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Abstract: Background and objective: Local advanced rectal cancer (LARC) poses significant treatment
challenges due to its location and high recurrence rates. Accurate early detection is vital for treatment
planning. With magnetic resonance imaging (MRI) being resource-intensive, this study explores
using artificial intelligence (AI) to interpret computed tomography (CT) scans as an alternative,
providing a quicker, more accessible diagnostic tool for LARC. Methods: In this retrospective study,
CT images of 1070 T3–4 rectal cancer patients from 2010 to 2022 were analyzed. AI models, trained
on 739 cases, were validated using two test sets of 134 and 197 cases. By utilizing techniques such
as nonlocal mean filtering, dynamic histogram equalization, and the EfficientNetB0 algorithm, we
identified images featuring characteristics of a positive circumferential resection margin (CRM) for
the diagnosis of locally advanced rectal cancer (LARC). Importantly, this study employs an innovative
approach by using both hard and soft voting systems in the second stage to ascertain the LARC status
of cases, thus emphasizing the novelty of the soft voting system for improved case identification
accuracy. The local recurrence rates and overall survival of the cases predicted by our model were
assessed to underscore its clinical value. Results: The AI model exhibited high accuracy in identifying
CRM-positive images, achieving an area under the curve (AUC) of 0.89 in the first test set and 0.86 in
the second. In a patient-based analysis, the model reached AUCs of 0.84 and 0.79 using a hard voting
system. Employing a soft voting system, the model attained AUCs of 0.93 and 0.88, respectively.
Notably, AI-identified LARC cases exhibited a significantly higher five-year local recurrence rate and
displayed a trend towards increased mortality across various thresholds. Furthermore, the model’s
capability to predict adverse clinical outcomes was superior to those of traditional assessments.
Conclusion: AI can precisely identify CRM-positive LARC cases from CT images, signaling an
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increased local recurrence and mortality rate. Our study presents a swifter and more reliable method
for detecting LARC compared to traditional CT or MRI techniques.

Keywords: rectal cancer; local advanced rectal cancer (LARC); circumferential resection margin
(CRM); computed tomography (CT); medical image processing; artificial intelligence (AI)

1. Introduction

Rectal cancer, a significant subset of colorectal malignancies, presents distinct diagnos-
tic and therapeutic challenges, especially in its advanced stages. The treatment approach for
rectal cancer is primarily stage-dependent. Stage IV cancer, marked by metastasis to other
organs, necessitates systemic therapy. Conversely, Stages I–III are considered localized
diseases, and among the treatment modalities, the total mesorectal excision (TME) tech-
nique for complete removal of the tumor within the rectal mesentery, introduced by Heald,
remains the most effective method to date [1]. According to the research, if a complete
excision can be achieved, the likelihood of local recurrence is very low, at 2.6%. A key mea-
sure of a complete excision is the pathological absence of cancer cells at the circumferential
resection margins (pCRMs). When cancer cells are present at these margins (pCRM+), it is
associated with poor prognosis, leading to higher risks of local recurrence and mortality,
often due to extensive tumor invasion or inadequate surgical techniques [2]. To reduce
the tumor size and facilitate a clean resection, the introduction of radio (chemo)therapy
(neoadjuvant therapy) before total mesorectal excision has led to an improved prognosis
worldwide [3].

Among these, locally advanced rectal cancer (LARC) is notably challenging due to its
deep pelvic location and proximity to critical organ structures. LARC is defined by tumors
located within 1 mm of the planned circumferential resection margin (CRM) on imaging,
indicating an advanced disease stage. This condition leads to a 26.3% local recurrence rate
and a 37.8% mortality rate over a five-year follow-up period, thus complicating treatment
efforts [4]. To decrease the local recurrence rate of the disease, applying neoadjuvant
chemoradiation therapy before radical resection surgery is suggested in current guidelines.
The stronger agent “total neoadjuvant therapy”, which includes standard radiation therapy
with six-cycle chemotherapy, is suggested especially for LARC cases [5,6]. However,
neoadjuvant treatment increases the expense and the rate of surgical complications, such as
an increased rate of anastomosis stricture [7]. The rate of permanent stoma following low
anterior resection is 13%. Reducing neoadjuvant therapy to chemotherapy with FOLFOX
alone [8] or opting for direct surgery [9] for rectal cancer with an adequate surgical margin
has been proven to offer comparable efficacy. Hence, the rapid identification of LARC with
margin-threatening characteristics is crucial at the outset of rectal cancer therapy.

Current guidelines recommend magnetic resonance imaging (MRI) for staging rectal
cancer; however, the limited availability of MRI resources limits the timeliness of this
diagnostic method. Studies have indicated that CT, interpreted by experienced physicians,
can achieve comparable efficacy to MRI in assessing the circumferential resection margin
(CRM), a crucial factor in LARC diagnosis [10,11]. The rapid advancements in artificial
intelligence (AI) image interpretation could significantly speed up and improve diagnostic
accuracy for physicians [12–16]. This progress opens a promising avenue for utilizing AI to
detect features of LARC that threaten the CRM from CT images.

