
Citation: Shah, J.J.; Jimenez-Jaramillo,

C.A.; Lybrand, Z.R.; Yuan, T.T.; Erbele,

I.D. Modern In Vitro Techniques for

Modeling Hearing Loss. Bioengineering

2024, 11, 425. https://doi.org/

10.3390/bioengineering11050425

Academic Editors: Vincent Ho and J.

Kenneth Wickiser

Received: 29 February 2024

Revised: 4 April 2024

Accepted: 11 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Review

Modern In Vitro Techniques for Modeling Hearing Loss
Jamie J. Shah 1,* , Couger A. Jimenez-Jaramillo 1, Zane R. Lybrand 2 , Tony T. Yuan 3 and Isaac D. Erbele 3,4

1 Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA,
Fort Sam Houston, TX 78234, USA; couger.a.jimenezjaramillo.mil@health.mil

2 Division of Biology, Texas Woman’s University, Denton, TX 76204, USA; zlybrand@twu.edu
3 Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;

tony.yuan@usuhs.edu (T.T.Y.); isaac.d.erbele.mil@health.mil (I.D.E.)
4 Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA,

Fort Sam Houston, TX 78234, USA
* Correspondence: jamie.j.shah.mil@health.mil

Abstract: Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern,
especially within operational medicine, with limited therapeutic options available. This review article
explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing
loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss
or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs),
emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do
not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic
the inner ear’s architecture, have shown immense potential in several critical areas. They enable the
testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear
development and pathology. Unlike traditional animal models, otic organoids closely replicate human
inner ear pathophysiology, making them invaluable for translational research. This review discusses
methodological advances in otic organoid generation, emphasizing the use of human pluripotent
stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts
have identified key markers and pathways essential for otic organoid development, shedding light on
their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and
microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations,
including the need for standardized protocols and ethical considerations, otic organoids offer a
transformative approach to understanding and treating auditory dysfunctions. As this field matures,
it holds the potential to revolutionize the treatment landscape for hearing and balance disorders,
moving us closer to personalized medicine for inner ear conditions.

Keywords: otic organoids; sensorineural hearing loss; stem cells; operational medicine; inner ear
modeling; cochlear hair cells

1. Introduction

Sensorineural hearing loss (SNHL) is the most prevalent neurosensory deficit globally,
affecting approximately 470 million individuals, with an expected increase to 900 million
by 2050 [1]. The Veterans Benefits Administration compensation report from 2020 reported
that more than 1.3 million veterans were receiving disability compensation for hearing
loss [2]. One large study of US military service members found that combat experience
was associated with a 63% increased risk for hearing loss [3]. This condition primarily
arises from the irreversible loss or dysfunction of the cochlea’s mechanosensory hair cells
(HCs) and spiral ganglion neurons (SGNs), which are integral to the auditory process.
SNHL, often resulting from traumatic blast injuries, noise exposure, ototoxic medications,
genetic predispositions, and infectious diseases, poses a significant challenge to operational
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medicine. Moreover, the long-term consequences of SNHL, which can affect communica-
tion, situational awareness, and overall operational effectiveness, underscore the need for
innovative solutions [4–8].

The intricate sensory mechanism of the auditory system hinges on HCs within the
cochlea and vestibular apparatus, where they serve as transducers of mechanical stimuli
into electrical signals for sound perception and balance, respectively [9–11]. The human
cochlea starts with approximately 75,000 sensory HCs at birth that diminish over time due
to various insults and the natural aging process [5–7] (Figure 1). Damage to these cells or
the neurons they engage is often irreversible, as mammals possess limited regenerative
capacity within the inner ear [12–14]. Despite the vast impact of hearing loss and balance
dysfunctions that affect more than 6% of the global population, therapeutic measures are
predominantly compensatory. Current interventions, such as hearing aids and cochlear
implants, only alleviate symptoms without rectifying the underlying causes [15]. This
highlights the urgency for innovative approaches to understand and address sensorineural
impairments. Moreover, there are no FDA-approved therapies that effectively regenerate
lost sensory functions [16,17], predominantly due to the lack of appropriate and effective
research models.
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leading to sensorineural hearing loss.

