Gliomas pose challenges in treatment due to their infiltrative growth and resistance
to therapies.
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(b) Meningioma:

Meningioma is a type of brain tumor that arises from the meninges, the layers of tissue
covering the brain and spinal cord. These tumors are generally slow-growing and often
benign, but they can cause symptoms depending on their size and location. Meningiomas
can develop along the meninges’ surface and may press against adjacent brain structures,
leading to a range of neurological symptoms. Surgical removal is a common treatment
approach for meningiomas, and they are generally associated with a favorable prognosis.

(c) Pituitary:

Pituitary tumors originate in the pituitary gland, a small gland at the base of the
brain responsible for regulating various hormones. These tumors can be either benign or
malignant and may affect hormone production. Depending on their size and hormone-
secreting activity, pituitary tumors can lead to hormonal imbalances, impacting bodily
functions. Common types include prolactinomas, growth hormone-secreting tumors, and
non-functioning adenomas. Treatment options vary and may include surgery, medications,
or radiation therapy, aiming to restore hormonal balance and manage symptoms.
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3.1. Image Preprocessing

In this study, we proposed an improved hybrid contrast enhancement based on the
absolute mean deviation and the kurtosis function. This approach increases the contrast of
the brain tumors and makes the brain images more useful for further processing. Consider
D as the brain tumor database, and N is the brain image dimensions PXQ input.

Let ∆ denote the brain tumor database and X represent an input image with dimensions
N × M. Let n denote the total number of pixels in the image, and xi represent each
image pixel. The absolute mean deviation (AMD) and kurtosis are expressed through
Equations (1) and (2).

AD =
1
n

n

∑
i=1

|xi −ϕ(X)| (1)



Bioengineering 2024, 11, 266 8 of 25

SK =
1
s ∑m

k=1∥xi − X∥3

(n − 1) ∗ ∥s∥3 (2)

Here, AD represents the AMD of the image, φ(X) is the average mean of the dataset

(∆), and S is the standard deviation, and it is represented as
√

∑n
i=1(xi−x)2

n . X is the mean
(average) of the data points. Employing these values, the final transformation of the image
is I1 = AD(i) + X and IF = I1 − SK(i), where IF is the final transformed image, and i
denotes the image pixels. This procedure is implemented across the entire selected datasets
prior to the training of the learning models.

3.2. Segmentation

Segmentation is an important method for analyzing image processing, and it is crucial
for diagnosing illnesses using MRI images. By doing so, digital image analysis will be made
easier and more accessible. When the MRI image is segmented, it is divided into several
homogeneous sections that are not overlapping. The foundation of segmentation lies in
unsupervised clustering algorithms. A fuzzy model is used to address uncertainties related
to borders, variations, and vagueness in gray-level images [40]. Among the methods of
sorting unlabeled data into discrete sets, clustering is the most commonly used. In the
present study, an output window is selected, and FCM clustering segmentation is used to
segment it. Algorithm 1 presents the improved FCM algorithm after segmenting the brain
tumor images.

Algorithm 1: Improved FCM

Input: Gray level image
Output: Segmented image

➢ Set the number of intensity levels and compute a square matrix; I = ∑∑G
(

pi,qj

)
, and the

image matrix G = ∑∑G(pk,ql)
➢ Initialize Fxy = G⊕I
➢ Extract coarse features from Fxy
➢ Segment the brain image

G1 = 1
2 ∑m

k=1∑n
l=1Gkl∥pk−al∥2∗∑X

k=1+1∑Y
l=1+1T∥pk,ql∥

2

➢ Repeat until Fxy≤∑H
i=1∑z

j=1[Fxy(i)−Fxy(j)]
➢ Update G1
➢ Initialize cluster centroid

➢ Define membership function s(0)kl of the FCM

➢ Update cluster center T(v)
k ⇔s(v)kl , (k = 1,2,. . . and v = 1,2,3)

Update D(pk, δ
(v)
k ) ⇔δv

k and skl

➢ With c(pk, δ
(v)
k ) until ||s(v)kl −s(v+1)

kl || ≤ ∈, ∈ = [0,1]

The algorithm begins by setting the number of intensity levels and computing a square
matrix I = ∑ ∑ G