Currently, the application of AI in cutting-edge methodologies for single-image recog-
nition has shown promising results across numerous studies [17,18]. However, the com-
prehensive evaluation of case datasets remains an underexplored area in the literature.
If AI were capable of identifying cases of locally advanced rectal cancer (LARC) with an
accuracy comparable to those of specialists, it could markedly accelerate the treatment
initiation process. Moreover, in the context of large-scale, multi-institutional trials for
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LARC treatment, AI has the potential to minimize diagnostic variations among clinicians,
significantly improving the objectivity and fairness of trial outcomes.

Our study explores the use of AI in identifying LARC cases with CRM-threatening
features from CT images, aiming to facilitate a rapid diagnosis of LARC. This approach, if
successful, could provide a timely and effective tool for the management of rectal cancer in
healthcare settings. It could also provide a fair and objective method to define LARC cases
in research affairs.

2. Materials and Methods
2.1. Dataset

We compiled a comprehensive dataset of rectal surgeries conducted from 1 October
2010 to 31 December 2022. We focused on first-diagnosed rectal cancer cases in clinical
stages T3–4, prioritizing CT images of high quality and with contrast. Exclusions included
cases with primary tumors in other organs, non-adenocarcinoma pathology, tumors located
in the sigmoid colon or lower rectum, early-stage T0–2 tumors, and CT images lacking
contrast or compromised by prosthesis noise. The CT images around the rectal tumor
segment were harvested. This selection yielded data from 1070 patients, providing 7739 CT
images. These images were categorized into three sets: 739 cases for training, 134 for test
set 1, and 197 for test set 2 consisting of stage-2–3 patients who underwent direct surgery
(Figure 1, Table 1). Ethical approval was obtained (IRB number: CE21235B), and this study
was registered at ClinicalTrials.gov (NCT05723965) accessed on 9 February 2023.
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Table 1. Demographic, clinical, and pathological characteristics of patients in study group.

Training
(n = 739)

Testing 1
(n = 134)

Testing 2
(n = 197) p Value

Gender
Female 283 (38.3%) 53 (39.6%) 73 (37.1%)

0.898
Male 456 (61.7%) 81 (60.4%) 124 (62.9%)

Age 66.40 ±14.02 68.88 ±12.18 69.86 ±13.92 0.003 **

Site of lesions

Upper 169 (22.9%) 45 (33.6%) 70 (35.5%)

<0.001 **Middle 257 (34.8%) 49 (36.6%) 81 (41.1%)

Lower 313 (42.4%) 40 (29.9%) 46 (23.4%)

Clinical T stage
T3 554 (79.0%) 98 (74.8%) 170 (86.3%)

0.024 *
T4 147 (21.0%) 33 (25.2%) 27 (13.7%)

Clinical N stage
N0 197 (26.7%) 33 (24.6%) 108 (54.8%)

<0.001 **
N1–2 542 (73.3%) 101 (75.4%) 89 (45.2%)

Clinical Stage
2 179 (24.2%) 31 (23.1%) 108 (54.8%)

<0.001 **3 454 (61.4%) 65 (48.5%) 89 (45.2%)

4 106 (14.3%) 38 (28.4%) 0 (0.0%)

c CRM
negative 392 (53.0%) 71 (53.0%) 89 (45.2%)

0.936
positive 347 (47.0%) 63 (47.0%) 108 (54.8%)

c CRM+ image
negative 3267 (63.3%) 826 (63.2%) 766 (60.4%)

positive 1897 (36.7%) 481 (36.8%) 502 (39.6%)

Radiation therapy 279 (37.8%) 36 (26.9%) 0 (0.0%) <0.001 **

Operation 683 (92.4%) 134 (100.0%) 197 (100.0%) <0.001 **

Pathology T

T0–1 11 (1.6%) 0 (0.0%) 5 (2.5%)

<0.001 **
T2 30 (4.4%) 5 (3.7%) 46 (23.4%)

T3 512 (75.0%) 96 (71.6%) 122 (61.9%)

T4 130 (19.0%) 33 (24.6%) 24 (12.2%)

Pathology N
N0 175 (25.6%) 33 (24.6%) 85 (43.4%)

<0.001 **
N1–2 508 (74.4%) 101 (75.4%) 111 (56.6%)

Pathology Stage

1 0 (0.0%) 0 (0.0%) 32 (16.2%)

<0.001 **
2 161 (23.6%) 30 (22.4%) 53 (26.9%)

3 423 (61.9%) 66 (49.3%) 112 (56.9%)

4 99 (14.5%) 38 (28.4%) 0 (0.0%)

p CRM
negative 574 (84.0%) 98 (73.1%) 172 (87.8%)

0.001 **
positive 109 (16.0%) 36 (26.9%) 24 (12.2%)

Chi-square test or ANOVA test. * p < 0.05, ** p < 0.01.