The development of in vitro otic organoids as a hearing injury model represents the
cutting-edge of research and technological innovation to bridge the therapeutic gap. These
three-dimensional multicellular constructs mimic the inner ear’s architecture and functional
properties, thereby providing an invaluable platform for research and therapeutic develop-
ment. Otic organoids have shown potential in several critical areas (Figure 2), including
the testing of gene therapies aimed at ameliorating congenital hearing deficits [18,19],
which can be crucial for individuals entering operational environments with pre-existing
hearing impairments. Secondly, they enable drug discovery initiatives for the regeneration
of damaged sensory cells [20], potentially offering therapeutic options for hearing loss
resulting from traumatic events or environmental exposures. Lastly, otic organoids serve
as invaluable models for understanding the development and pathology of the human
inner ear, which can aid in the development of protective measures against noise-induced
hearing loss and other environmental factors encountered in operational settings [16,21–23].
Their emergence is pivotal, given the stark limitations of animal models in recapitulating
the unique human inner ear pathophysiology.

Otic organoids are not only at the frontier of medical research for SNHL but also hold
promise for an array of applications, from disease modeling to drug testing, potentially
revolutionizing the treatment landscape for auditory and balance disorders. This review
article will explore the past and current development and applications of otic organoids in
an in vitro setting.



Bioengineering 2024, 11, 425 3 of 14Bioengineering 2024, 11, x FOR PEER REVIEW 3 of 15 
 

 
Figure 2. General overview of the various clinical applications for otic organoid research. 

Otic organoids are not only at the frontier of medical research for SNHL but also hold 
promise for an array of applications, from disease modeling to drug testing, potentially 
revolutionizing the treatment landscape for auditory and balance disorders. This review 
article will explore the past and current development and applications of otic organoids 
in an in vitro setting. 

2. Methods 
A comprehensive literature search was conducted using the PubMed database to 

identify relevant articles focusing on in vitro techniques utilized in modeling hearing loss. 
The search was limited to articles written in English. Initial search terms included “in vitro 
otic organoids”, “sensorineural hearing loss (SNHL)”, “induced pluripotent stem cells (iP-
SCs)”, “operational medicine”, and “inner ear modeling”. A manual review of the re-
trieved articles and their reference lists was performed to identify additional relevant pub-
lications. Further refinement of the search strategy involved examining articles cited 
within the retrieved studies. This iterative process ensured a comprehensive collection of 
pertinent literature for inclusion in the review article. 

3. Methodological Advances in Otic Organoid Generation 
Animal models have provided considerable insights into human inner ear disorders; 

however, the inaccessibility of the inner ear structure, encased within the temporal bone, 
along with the limited resolution of non-invasive imaging techniques, impedes direct 
studies of human hearing pathology [24]. Although mouse models have been a corner-
stone in the study of human inner ear disorders, they fall short of replicating the precise 
developmental timeline of the human cochlea, which matures by the twentieth embryonic 
week, unlike in mice [7,25]. Moreover, species-specific variations, notably the regenerative 
abilities observed in non-mammalian vertebrates that are absent in mammals, hinder the 
extrapolation of animal study results to human cases [26,27]. Consequently, it is essential 
to establish manipulable and sustainable in vitro models such as otic organoids to enhance 
our comprehension of the inner ear’s biology and its pathologies [17]. 

To simulate the human inner ear in vitro, multiple stem cell sources have been har-
nessed, including human pluripotent stem cells (hPSCs)—encompassing both embryonic 
stem cells (ESCs) and induced pluripotent stem cells (iPSCs)—as well as tissue-resident 
adult and fetal progenitor stem cells [28–43]. These stem cells are pivotal in addressing 
the scalability challenges associated with patient-derived tissues, which are complicated 
by the difficulties of biopsy procedures and subsequent cell culture [44,45]. The 

Figure 2. General overview of the various clinical applications for otic organoid research.