(
pi, qj

)
, where the image matrix G = ∑ ∑ G(pk, ql) is defined. An initial

feature matrix, Fxy = G ⊕ I, is created, followed by the extraction of coarse features from
Fxy. Subsequently, the brain image is segmented using a process involving a mathematical
expression denoted as G1. This expression involves the computation of weighted distances
between elements of G and specific points, followed by a thresholding operation. The
algorithm iteratively refines Fxy until a certain condition is met, updating G1 in the process.
The algorithm introduces a novel approach by incorporating a cluster-centric strategy.
It initializes cluster centroids, defines a membership function s(0)kl using Fuzzy C-Means

(FCM), and subsequently updates the cluster centers T(v)
k based on the membership function

values. An additional update involves adjusting a variable D(pk, δ
(v)
k ) based on certain

criteria, refining the clustering process until a convergence condition is satisfied. The
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variable G plays a crucial role in representing the original image matrix. The novelty of
the algorithm lies in its integration of fuzzy clustering, weighted distance computations,
and iterative refinement processes. This multifaceted approach enhances the algorithm’s
adaptability to complex image characteristics and its ability to capture subtle variations in
the data. The iterative nature of the algorithm, along with the incorporation of cluster-based
strategies, contributes to its effectiveness in image segmentation tasks.

The algorithm’s advantages stem from its incorporation of weighted distance computa-
tion, iterative refinement, cluster-centric strategy, dynamic thresholding, and the utilization
of the parameter G. The algorithm introduces a weighted distance computation process G1,
where distances between elements of the image matrix G and specific points are weighted
based on certain criteria. This enables the algorithm to capture more nuanced relationships
within the data, allowing for a more accurate representation of the underlying structures
in the images. Unlike standard FCM, the proposed algorithm involves an iterative re-
finement process for the feature matrix Fxy. This iterative nature allows the algorithm to
adapt and fine-tune its segmentation results over multiple iterations, potentially leading
to improved convergence and more precise segmentation. The algorithm incorporates a
cluster-centric strategy by initializing cluster centroids and updating them based on the
membership functions derived from FCM. This strategy enhances the algorithm’s ability to
identify and characterize different clusters within the image, resulting in more accurate and
meaningful segmentation. The iterative process involves dynamic thresholding conditions,
providing adaptability to varying complexities in image data. This dynamic nature allows
the algorithm to handle diverse image characteristics and improve its performance in
scenarios where standard FCM may struggle. The use of the variable G as the original
image matrix introduces a unique aspect to the algorithm. This variable, representing the
initial state of the image, contributes to the algorithm’s ability to capture and preserve
essential features during the segmentation process. The convergence criteria involving D
(pk, δ

(v)
k ) and cluster similarity add an additional layer of refinement, potentially preventing

the algorithm from converging to suboptimal solutions. This results in more reliable and
accurate segmentation outcomes.

3.3. Feature Extraction

Feature extraction is fundamental for classification. In this study, we extract the shapes,
textures, and colors that are important in representing brain tumor images. The process
of extracting optimal features from brain images is challenging [41]. In feature extraction,
raw data are transformed into numerical data while retaining the original information.
Automated or manual models can be used to extract features. Automated feature extraction
extracts only issue-related significant features, while manual feature extraction extracts
all significant features. Gray-level co-occurrence matrix (GLCM) features are extracted in
the present study. Measures are extracted from the GLCM functions based on the texture
of the brain tumor image. Matrix dimensions define the relative frequency of pixels in
a brain tumor image. Homogeneity, dissimilarity, energy, and contrast are the measures
determined by the features.

Traditional feature extraction techniques such as texture, shape, and color-based
methods offer distinct advantages over deep learning approaches for brain image anal-
ysis. These methods provide interpretable features, making it easier for researchers and
clinicians to understand the underlying characteristics related to specific pathological
conditions. Additionally, traditional techniques often perform well in scenarios with lim-
ited data, where deep learning models may struggle to generalize effectively. They are
computationally efficient, making them suitable for resource-constrained environments
and real-time processing requirements. The integration of domain-specific knowledge is
facilitated, enhancing performance in medical imaging where expertise plays a critical role.
Traditional feature extraction methods offer reduced sensitivity to data quality variations,
explicit control over feature selection, transparent decision-making processes, and proven
transferability across different imaging modalities. While deep learning has achieved
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notable success, the advantages of traditional feature extraction techniques make them
valuable, especially when interpretability, efficiency, and expert control are paramount
considerations in brain image feature extraction. Table 2 explains the features of brain
tumor detection with definition.