2.2. CT Imaging Methods

CT scans were conducted at diagnosis and pre-surgery using Philips Healthcare
scanners (Brilliance series, Cleveland, USA) at 100, 120, and 130 kV, or with automatic mA
control, and without additional noise reduction. Images were captured at a slice thickness
of 0.7 to 1.0 mm and a resolution of 512 × 512 pixels. The contrast medium dosage was
calculated based on body weight, with a maximum limit of 100 mL. All images were
reconstructed into 5 mm slices for detailed interpretation and analysis.
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2.3. Annotation of CRM-Threatening LARC Cases

We defined LARC as tumor invasion within 1 mm of the circumferential resection
margin (CRM) in MRI or CT images (Figure 2a,b). To validate the reliability of CT, fifty
rectal cancer patients underwent both CT and MRI, and three specialists (CY Lin, 7 years of
proctology; YC Liu, 8 years of radio-oncology; PY Chang, 12 years of radiology) assessed
the LARC status. The consistency between CT and MRI interpretations was assessed using
a kappa statistic of 0.728 (IBM SPSS version 22.0), indicating substantial agreement.
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Figure 2. Characterization and processing of rectal cancer features in CT imaging. (a) Criteria
for identifying CRM-threatening features associated with locally advanced rectal cancer in CT
scans; (b) illustrative cases of rectal cancer in CT imagery lacking CRM-threatening attributes;
(c) comparative illustration of three cropping techniques for rectal cancer image preparation: full
image, external pelvic boundary, and internal pelvic boundary.

2.4. Image Processing

We used the data collected above to train the deep learning algorithm model. The
training materials included the original DICOM files downloaded from the PACS system.
We utilized 3D slicer (version 5.2.2) software for image cropping along the outer pelvic
edge and inner pelvic edge. After training and testing, it was found that using only the
images cut along the inner pelvic edge yielded the highest result, based on preliminary
AUC results (Figure 2c, Table 2).

First, we normalized the CT images. Since the CT observation range was too large,
we limited its range by normalizing the image with a window level of 50 and a window
width of 400. A value of 250 and a minimum value of −150 were substituted, which
are the standard observation values for the abdomen. Although these values may vary
by institution and provider, the window width and level are usually very similar. After
normalization, we scaled the values to a range of 0–255 to match the storage range of
grayscale images. In addition to the normalization of CT values, we also normalized the
unit distance of CT images. Different CT images may have different unit distances due to
different operators, so we corrected the unit distance of all images to 1 mm × 1 mm per
pixel, ensuring that all images had the same unit size. Improving image quality, specifically
through noise reduction, is a crucial step prior to performing CT image prediction. From
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the literature [19–22], it is confirmed that the noise in CT images is typically additive white
Gaussian noise. We selected nonlocal mean filtering for denoising, as it searches for similar
areas in the image in units of image blocks and then averages these areas, which can better
filter out the Gaussian noise in the image. We set the search area to 21 × 21 pixels and the
similarity comparison block to 7 × 7 pixels, and we used the square of the pixel brightness
difference to estimate the similarity (Figure 3).

Table 2. Prediction rates of CRM-positive images in test set 1 derived from various image mate-
rial sources.

Sensitivity Specificity Accuracy AUC

whole picture 0.44 0.702 0.621 0.59

external pelvis 0.48 0.784 0.67 0.7

internal pelvis 0.527 0.816 0.713 0.77

image processed 0.811 0.809 0.81 0.89

After removing the noise from the image, we then applied dynamic histogram equal-
ization to improve its quality [23]. It first applies a smoothing process to the histogram
using a 1 × 3 filter, and then searches for the locations of the troughs in the histogram to
perform the first histogram division. To ensure that there were no dominant pixel values
within each division (i.e., to prevent high-frequency occurrences of luminance values from
overriding low-frequency occurrences), an evaluation of the segments was performed, fol-
lowed by a second histogram division. During the second division, the mean and standard
deviation of each segment were calculated. If the standard deviation was more than twice
the 68.3% probability threshold, no further division was performed. If the condition was
not met, the segment was divided into three subsegments.

Finally, histogram equalization was applied. This processing method solves the
problem of high-frequency luminance values overpowering low-frequency luminance
values during histogram equalization, thereby achieving a superior contrast enhancement
effect. The aim is to locate the tumor in the resulting image after final processing. Since
the image is cropped around the tumor, we assume that the contour closest to the center is
the contour of the tumor. Therefore, we started searching for contours from the center of
the image outward. We used the OpenCV package to find all the contours by checking the
distance from the contour’s centroid to the center of the image. We continuously updated
and iterated until we found the closest contour. We drew the contour on the original image
and used it as one of the inputs to our model [24].