2. Methods

A comprehensive literature search was conducted using the PubMed database to
identify relevant articles focusing on in vitro techniques utilized in modeling hearing loss.
The search was limited to articles written in English. Initial search terms included “in vitro
otic organoids”, “sensorineural hearing loss (SNHL)”, “induced pluripotent stem cells
(iPSCs)”, “operational medicine”, and “inner ear modeling”. A manual review of the
retrieved articles and their reference lists was performed to identify additional relevant
publications. Further refinement of the search strategy involved examining articles cited
within the retrieved studies. This iterative process ensured a comprehensive collection of
pertinent literature for inclusion in the review article.

3. Methodological Advances in Otic Organoid Generation

Animal models have provided considerable insights into human inner ear disorders;
however, the inaccessibility of the inner ear structure, encased within the temporal bone,
along with the limited resolution of non-invasive imaging techniques, impedes direct
studies of human hearing pathology [24]. Although mouse models have been a corner-
stone in the study of human inner ear disorders, they fall short of replicating the precise
developmental timeline of the human cochlea, which matures by the twentieth embryonic
week, unlike in mice [7,25]. Moreover, species-specific variations, notably the regenerative
abilities observed in non-mammalian vertebrates that are absent in mammals, hinder the
extrapolation of animal study results to human cases [26,27]. Consequently, it is essential
to establish manipulable and sustainable in vitro models such as otic organoids to enhance
our comprehension of the inner ear’s biology and its pathologies [17].

To simulate the human inner ear in vitro, multiple stem cell sources have been har-
nessed, including human pluripotent stem cells (hPSCs)—encompassing both embryonic
stem cells (ESCs) and induced pluripotent stem cells (iPSCs)—as well as tissue-resident
adult and fetal progenitor stem cells [28–43]. These stem cells are pivotal in addressing
the scalability challenges associated with patient-derived tissues, which are complicated
by the difficulties of biopsy procedures and subsequent cell culture [44,45]. The renewa-
bility of hPSCs and their amenability to genetic modifications render them particularly
advantageous for introducing or repairing mutations implicated in inner ear diseases [46].

The induction of hPSCs into otic progenitor cells necessitates cell culture protocols
that replicate embryonic development stages (Figure 3). These protocols meticulously
direct the differentiation of hPSCs to produce the diverse cell types of the inner ear—a
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multi-lineage organ composed of epithelial, neuronal, and glial cell types derived from
the ectoderm, along with the periotic mesenchyme (POM) originating from the mesoderm
and neural crest [4,17,46]. This poses a substantial bioengineering challenge, requiring the
integration of these distinct cell types into a coherent and functional organoid in vitro [47].
Otic organoids, which are advanced cultures replicating the inner ear’s milieu, provide an
innovative platform for the investigation and potential treatment of SNHL. These organoids
facilitate intricate analyses of developmental pathways and cellular interactions, which are
fundamental in addressing SNHL, and signify a significant advancement over traditional
stem cell cultures [17]. Furthermore, otic organoids are instrumental in exploring the
human inner ear’s developmental stages and offer insight into hearing loss pathogenesis.
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Figure 3. Overview of otic organoid development, highlighting key molecular markers at critical
stages. Pluripotent stem cells are induced to form the otic placode and subsequently differentiate
into various cell types (hair cells, supporting cells, and neurons), forming a mature otic organoid.

Developing otic organoids has involved both two-dimensional (2D) and three-dimen-
sional (3D) culture techniques (Figure 4). 2D approaches manipulate molecular pathways
critical to ear development, resulting in relatively homogenous populations of otic pro-
genitors [32,34,39,48]. While 2D differentiation cultures offer a valuable platform for otic
organoid development, they are not without limitations. One prominent constraint is
that the generated HCs often exhibit incomplete maturation. These cells may not fully
manifest the characteristics and functional attributes of mature in vivo HCs. Moreover, 2D
culture systems also face challenges in achieving precise differentiation into diverse HC
subtypes, such as cochlear (responsible for auditory perception) and vestibular (responsible
for balance) HCs. Lastly, otic organoids cultivated via 2D techniques lack the intricate
three-dimensional tissue architecture characteristics of the inner ear [34,39,48].