Table 2. Extracted features.

Feature Definition Equation

Standard deviation (SD) Determines the spread of data

√
W−1

∑
k=0

(
k − k

)2
p(k)

Skewness Finds the symmetry of the possibility distribution 1
S3

W−1
∑

k=0

(
k − k

)3
p(k)

Energy Determines the spread of pixel values
W−1

∑
k=0

(P(k))2

Entropy Find the data needed to code the data −∑W−1
k=0 [P(k)log2 p(k)]

Kurtosis Determines the probability distribution 1
S4

W−1
∑

k=0

(
k − k

)4
p(k)

Contrast Determines local fluctuations
W−1

∑
k,l=0

Pkl(k − l)2

Correlation Determines the joint probability
W−1

∑
k,l=0

Pkl
(k−M)(l−M)

S4

Energy Determine the sum of the squared pixel values −
W−1

∑
k=0

[P(k)log2 p(k)]

Homogeneity Determines local uniformity
W−1

∑
k,l=0

Pkl

1+(k−l)2

Busyness Determines changes in the neighbouring pixels
∑

Tk
k=0 p(k)q(l)

∑
Tk
k=0 ∑

Tk
k=0|kp(k)−lq(l)

∣∣∣
where p(k) ̸= 0, q(l) ̸= 0

Strength Determines the primitives of the brain image
∑

tk
k=1 ∑

Tk
k [P(k)](k−1)2

∑
tk
k=1 p(k)

where p(k) ̸= 0

3.4. Feature Selection

Feature selection improves classification accuracy by removing irrelevant and redun-
dant features and selecting robust features to boost performance. This study uses the
entropy-based controlled approach to choose the best features. This approach removes
irrelevant features by selecting the highly robust features. Entropy for the feature vector
V(P) for the M X N dimensions is represented as

∑d1 ∑dz min(d1, d2)∗[−∑z
k=1 pklog(pk)] (3)

where d1, d2 are the current and the previous distance of the selected features and pk is the
probability of the kth feature. To find the more robust features, we apply the threshold
function to select the features greater than the high probability feature Tk.

Final Features =

{
p(k); Tk ≤ ∑z

k=1 pklog(pk)
0; Ohterwise

(4)



Bioengineering 2024, 11, 266 11 of 25

3.5. Classification

In this study, we used the ELM [42] to classify brain tumors. If the ELM has a z sample
(ik, ok), the output with zero errors is mathematically represented as

ok =
√

∑H
k=1 αkt(wkik + bk), where k = 1, . . . .z (5)

where ik and ok are the input and the output samples, respectively, the activation function
is represented as t (.), and wk and bk refer to the weights and the bias, respectively. αk is a
weight coefficient for the kth term.

O = Hα; where the output is represented as O = (o1, o2, . . . on) and the matrix weights
are represented as α = (α1, α2 . . . αm). The hidden layers can be represented as

H =


t(w1i1 + b1)−−−−−−t(wni1 + bn)

−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−
t(w1im + b1)−−−−−−t(wnim + bn)

 (6)

The hidden layer nodes should be less than the sample count. Equation (6) represents
the structure of a single-hidden-layer Extreme Learning Machine (ELM) neural network
used in the classification of brain tumors. In this equation, H denotes the hidden layer,
which consists of nodes with activation functions denoted by t(·). Each node in the hidden
layer is associated with weights wki and biases bk, where i ranges from 1 to m, representing
the input features. The hidden layer’s output O is obtained by summing the product of
each node’s activation function and its corresponding weight, followed by the application
of the activation function t(·). This process is mathematically expressed as O = Hα, where
O = (o1, o2, . . . , on) represents the output vector and α = (α1,α2, . . . ,αm) represents the
weight matrix. The structure of the hidden layer is further detailed in Equation (6), where
H is represented as a concatenation of n nodes. Each node’s activation is determined by
the weighted sum of the input features i, (i1, i2, . . . , im), with weights wki and biases bk for
each node. The activation function t(·) introduces non-linearity to the model, allowing it to
capture complex patterns and relationships within the input data. It is worth noting that
the number of nodes in the hidden layer n should be chosen judiciously, typically less than
the number of samples, to prevent overfitting. The weights and biases are learned during
the training process, enabling the network to map input features to the desired output for
effective brain tumor classification.