2.5. Deep Learning Algorithm for CRM-Positive Image Identification

This study employed the deep learning architecture EfficientNetB0, recognized for
its efficiency and high performance despite a manageable parameter size, making it ideal
for fine-tuning with the limited yet high-quality data collected in the hospital setting. We
utilized EfficientNetB0 as a pre-trained model, integrating a global average pooling layer
immediately preceding the classification layer, and replacing the traditional fully connected
layer [25]. The loss was set to binary cross-entropy, and the class weights were set to
adjust for data imbalance. We used Adam as the optimizer, which updates parameters
of different scales based on different gradients. We set the learning rate to 0.001 and the
batch size to 32. We trained the model for 500 epochs and selected the model with the best
validation accuracy. We evaluated the impact of the architectural decisions on the overall
performance of the pipeline by monitoring the performance in the training set. The impact
of the hyperparameter values on the generalization capabilities of the models in an ablation
study was investigated in the performance monitoring in the validation and test sets. We
divided the training set data into 64%, 16%, and 20% for training, validation, and testing,
respectively, based on the proportion of patients. Since the amount of data provided by
each patient was different, there may be errors in the proportion of categories after splitting.
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We used a hash table to record the number of positive and negative images corresponding
to each patient and recursively divided the data until the proportion of each category was
close to the minimum error (Figure 3).
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2.6. Determining LARC Cases through Series of Images

We used a voting system to gather statistics and determine the presence of LARC based
on the proportion of CRM-positive images in each case. The determination of whether a
case was considered locally advanced rectal cancer (LARC) was based on the collective
clinical judgment of three specialists. Hard voting was used at first; that is, if the probability
of the model judging the image as positive was greater than or equal to 0.5, the image was
considered positive, and whether the patient was LARC was determined according to the
previous threshold.

Hard voting
Any one positive: any CRM-positive image be predicted in case series:

0.20 (one-fifth) :
Σ(Number o f CRM positive image be predicted)

number o f images (n)
> 1/5

0.25 (one-fourth) :
Σ(Number o f CRM positive image be predicted)

number o f images (n)
> 1/4

0.33 (one-third) :
Σ(Number o f CRM positive image be predicted)

number o f images (n)
> 1/3

0.50 (one-half) :
Σ(Number o f CRM positive image be predicted)

number o f images (n)
> 1/2

Subsequently, soft voting was adopted, averaging the probability values across all
images of a patient. The optimal threshold was determined using the Youden index on
ROC curves, combining sensitivity and specificity to assess the diagnostic effectiveness.

Soft voting

Any one positive :
Σ(Predicted risk o f CRM positive)

number o f images (n)
> 1/n

0.20 (one-fifth) :
Σ(Predicted risk o f CRM positive)

number o f images (n)
> 1/5

0.25 (one-fourth) :
Σ(Predicted risk o f CRM positive)

number o f images (n)
> 1/4

0.33 (one-third) :
Σ(Predicted risk o f CRM positive)

number o f images (n)
> 1/3

0.50 (one-half) :
Σ(Predicted risk o f CRM positive)

number o f images (n)
> 1/2

2.7. Local Recurrence Rate Analysis

Training AI models to expert-level judgment is not sufficient in demonstrating clinical
value; we aimed to understand the clinical predictive power of the decisions made. In
rectal cancer, LARC has significantly higher local recurrence (LR) and mortality rates.
Therefore, we selected 197 stage-2–3 rectal cancer patients who underwent direct surgery
(whose survival rates are not influenced by stage or treatment) from test set 2, followed
for an average of 49.3 months (mean). We conducted survival analysis based on the AI
model’s prediction to compare the predictive strength of AI and specialist physicians’
interpretations.

2.8. Statistical Analysis

Data were analyzed from 1 May 2022 to 31 May 2023, using Cohen’s kappa statistics
(SPSS version 22.0) for CT and MRI inter-rater reliability, chi-square tests, and ANOVA for
patient characteristic comparisons. Survival curves were evaluated using the Kaplan–Meier
method and log-rank tests, employing IBM SPSS version 22.0.
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This methodology ensured a robust and comprehensive approach to evaluating AI’s
capability in accurately identifying LARC cases through CT imaging, potentially transform-
ing diagnostic processes in oncological care.