By contrast, 3D culture methods offer superior mimicry of the complex tissue architec-
ture and cellular interactions characteristic of the inner ear, thereby facilitating enhanced
differentiation and maturation of HCs. Researchers have refined protocols that lead hPSCs
through a series of sequential developmental stages such as embryoid body formation, ecto-
dermal induction, pre-placodal development, and otic placode formation. These stages are
carefully orchestrated to emulate the in vivo development of the ear [49–51]. Most notably,
a recent study has undertaken a thorough comparison between in vitro inner ear organoids
and early in vivo human embryonic otocyst stages, employing advanced methodologies
including multiplexed immunostaining and single-cell RNA-sequencing. This comparative
analysis has significantly enriched our comprehension of the molecular signatures inherent
in these organoids [52]. The manipulation of TGF-β and bone morphogenetic protein
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(BMP) signaling pathways has been crucial, with fibroblast growth factors (FGFs) and Wnt
signaling effectively promoting otic placode development, an essential precursor to the
inner ear [37,38,40,50]. Morphological and electrophysiological evaluations, along with
gene expression analyses of markers such as Pax2, Myo7a, and Atoh1, have been crucial in
determining the similarity of iPSC-derived cells to mature HCs [38,53].
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Human iPSC-derived inner ear organoids offer an unmatched opportunity to model
the unique aspects of human genetic anomalies related to SNHL. For example, organoids
derived from mouse ESCs have shed light on HC degeneration linked to human-specific
TMPRSS3 mutations. The CRISPR/Cas9-mediated correction of mutations in genes like
Myo7a and Myo15a in iPSCs has demonstrated potential for restoring the structural and
functional integrity of stereocilia [54–57]. The progress with human iPSC-derived inner
ear organoids demonstrates the capacity that organoids have to solve complex biolog-
ical problems by correcting mutations in developed tissue and therefore rescuing the
healthy phenotype.

The burgeoning field of 3D inner ear organoids signifies a transformative approach to
the treatment of auditory dysfunctions. These structures emulate the cellular organization
and functionality of the inner ear, utilizing both tissue-specific stem cells and hPSCs. They
are invaluable for elucidating HC types and their interactions with supporting cells, and
they pave new pathways for developing therapeutic interventions for SNHL.

4. Cellular and Molecular Characterization

Current research in the field of otic organoids involves a comprehensive cellular and
molecular characterization to understand their potential in modeling inner ear development
and disease pathogenesis. These organoids are generated from hPSCs and recapitulate
the complexities of the developing inner ear, providing a valuable platform for studying
otic development and disorders. Cellular and molecular characterization efforts have
been primarily carried out in both human and animal otic models, shedding light on the
markers and mechanisms underlying otic organoid formation and function. Additionally,
research has elucidated that multipotent cell populations within the human fetal cochlea
and the adult spiral ganglion are exploitable, with iPSCs being particularly valuable due
to their ability to differentiate into any cell type and be maintained in culture [38]. iPSCs
are pivotal in personalized medicine because of their derivation from patient-specific cells
and their immunocompatibility [41,58–60]. The differentiation potential of various stem
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cells, including ESCs and iPSCs, has been recognized, as have their unique capabilities
and constraints in differentiating into otic sensory cells [61,62]. Moreover, the inability
of the adult mammalian cochlea to spontaneously regenerate HCs poses a significant
challenge. In contrast, some regenerative potential has been observed in the neonatal
rodent vestibular system and sensory epithelia, a process attributed to pathways such
as Wnt and Notch [63–67]. Cells expressing Lgr5 within the sensory epithelia have been
identified as promising progenitors for HC regeneration [65].