3.6. Performance Evaluation

The performance metrics can help measure the model presented in terms of the
different parameters mentioned below [43–49]. For instance,

In the context of brain tumor classification:

➢ Accuracy in brain tumor classification represents the overall correctness of the model
in predicting different types of brain tumors.

Accuracy =
Correctly classified brain tumor samples

Total brain tumor samples

➢ Precision in brain tumor classification measures the accuracy of the model in correctly
identifying a specific type of tumor among the predicted positive cases.

Precision =
True positives for a specific brain tumor type

True positives + False positives for that brain tumor type
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➢ Recall in brain tumor classification assesses the ability of the model to correctly identify
all instances of a particular brain tumor type among the actual positive cases.

Recall =
True Positives for a Specific Brain Tumor Type

True Positives + False Negatives for that Brain Tumor Type

➢ F1 score in brain tumor classification provides a balance between the precision and
recall, giving an overall measure of the model’s effectiveness.

F1 Score = 2 × Precision × Recall
Precision + Recall

4. Results

In this section, we analyze the performance of the proposed model. To extract MRI
image information for this study, we first used an improved hybrid contrast enhancement
to improve the brain MRI image and extract visual information.

4.1. Segmentation Evaluation

The proposed model produces segmentation results that are more precise and reliable.
The various segmentation results and comparisons are presented in Figure 3. The columns
(a) and (b) are the original images and their corresponding ground truths. The (c–g)
columns are the images implemented with the state-of-the-art approaches MLT, K-Means,
IPFCM, PSO, and GTVCUT, respectively. The (h) column, which is implemented with the
proposed approach, is similar to the ground truth MRI images.
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Figure 4 shows the proposed segmentation’s performance comparison with the exist-
ing models. Multilevel threshold technique (MLT) [50] segments brain tumor images and
achieves an accuracy of 91.78%, precision of 90.38%, and recall of 92.75%. K-Means [51]
segments brain tumor images and achieves an accuracy of 92.53%, precision of 94.57%, and
recall of 94.99%. Intuitionistic possibilistic fuzzy C-Means (IPFCM) [52] segments brain
tumor images and achieves an accuracy of 91.47%, a precision of 96.35%, and recall of
93.56%. Particle swarm Optimization (PSO) [53] segments brain tumor images and achieves
an accuracy of 89.55%, a precision of 83.73%, and a recall of 84.57%. Gross tumor volume
Segmentation (GTVCUT) [54]. The segmentation performance metrics accuracy, precision,
and recall using the proposed function were 99.78%, 99.36%, and 99.75%, respectively.
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4.2. Classification Evaluation

Figure 5 shows the performance of various classifiers on Fig share datasets brain test
set images. The performance of various classifiers, namely Extreme Learning Machine
(ELM), Support Vector Machine (SVM), Random Forest (RF), Naive Bayes (NB), and k-
Nearest Neighbors (KNN), was evaluated on a brain tumor dataset for tumor classification
across four different classes: No Tumor, Glioma, Meningioma, and Pituitary. In terms of
accuracy, ELM demonstrated the highest accuracy across all classes, ranging from 97.43% to
99.25%, showcasing its robust overall performance. SVM and RF also exhibited competitive
accuracy, maintaining values above 97% for most classes. KNN, while performing well, had
slightly lower accuracy, especially in the Meningioma class. Figure 5a shows the classifier
performance in terms of accuracy. Precision measures the ratio of correctly predicted
positive observations to the total predicted positives. ELM achieved high precision values,
indicating its proficiency in minimizing false positives. SVM and RF showed commendable
precision as well, particularly in Glioma and Meningioma classes. KNN exhibited a slightly
lower precision, especially in the Meningioma category. Figure 5b shows the classifier
performance in terms of precision. Recall, or sensitivity, gauges the ability of a classifier to
capture all the positive instances. ELM and SVM displayed excellent recall across all classes,
ensuring comprehensive identification of positive cases. RF, NB, and KNN demonstrated
reasonable recall values, with KNN exhibiting a slight dip, particularly in the Meningioma
class. Figure 5c,d shows the classifier performance in terms of recall and F1 scores.