3. Results
3.1. Training Set and Test Set Materials

In our training set, we compiled 739 cases, including 347 (47.0%) identified as LARC.
From these cases, we obtained 5464 CT images, with 1897 (36.7%) classified as CRM-positive
and 3267 (63.3%) as CRM-negative. Using the cropping method focused on the inner pelvic
edge, we processed these images for training using the ResNet50 model, a multiscale
squeeze and excitation model. For test set 1, we gathered 134 cases with 63 (47.0%) LARC
instances, resulting in 1307 CT images (481 CRM-positive and 826 CRM-negative). Test
set 2 comprised 197 cases, including 108 (54.8%) LARC cases, yielding 1268 images (502
CRM-positive, 766 CRM-negative) (Table 1).

3.2. Model Performance by Image

Upon completing image processing, we fed the data into our deep learning algorithm.
In test set 1, the AI model achieved a sensitivity, specificity, accuracy, and balanced accuracy
of 0.81, with an AUC of 0.89. For test set 2, the model achieved a sensitivity of 0.75,
specificity of 0.81, accuracy of 0.79, balanced accuracy of 0.78, and AUC of 0.86. These
results illustrate the AI’s capability in accurately interpreting CRM-positive CT images,
closely aligning with the performance of experienced specialists (Table 3, Supplement S1).

Table 3. Prediction of CRM-positive images by Model 1.

Image-Based Sensitivity Specificity Accuracy Balanced Accuracy AUC

Training and validation
(739 series, 5164 images) 0.80 0.82 0.82 0.81 0.9

Testing 1
(134 series, 1307 images) 0.81 0.81 0.81 0.81 0.89

Testing 2
(197 series, 1268 images) 0.75 0.81 0.79 0.78 0.86

3.3. Model Performance by Patient

We next assessed whether the AI’s ability to interpret LARC cases paralleled that of
specialists. A voting system was employed for this purpose, initially using hard voting
(binary classification of images). The optimal AI performance in test set 1 was achieved
with a one-fifth threshold, resulting in an AUC of 0.84 and a binary accuracy (BA) of 0.84.
In test set 2, the best performance was at a one-fourth threshold, with an AUC of 0.79
and a BA of 0.79. Switching to soft voting, which uses the summation of probabilities for
assessments, improved the AI’s performance: the highest performance was at a one-third
threshold, achieving an AUC of 0.93 and BA of 0.88 in test set 1 and an AUC of 0.88 and BA
of 0.83 in test set 2 (Table 4, Supplement S2).

Table 4. Prediction of LARC cases using Model 1 with hard and soft voting systems.

Testing 1 Set Threshold Sensitivity Specificity Accuracy Balanced Accuracy AUC

any 1 0.96 0.65 0.80 0.81 0.81

>Σ1/5 0.90 0.78 0.84 0.84 0.84

hard voting >Σ1/4 0.85 0.83 0.84 0.84 0.84

>Σ1/3 0.76 0.89 0.83 0.82 0.82

>Σ1/2 0.65 0.91 0.79 0.78 0.78
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Table 4. Cont.

Testing 1 Set Threshold Sensitivity Specificity Accuracy Balanced Accuracy AUC

any 1 (>Σ1/n) 0.88 0.74 0.81 0.81 0.89

>Σ1/5 0.91 0.78 0.84 0.85 0.91

soft voting >Σ1/4 0.85 0.82 0.84 0.84 0.91

>Σ1/3 0.87 0.89 0.88 0.88 0.93

>Σ1/2 0.76 0.91 0.86 0.83 0.93

Testing 2 Set

Any 1 0.90 0.61 0.77 0.75 0.75

>Σ1/5 0.85 0.72 0.79 0.79 0.79

hard voting >Σ1/4 0.82 0.76 0.80 0.79 0.79

>Σ1/3 0.73 0.85 0.79 0.79 0.79

>Σ1/2 0.57 0.91 0.73 0.74 0.74

any 1 (>Σ1/n) 0.84 0.70 0.78 0.77 0.86

>Σ1/5 0.85 0.74 0.80 0.80 0.88

soft voting >Σ1/4 0.81 0.77 0.79 0.79 0.87

>Σ1/3 0.78 0.87 0.83 0.83 0.88

>Σ1/2 0.67 0.90 0.81 0.78 0.87

3.4. Expanding the Training Set

To enhance the model’s capabilities, we combined the data from testing sets 1 and 2
to form new training sets for Models 2a and 2b. Model 2a was trained with 936 patients
(6732 images, 123.2% more than the original training set) and Model 2b with 873 patients
(6771 images, 123.9% more than the original training set). For Model 2a in test set 1, we
noted an image identification BA of 0.83 and an AUC of 0.89. The best LARC identification
was achieved at a one-third threshold in hard voting (BA: 0.85, AUC: 0.86) and a half
threshold in soft voting (BA: 0.89, AUC: 0.94). In test set 2, Model 2b’s image identification
showed a BA of 0.77 and AUC of 0.85. The optimal LARC identification occurred at a
one-fourth threshold in hard voting (BA: 0.80, AUC: 0.80) and at one-third and one-fifth
thresholds in soft voting (BA: 0.82/0.83, AUC: 0.88) (Figure 4, Table 5, Supplement S3).