The development of the inner ear originates from the ectodermal germ layer following
gastrulation. During this process, the ectoderm differentiates into neural and non-neural
domains, influenced by a BMP concentration gradient [68,69]. Subsequently, this differ-
entiation process results in the emergence of the otic placode within the otic-epibranchial
placode domain, which is positioned at the juncture of the non-neural ectoderm and the
neuroectoderm. This formation is orchestrated by a plethora of signaling pathways, includ-
ing those mediated by FGFs, Wnt, TGF-β, BMPs, sonic hedgehog (SHH), and retinoic acid
(RA) [70–79]. Diverse cell lineages, such as epithelial, neuronal, and glial cells, are derived
from the ectodermal layer, while the specialized periotic mesenchyme (POM) originates
from both the mesodermal layer and the cranial neural crest cells [47].

In both human and animal otic models, extensive cellular and molecular characteriza-
tion has been performed to identify the key cell populations and molecular markers present
in otic organoids. These investigations have revealed the presence of otic progenitor cells
marked by the expression of transcription factors such as Pax2, Sox2, and Sox9. These
markers are indicative of the early stages of otic placode induction and differentiation,
consistent with an intricate developmental process [68,69]. Furthermore, sensory and non-
sensory cell populations within human and animal models have been identified through
the expression of markers like BRN3C for sensory neurons and GATA3 for non-sensory
epithelial cells [43].

At the molecular level, the characterization of these otic organoids entails the identifi-
cation of biomarkers that signal the transition of stem cells toward an otic fate. Initially,
otic progenitor cells are identified using markers such as Pax2 and Pax8, followed by the
expression of the transcription factor Atoh1, which heralds the development towards the
HC lineage [80]. Additional markers like Myo7A and neurofilament proteins are indicative
of sensory cell induction [37]. Throughout organogenesis, a suite of specific gene mark-
ers, including Pax2, Pax8, Ecad, Sox2, Lmx1a/b, and Jagged1, delineate the trajectory of
prosensory cells [17,79,81]. Neurogenin (Neurog1) and Neurod1 are imperative in the
commitment of neuronal progenitors [82], while a composite of gene expressions, encom-
passing Atoh1, Notch pathway intermediaries (Hes5, Sox2), and Neurod1, orchestrates
neurosensory cell development [83,84]. In vitro experimentation has facilitated the genera-
tion of otic placodes and otocyst-like structures from iPSCs by modulating the signaling
pathways, mirroring the involvement of various signaling pathways such as FGFs, Wnt,
TGF-β, BMPs, SHH, and RA during normal otic development [37,70–79,85]. This represents
a significant step forward, proposing a viable method to produce cellular components
aimed at SNHL therapies [37]. These organoid systems effectively mimic the differentiation
of the otic placode into the otic vesicle, subsequently giving rise to the intricate inner ear
structures, which include HCs (inner and outer), supporting cells, and SGNs [37].

Inner and outer HCs are integral components of the cochlea, playing vital roles in
auditory transduction. Inner HCs primarily transmit auditory stimuli to the central nervous
system, while outer HCs contribute significantly to cochlear amplification, enhancing
auditory sensitivity and selectivity. Dysfunction of inner HCs commonly leads to SNHL,
while abnormalities in outer HC function can result in cochlear amplification disorders and
tinnitus [86]. Modulation of Sonic Hedgehog (SHH) and WNT signaling pathways has been
shown to promote ventral gene expression in otic progenitors, mimicking developmental
cues for cochlear specification. Moreover, single-cell RNA sequencing has identified key
transcriptional pathways, including the involvement of NR2F1, in cochlear differentiation.
Structural analyses confirm the development of hair bundles characteristic of inner and
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outer HCs, with inner HCs exhibiting a U-shaped arrangement. Furthermore, functional
assessments demonstrate specific ion conductance typical of mature inner and outer HCs,
with outer hair cells expressing membrane-localized PRESTIN [85]. Elucidating the intricate
molecular cascades governing the development and maintenance of inner and outer HCs
is crucial for identifying potential therapeutic avenues.