Figure 6 shows the class-based performance. The classification performance across the
classes No Tumor, Glioma, Meningioma, and Pituitary was evaluated based on accuracy,
precision, and recall metrics. In the No Tumor class, the classifiers demonstrated high
accuracy, precision, and recall, with values ranging from 92.45% to 98.64%, 95.35% to
99.14%, and 90.35% to 99.25%, respectively. For the Glioma class, consistent accuracy rates
were observed, ranging from 88.45% to 98.66%, precision values varied between 88.45%
and 99.14%, and recall rates were between 89.74% and 99.19%. In the Meningioma class, the
classifiers exhibited robust accuracy, precision, and recall percentages, with values spanning
94.57% to 98.50%, 92.10% to 98.62%, and 89.74% to 99.16%, respectively. The Pituitary class
also showcased commendable performance metrics, with accuracy ranging from 94.59% to
98.64%, precision varying between 94.59% and 99.15%, and recall rates spanning 91.42%
to 97.43%. Overall, the classifiers demonstrated consistent and effective performance in
accurately classifying instances across diverse tumor categories, emphasizing their potential
suitability for medical imaging applications. The class performance in terms of accuracy,
precision, recall and F1-score in shown in Figure 6a–d.

The results revealed that the overall testing accuracy and ELM performance metrics
were most appropriate for detecting brain tumors. In total, 96.6% of the predictions were
correct based on the prediction output of the ELM. ELM’s prediction output reflects the
probability of correct predictions and their accuracy. The ground truth and ELM model
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predictions for the test images are shown in Figure 7. Ground truth is represented by the
first row in the image, while predicted results are represented by the second row.
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Both the generalization efficiency and the ELM rate of learning are higher than those
of traditional state-of-the-art classifiers. When it comes to the ELM algorithm, weights and
hidden biases are assigned regularly.

The proposed classifier demonstrates exceptional performance across multiple metrics,
achieving an overall accuracy of 98.56%. For the “No Tumor” class, the classifier exhibits
high precision (99.14%) and recall (99.25%). In the case of Glioma, the precision and recall
stand at 98.66% and 99.19%, respectively. Similarly, for Meningioma, the classifier attains a
precision of 99.14% and a recall of 99.10%. The Pituitary class also sees impressive results
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with a precision of 97.43% and recall of 97.43%. In comparison, the approach by Alanazi
et al. [55] yields slightly lower accuracy at 97.86%. The “No Tumor” class exhibits precision
and recall values of 98.49% and 98.33%, respectively. Glioma achieves a precision of 98.17%
and a recall of 99.14%, Meningioma records a precision of 97.33% and a recall of 98.64%,
and Pituitary shows a precision of 98.51% and a recall of 99.15%.

The model developed by Zahoor et al. [56] reports an accuracy of 98.31%. However,
there is a notable decrease in recall for the “No Tumor” class at 89.74%. Glioma maintains a
precision of 98.49% and a recall of 98.3%, while Meningioma achieves a precision of 98.62%
and a recall of 99.16%. Pituitary records a precision of 94.59%. The classifier developed
by Ait Amou et al. [57] exhibits an accuracy of 94.57%. The “No Tumor” class shows a
precision of 98.00% and recall of 98.50%. Glioma, however, experiences a decrease in recall
(89.74%). Meningioma maintains a precision of 98.24% and a recall of 94.91%, and Pituitary
shows a precision of 98.61% and a recall of 98.89%. Lastly, the model developed by Kirbayi
et al. [58] demonstrates an accuracy of 94.89%. The “No Tumor” class achieves a precision
of 95.90% and a recall of 94.59%. Glioma records a precision of 97.51% and a recall of
98.98%. Meningioma exhibits a precision of 91.89% and a recall of 87.17%, while Pituitary
achieves a precision of 96.49% and a recall of 93.22%. Figure 8 shows the visualization
results of Table 3.
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Table 3. Comparison of classifier accuracy for Fig Share dataset.