3.5. Prediction Results and Survival Analysis in Test Set 2

Regarding patients with stage 2 or 3 rectal cancer who underwent surgical treatment,
over an average follow-up period of 49.3 months, it was observed that locally advanced
rectal cancer (LARC), as interpreted by physicians, was associated with higher rates of
local recurrence (LR) and mortality, though these findings were not statistically significant
(p = 0.106; 0.172).

When LARC was identified using artificial intelligence (AI), the number of LARC
cases identified decreased as the risk threshold was increased (from 108 cases at a thresh-
old of 0.20 to 51 cases at a threshold of 0.50). Despite the reduction in identified cases,
there was a consistent trend of higher LR rates among the identified LARC cases across
all risk thresholds. Notably, the trend of increased LR risk became significantly more
pronounced when the threshold was raised from 0.20 to 0.50 (p = 0.052 to p = 0.003). The
predictive value for mortality, when compared with physician interpretation, showed a
similar trend towards higher rates but was not statistically significant (Figure 5, Table 6,
Supplement S4). This result demonstrates that within the threshold range of 0.20 to 0.50,
AI’s predictions consistently showed clinical significance, indicating that AI can reliably
interpret meaningful outcomes.
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Figure 4. Optimal diagnostic outcomes using Models 2a and 2b. The green dotted line indicate
randomize classifier. (a–c) Performance of Model 2a, amalgamating data from the training set and test
set 2, when applied to test set 1. (a) Identification of CRM-threatening features indicative of LARC;
(b) determination of LARC status using a hard voting threshold of one-third; (c) assessment of LARC
cases employing a soft voting threshold of a half. (d–f) Efficacy of Model 2b, integrating data from
the training set and test set 1, utilized on test set 2. (d) Image analysis for CRM-threatening features
associated with LARC; (e) LARC case adjudication based on a hard voting threshold of one-fourth;
(f) LARC case determination via a soft voting threshold of one-third.
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Table 5. Identification of CRM-positive images and LARC cases by Model 2a (trained with training
set + test set 2) and Model 2b (trained with training set + test set 1).

Result 2a of Testing Set 1 Sensitivity Specificity Accuracy Balanced Accuracy AUC

Image-based 0.76 0.87 0.82 0.83 0.89

any 1 0.94 0.66 0.81 0.80 0.80

>Σ1/5 0.90 0.79 0.84 0.84 0.84

hard voting >Σ1/4 0.87 0.83 0.85 0.85 0.85

>Σ1/3 0.83 0.88 0.86 0.85 0.86

>Σ1/2 0.70 0.92 0.84 0.81 0.81

any 1 (>Σ1/n) 0.84 0.85 0.84 0.84 0.91

>Σ1/5 0.90 0.82 0.86 0.86 0.93

soft voting >Σ1/4 0.81 0.92 0.87 0.86 0.93

>Σ1/3 0.86 0.91 0.89 0.88 0.94

>Σ1/2 0.92 0.86 0.88 0.89 0.94

Result 2b of Testing Set 2 Sensitivity Specificity Accuracy Balanced Accuracy AUC

Image-based 0.68 0.86 0.78 0.77 0.85

any 1 0.88 0.69 0.80 0.78 0.78

>Σ1/5 0.82 0.76 0.80 0.79 0.79

hard voting >Σ1/4 0.78 0.82 0.80 0.80 0.80

>Σ1/3 0.55 0.93 0.75 0.74 0.74

>Σ1/2 0.64 0.90 0.80 0.77 0.77

any 1 (>Σ1/n) 0.78 0.86 0.81 0.82 0.87

>Σ1/5 0.81 0.85 0.83 0.83 0.88

soft voting >Σ1/4 0.80 0.84 0.82 0.82 0.87

>Σ1/3 0.82 0.82 0.82 0.82 0.88

>Σ1/2 0.85 0.73 0.78 0.79 0.86

Table 6. Summary of disease survival time in interpretation of physician and AI in each threshold
using soft voting. The disease survival status was determined using the local recurrent time and
overall survival time.