Classifier Accuracy Precision Recall Class

Proposed

98.56 99.14 99.25 No Tumor

98.24 98.66 99.19 Glioma

98.50 99.14 99.10 Meningioma

98.56 97.43 97.43 Pituitary

Alanazi et al. [55] (2022)

97.86 98.49 98.33 No Tumor

97.31 98.17 99.14 Glioma

97.59 97.33 98.64 Meningioma

97.45 98.51 99.15 Pituitary

Zahoor et al. [56] (2022)

98.31 97.22 89.74 No Tumor

97.86 98.49 98.30 Glioma

97.09 98.62 99.16 Meningioma

98.09 94.59 94.59 Pituitary

Ait Amou et al. et al. [57] (2022)

94.57 98.00 98.50 No Tumor

95.85 92.10 89.74 Glioma

95.45 98.24 94.91 Meningioma

96.76 98.61 98.89 Pituitary

Kirbayi et al. [58] (2022)

94.89 95.90 94.59 No Tumor

95.04 97.51 98.98 Glioma

94.89 91.89 87.17 Meningioma

97.17 96.49 93.22 Pituitary

Poonguzhali et al. [59] (2023)

93.53 97.45 91.42 Pituitary

92.45 95.35 90.35 No Tumor

95.35 88.45 96.56 Glioma

95.45 90.35 97.45 Meningioma

Rahman et al. [60] (2023)

97.34 98.02 95.67 Pituitary

97.57 98.11 95.78 No Tumor

97.56 97.13 96.84 Glioma

97.37 97.24 97.47 Meningioma

Malla et al. [61] (2023)

98.35 97.36 97.25 Pituitary

98.64 97.46 97.19 No Tumor

98.50 98.14 99.01 Glioma

98.36 97.43 97.43 Meningioma

Table 4 tabulates the performance comparison of the proposed with the state-of-the-art
models on the Kaggle dataset.

Figure 9 shows the performance comparison of the various performance metrics, such
as accuracy, precision, and recall, for four classes between the proposed and the existing
models [41,42,62–64]. In the evaluation of various classifiers for brain tumor classification,
the proposed classifier demonstrates commendable performance across multiple metrics.
The proposed model achieves an overall accuracy of 99.37%, showcasing its robust ability
to correctly classify instances. Precision and recall values further underscore its efficacy,
with 99.64% precision and 99.57% recall for the “No Tumor” class, 99.74% precision and
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99.85% recall for “Glioma”, 99.85% precision and 99.84% recall for “Meningioma”, and
99.57%, 99.85% precision and recall for “Pituitary”.

Table 4. Comparison of classifier accuracy for Kaggle dataset.

Classifier Accuracy Precision Recall Class

Proposed

99.37 99.84 99.57 No Tumor

99.24 99.74 99.85 Glioma

99.50 99.85 99.84 Meningioma

99.56 99.57 97.85 Pituitary

Saeedi S et al. [41]

96.46 97.57 98.54 No Tumor

96.75 97.14 98.36 Glioma

96.84 97.47 98.27 Meningioma

96.85 97.78 98.73 Pituitary

Kalam R et al. [42]

97.35 98.46 98.68 No Tumor

97.15 98.73 98.74 Glioma

97.36 98.27 98.37 Meningioma

97.37 98.21 98.62 Pituitary

Mahmud MI et al. [62]

93.53 94.36 95.63 No Tumor

93.14 94.62 95.63 Glioma

93.62 94.52 94.63 Meningioma

93.52 94.26 95.62 Pituitary

Woźniak M et al. [63]

96.46 95.45 95.46 No Tumor

96.46 95.63 95.74 Glioma

96.73 95.36 95.47 Meningioma

96.13 95.63 95.37 Pituitary

Reyes D et al. [64]

97.03 98.17 98.67 No Tumor

97.19 98.31 98.91 Glioma

97.25 98.25 98.89 Meningioma

97.26 98.37 98.59 Pituitary

Comparing this proposed classifier with existing studies, Saeedi et al. [41] achieved an
accuracy of 96.46%, demonstrating slightly lower performance than the proposed model.
Kalam et al. [42] and Mahmud et al. [62] also reported accuracies of 98.35% and 93.53%,
respectively, placing them in line with or slightly below the proposed classifier. Woźniak
et al. [63] obtained an accuracy of 96.46%, and Reyes et al. [64] achieved an accuracy
of 98.03%. These comparative studies highlight the competitive nature of the proposed
classifier, positioning it favorably in the landscape of brain tumor classification algorithms.