Model Total
Local

Recurrence
(n)

Censored LR Rate (%) p Overall
Survival

(Mortality)

Censored Overall Survival
(Mortality) Rate p

(n) % 1y 3y 5y (n) % 1y 3y 5y

Dr
− 89 8 81 91.0 97.5 89.2 89.2

0.106
24 65 73.0 96.2 82.2 71.7

0.172
+ 108 18 90 83.3 94.0 84.8 79.8 41 67 62.0 94.1 76.2 60.7

AI any 1
(>Σ1/n)

− 82 7 75 91.5 97.4 91.2 89.2
0.113

23 59 72.0 95.8 82.6 71.1
0.336

+ 115 19 96 83.5 94.3 83.6 80.5 42 73 63.5 94.5 76.2 61.8

AI (>Σ1/5)
− 89 7 82 92.1 97.6 91.8 90.0

0.052
26 63 70.8 96.1 82.4 70.3

0.431
+ 108 19 89 82.4 94.0 82.7 79.5 39 69 63.9 94.2 75.9 61.9

AI (>Σ1/4)
− 99 8 91 91.9 97.8 91.4 89.6

0.044
29 70 70.7 96.5 82.8 69.1

0.483
+ 98 18 80 81.6 93.4 82.2 78.8 36 62 63.3 93.7 74.9 62.2

AI (>Σ1/3)
− 118 10 108 91.5 98.1 90.6 89.1

0.030
32 86 72.9 96.2 82.5 70.6

0.198
+ 79 16 63 79.7 91.9 81.3 77.1 33 46 58.2 93.5 73.8 58.9

AI (>Σ1/2)
− 146 13 133 91.1 97.7 90.8 88.6

0.003
39 107 73.3 96.2 83.6 72.0

0.005
+ 51 13 38 74.5 89.8 75.6 71.9 26 25 49.0 92.0 66.5 49.3
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3.6. Visual Examples of Interpretation by AI and Doctor

Figure 6 presents a series of image cases with interpretations from both a doctor
and artificial intelligence (AI) across various thresholds. The evaluated clinical outcomes
include the positive pathological circumferential margin (pCRM), the time until local
recurrence (LR), and overall survival (OS).
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Figure 6. Three visual examples of interpretation results by a physician and AI. The surgery outcome
with a positive pathological circumferential margin (pCRM), disease survival of local recurrence, and
overall survival time were also recorded. The following abbreviations are used: pCRM+, positive
pathological circumferential margin; LR, local recurrence; OS, overall survival.

For Case 359, interpretations by both the doctor and AI indicated positive results,
leading to positive pCRM and local recurrence at 7.9 months, respectively, with overall
survival times of 39.5 months. Case 300 highlights a scenario where the AI identified a few
images with a positive CRM, which was overlooked by the doctor. This patient experienced
a local recurrence at 12.3 months and succumbed to the disease at 34.0 months.

In Case 458, which featured a higher-positioned rectal cancer near the small intestine,
the physician determined that surgical resection would not pose a risk of positive circum-
ferential resection margin (pCRM), suggesting confidence in achieving clear margins and
thus reducing the likelihood of local recurrence. Despite this professional assessment, an
artificial intelligence (AI) system identified the cancer as locally advanced rectal cancer
(LARC) at risk thresholds ranging from 0.20 to 0.33. This classification by the AI was likely
influenced by the visual proximity of the rectum to the small intestine in several images,
which could be interpreted as a more aggressive or advanced disease. However, following
surgery, the patient was found to have stage II cancer and did not experience any disease
recurrence over a prolonged period.
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4. Discussion
4.1. Integration of Key Results with Existing Research

Our study’s crucial discovery is that AI can accurately interpret CT images for the
diagnosis of locally advanced rectal cancer (LARC), despite the absence of a comparative
model. By conducting a comparative analysis with the results from the MERCURY trial(4),
which used MRI to assess rectal cancer, we found that local recurrence rates for LARC
were comparable between our study and the MERCURY trial (22.9% vs. 26.3%). This
comparison emphasizes the AI’s predictive accuracy, showcasing its potential value even
without direct model comparisons. Moreover, our AI model’s high sensitivity, specificity,
accuracy, and predictive value in differentiating CRM-positive from CRM-negative images
are comparable to the performance of experienced radiologists. This underscores the
substantial promise of AI in enhancing medical diagnostics.

4.2. Significant Achievements and Contributions

This research makes a substantial contribution by applying AI in series analysis of
medical images, a domain traditionally reliant on human expertise. The use of hard and
soft voting techniques enables the AI model to interpret multiple images for a comprehen-
sive diagnosis, highlighting its potential in complex diagnostic scenarios. This extends
AI’s application beyond state-of-the-art methods [26,27] such as single-image analysis,
demonstrating more intricate diagnostic tasks.

Moreover, this study’s findings on the AI model’s ability to predict local recurrence
risks in LARC cases underscore the potential role of AI in clinical decision making and
prognostication, aligning with recent advances in AI for personalized treatment plan-
ning [28–32].

4.3. Combining Current Findings with Original Study Aspects

For newly diagnosed rectal cancer, understanding whether there is organ metastasis
and evaluating local staging are crucial. LARC, defined as CRM-threatening, necessitates
neoadjuvant chemoradiation therapy [3,5]. While MRI is the recommended imaging
modality [4,10], its limited availability has necessitated reliance on CT scans. Our study’s
use of CT interpretations by experienced physicians for deep learning algorithm training
shows that AI can quickly detect LARC with enough data, providing a viable alternative
to MRI.