In the comparison of precision and recall values across various classifiers for brain
tumor classification, the proposed classifier demonstrates notable performance. For the
“No Tumor” class, the proposed model achieves precision and recall values of 99.14%
and 99.25%, respectively. In the “Glioma” class, precision is reported at 98.66%, with a
corresponding recall of 99.19%. The “Meningioma” class showcases precision and recall
values of 99.14% and 99.10%, respectively, while the “Pituitary” class reports precision and
recall of 97.43%.

Comparatively, Saeedi et al. report precision and recall values ranging from 97.57% to
98.73%, Kalam et al. present precision and recall values in the range of 98.15% to 98.74%,
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and Mahmud et al. show precision and recall values from 94.36% to 95.63%. Woźniak et al.
and Reyes et al. also report precision and recall values in the mid-to-high 90s range.

Overall, the proposed model not only achieves impressive accuracy but also excels in
precision and recall, showcasing its potential as a robust and reliable tool for brain tumor
classification. This comparative analysis underscores the effectiveness of the proposed
classifier in achieving a balanced performance between precision and recall, essential for
reliable and accurate brain tumor classification.
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5. Discussion

Today, brain tumors are among the most serious diseases, and their incidence is
increasing. Since brain tumors can be dangerous and can only be prevented at an early
stage by total brain area scanning to detect the tumor; as such, accurate diagnosis and
necessary patient treatment are crucial. It is challenging to calculate the area, determine
the degree of uncertainty in the segmentation area, and segment the tumor due to the
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structural complexity and unpredictability of brain tumors, high volatility, and intrinsic
features of MRI data, i.e., variability of tumor size and shape. Medical professionals may
occasionally notice variations in segmentation results due to variations in tumor form and
shape. While some tumors, like meningiomas, are easy to separate, others, like gliomas, are
more challenging. Meningioma and pituitary have similar textures and intensities, making
it difficult to distinguish them. As a result, producing manual tumor segmentation is a
laborious task.

It is essential to create an automatic detection system that can provide quick, inex-
pensive, accurate, and comprehensible diagnoses to handle massive amounts of data and
minimize human error during screening. The workload of medical personnel is lessened
by computer-assisted diagnostics, which also produces faster, more precise diagnoses with
fewer mistakes. Thus, it is anticipated that clinical decision-making by physicians will be
aided by computer-assisted diagnostics. Furthermore, with the aid of computer-assisted
diagnostics, new avenues for research in clinical tests may become available.

Deep learning techniques acquire knowledge by directly obtaining features from
images. Modern deep learning techniques, particularly CNNs, are very accurate and
widely used in medical image analysis, including MRI analysis. These techniques have
several drawbacks, including the need for a sizable training dataset, a high degree of
temporal complexity, poor accuracy for applications with limited datasets, and a high
initial cost to the user due to the requirement for expensive GPUs. It can also be quite
difficult to select the most accurate deep-learning model because it involves understanding
a wide range of parameters, training strategies, and topologies.

Existing models may struggle to detect tiny brain tumors, highlighting a potential
drawback in their ability to handle smaller lesions [65]. Some methods, like the one
utilizing borderline pixel detection, may not accurately identify the inner borders of tumor
regions, impacting the completeness of segmentation [66]. The complexity of certain
models, such as the Link Net network, might make them challenging to implement and
interpret [67]. The application of advanced models, like 3D convolution architectures, may
require substantial computational resources [68]. The overfitting problem was addressed
by recommending a brain tumor method based on the ResNet50 model and global average
pooling, but potential limitations remain [69]. Despite the success of certain methods, the
study acknowledges the need for further research, optimization, and improvements to
address limitations in accuracy and processing time [70–72]. The existing methods were
often evaluated on specific datasets, and their generalizability to diverse datasets or clinical
settings may need validation. This paper makes substantial contributions by leveraging
diverse datasets, introducing an innovative clustering algorithm, conducting a thorough
comparative analysis with existing models, employing comprehensive evaluation metrics,
and demonstrating both speed and accuracy improvements in brain tumor detection.

We have proposed an improved segmentation algorithm based on FCM to detect
brain tumors from MRI images. We compare the enhanced FCM model with segmentation
models based on data from Fig share and Kaggle. An improved FCM is shown to be
effective in identifying brain tumors from MRI scans in the study. The model correctly
identified pituitary, no tumor, meningioma, and glioma tumors as the four types of brain
tumors in the fig share dataset.

A variety of clustering techniques are presented, including FCM, K-mean, MLT, PSO,
and enhanced versions of these techniques. The problem of designing a thresholding tech-
nique solution is complex and requires ongoing research by medical imaging researchers.
In K-mean clustering, all the data are grouped into a single, functional cluster that does
not apply to all tenders. To preserve each pixel across clusters with different membership
levels, FCM assigns each pixel to unlabeled fuzzy clusters. As a result of this research, it is
found that the FCM’s degrees of data cannot be reflected in its membership. In medical
image segmentation, FCM clustering has been demonstrated to help diagnose diseases
such as brain tumors and eliminate unknown noise and uncertainty.
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In this study, an enhanced version of the FCM clustering algorithm is employed to
detect minuscule brain tumors, which are often challenging to identify using conventional
methods. This advanced approach involves selecting a specific output window within the
imaging data for analysis. The improved FCM clustering segmentation is then applied to
this targeted area. By using improved FCM clustering segmentation on the chosen output
window, the algorithm effectively reduces uncertainty and increases the accuracy of tumor
detection. This improvement is crucial in the context of brain tumor identification, as it
allows for more precise delineation of tumor boundaries and enhances the detection of
smaller, less distinct tumors. The enhanced FCM approach is instrumental in improving
diagnostic accuracy, which is vital for appropriate treatment strategies and improving
patient outcomes in neuro-oncology.

Improved FCM has the degree of membership, non-membership, and hesitation
degree [63,73,74]. By addressing the degree of hesitancy throughout the membership
function, the improved fuzzy c-mean technique is employed to overcome uncertainty
issues [75–77]. Traditional clustering techniques cannot handle issues, including outliers
and noisy data. To tackle those issues, we took an improved approach. The proposed
segmentation model achieved accuracy, precision, and recall, of 98.47%, 98.59%, 98.74%
on the Fig share dataset and 99.42%, 99.75%, 99.28% on the Kaggle dataset, respectively,
outperforming the competing algorithms. Consequently, compared to the other models
described, the proposed model is more capable of detecting the glioma grade, which is
highly desirable in clinical applications.

Multiclass Brain Tumor categorization systems have been created to help medical
experts visualize and classify different types of tumors. The primary problems with the
present approaches to brain tumor classification include low accuracy, lack of data samples
for different grades, and binary categorization. The state-of-the-art methods for classifying
brain tumors are limited to just two categories: benign and malignant. This makes it
very difficult for medical experts to recommend further testing or treatment. Using high-
level data from MRI images, ELM is utilized in this study to identify different classes of
tumors. This research may help medical experts make decisions about early diagnosis and
possible treatment options. This research presents an enhanced ELM for the multiclass
categorization of brain tumors to reduce the number of misclassifications. The proposed
algorithm achieved the best accuracy for segmentation and classification when compared
to the state-of-the-art models.

The challenges for the proposed algorithms are segmenting the tumor region incor-
rectly due to artifacts and requiring extra time to process due to their computational
complexity. The following are the main limitations of this study: (a) The technique was
applied to small MRI datasets. To further accomplish even more effective brain tumor
segmentation, we will employ large datasets of brain imaging in the future. (b) Further
study is needed to make the suggested classification technique compatible with smartphone
applications, as it is intended for desktop use only. In future studies, we will examine how
to incorporate additional features that can enhance detection and accuracy. Furthermore, it
will examine how to shorten the computation time and alter the complexity of the proposed
Improved FCM algorithm.

6. Conclusions

This study presents a brain tumor detection and classification approach using the
improved fuzzy c-means and ensemble learning machine. The proposed FCM minimizes
the uncertainty issues while segmenting the MRI images and reduces the computational
complexity for identifying the lesion details. Evaluate the present model performance
with performance metrics accuracy, precision, and recall, with segmentation values 98.47%,
98.59%, and 98.74% on the Fig share dataset and 99.42%, 99.75%, and 99.28% on the Kaggle
dataset, respectively. The proposed model improved brain tumor diagnosis with faster
accurate and fast detection times by extracting the color, shape, and texture features. The
improved ELM model improves the classification performance. We will implement the
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proposed model to evaluate the large MRI datasets. We will examine the deep learning
models to enhance the model further.
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