Identifying LARC involves understanding the spatial relationship between the cancer
and other pelvic structures. Our approach, using 2D image feature recognition and voting
systems, successfully tackles this challenge, offering a method that closely matches the
accuracy of professional physicians’ interpretations.

4.4. State-of-the-Art Method for CRM+ Images and LARC Cases

Our study introduces an adaptation of the EfficientNetB0 architecture and a novel
voting mechanism for detecting locally advanced rectal cancer (LARC) via CT scans. Ef-
ficientNetB0 is engineered to maximize accuracy with minimal parameters, tackling the
challenge of scarce high-quality medical imaging data and representing state-of-the-art
methods in recognizing CRM-positive images. To further enhance LARC case identification,
we employed our innovative voting system, combining hard and soft voting approaches.
Typically, a case consists of 3 to 10 images, and the challenge lies in determining LARC from
a series of image results. Accurately interpreting CRM+ images does not automatically
equate to identifying an LARC case, a finding corroborated by our study results; indeed,
any single prediction result is often the least accurate. We discovered that employing a
voting system for comprehensive risk assessment yields consistent and precise predic-
tive outcomes. This system closely mirrors expert decision making by comprehensively
evaluating image series, thereby providing consistent results across different thresholds
and ensuring reliable LARC identification. Given the absence of comparative methods for
LARC case identification, our CRM+ identification approach with the soft voting system
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is considered a state-of-the-art method. Importantly, this study goes beyond mere diag-
nostic accuracy to demonstrate the model’s clinical utility in predicting local recurrence
rates and overall survival, bridging the gap between technical accuracy and meaningful
clinical outcomes. The strategic data management and model training approach further
ensure the system’s operational efficiency and reliability. This integration of innovative
architecture and practical clinical relevance marks a significant step forward in leveraging
AI for medical diagnostics.

4.5. How to Utilize the AI Prediction Results

In the last three example cases, there was a significant discrepancy between the AI’s
predictive assessment and the actual clinical course. This underscores the critical need
for the careful evaluation of AI recommendations, especially when they might lead to
the overestimation of disease severity based on imaging alone. While AI can provide
valuable insights, particularly in complex cases, this scenario highlights its limitations and
the irreplaceable value of human clinical judgment in making final treatment decisions.
These case outcomes exemplify the importance of integrating AI tools with comprehensive
clinical evaluation to ensure accurate diagnosis and appropriate treatment planning.

4.6. Limitations and Future Directions

This study utilized CT images from a single institution, and the limited number of
cases could potentially restrict the robustness of its findings. A larger, well-annotated
database could enhance the outcomes, offering a richer dataset for analysis and potentially
improving the accuracy of AI predictions. Furthermore, this research could be expanded
to include MRI imaging in the future. With precise annotation, the superior detail offered
by MRI images could lead to the more accurate identification of locally advanced rectal
cancer (LARC). Moreover, MRI’s enhanced imaging capabilities could also contribute to
the investigation of lymph node involvement, significantly aiding in disease staging.

4.7. Possible Applications of this Research

Utilizing this approach, it may be possible to develop a real-time monitoring system
that alerts physicians to the presence of locally advanced rectal cancer (LARC) while they
are reviewing CT images. This system could offer objective and immediate feedback,
serving as an invaluable tool in clinical settings. Furthermore, during multicenter studies,
it could act as an objective reference standard for diagnosing LARC.

Expanding on this foundation, future research that integrates semi-automated segmen-
tation tools [33], localizes colorectal cancer [34], and detects colon polyps [35] in contrast
enhancement CT could lead to the creation of automated imaging staging for colorectal
cancer. AI has the potential to provide an experienced and objective perspective, serving
as a valuable tool in clinical treatment. Such a system could enhance clinical treatment
by providing consistent and accurate staging information. In the future, with the aid of
GAN [36], it will be possible to more accurately simulate the relationship between rectal
tumors and nearby organs, thus defining LARC. By automating the staging process and
integrating real-time risk assessment, clinicians can improve the precision of their diagnoses
and treatment strategies, leading to better patient outcomes. This illustrates the promise of
combining AI with medical expertise to advance healthcare delivery.

5. Conclusions

This study highlights the potential of AI in accurately interpreting CT images for
diagnosing locally advanced rectal cancer (LARC), rivaling the precision of experienced
radiologists. It underscores the need for further automation and broader datasets in
AI diagnostics, particularly in settings where MRI is less accessible. Ultimately, these
findings pave the way for integrating AI into routine oncological care, enhancing diagnostic
efficiency and accuracy.
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