While strides have been made in delineating the pivotal transcription factors (e.g., Sox2,
Atoh1) and signaling pathways (e.g., Notch) integral to differentiation and regeneration [87–
90], the precise gene expression profile essential for the conversion of iPSCs into HCs
remains elusive [91]. Notably, the overexpression of Sox1 may accelerate this process [92].
The regenerative phenomena observed in neonatal rodents offer a beacon of hope for poten-
tial treatments in adults; however, replicating the dynamic developmental environment of
the inner ear in vitro presents challenges, including variability in the structural and cellular
composition of otic organoids [63,65–67]. In future research, it would be ideal to identify
additional markers that can further validate the model’s accuracy and usefulness. For
instance, the identification of markers specific to vestibular HCs, which are responsible for
balance and spatial orientation, would enhance the representation of the entire inner ear.
Moreover, markers that signify the maturation of various cell types within otic organoids,
including synaptic markers for sensory neurons and mechanotransduction-related proteins
for HCs, would be valuable for assessing functional maturity.

Challenges and limitations in the cellular and molecular characterization of otic
organoids include the need for standardized differentiation protocols to minimize het-
erogeneity in marker expression among different research groups. Achieving a more
accurate recapitulation of the intricate cellular diversity of the inner ear remains a challenge
due to the complex interactions and signaling pathways involved in inner ear development.
Furthermore, enhancing the functional maturity of otic organoids, especially in terms of
achieving functional synapses between sensory neurons and HCs, requires further investi-
gation. Additionally, addressing the ethical concerns and technical challenges associated
with obtaining human inner ear tissue for comparison with otic organoids is a hurdle that
researchers must navigate.

5. Technological Innovations for Culture Enhancement

The field of inner ear organoid research has experienced significant progress, primarily
driven by interdisciplinary advancements in three-dimensional (3D) bioprinting and mi-
crofluidics technologies. These innovations offer several advantages for the development
of inner ear organoids. They excel at creating precise cell configurations, establishing
defined signaling gradients, and enhancing cellular arrangement, which closely mirrors the
natural ontogenesis of the inner ear [93–96]. These features contribute to the development
of consistent and replicable organoid models.

Technological innovations have significantly advanced the field of inner-ear otic
organoid models, primarily through the implementation of 3D cell culture techniques. Pro-
tocols for the differentiation of iPSCs into HC-like cells have diversified. Some approaches
employ embryoid body formation, followed by adhesion to 2D cultures, while others lever-
age 3D organoid systems to better mimic in vivo organ architecture [29,31–33,39,97–100].
These protocols typically commence with the inhibition of certain pathways and activation
of BMP signaling, progressing to treatments that foster anterior ectoderm development
and otic placode induction [31,37,39,97–99,101]. The application of extracellular matrix
components, such as Matrigel, in 3D cultures has been found to enhance differentiation
efficiency [37,38,40,101]. By providing a more physiologically relevant microenvironment,
3D cultures facilitate the recreation of intricate cellular interactions and tissue architectures
found within the inner ear. Additionally, 3D cultures allow for the incorporation of mul-
tiple cell types, including sensory HCs, supporting cells, and neurons. Validation of the
resultant cell types involves the use of molecular markers, morphological assessments, and
electrophysiological analyses [29,37,98,99].
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Innovations in 3D cell culture techniques have also introduced microfluidics and
unique geometries, further enhancing the inner ear otic organoid models. Microfluidics play
a critical role by replicating the fluidic milieu of the inner ear, pivotal for the maturation of
HCs and the formation of synapses [102]. Microfluidic systems enable precise control over
nutrient supply, waste removal, and the establishment of gradients, mimicking the in vivo
environment. Enhancements, such as incorporating vascularization within organoids
via microfluidic systems, could bolster their semi-physiological relevance and support
epithelial polarity over extended culture durations [103,104].

In the inner ear, the blood–labyrinth barrier (BLB) plays an important role in patho-
physiology, like the blood–brain barrier (BBB). Incorporating inner ear cell types such as
sensory inner and outer HCs, supporting cells, endothelial cells from the stria vascularis,
and cochlear neurons into microfluidic systems could facilitate the study of BLB physiology
and pathophysiology. Integrating inner ear cells into on-chip platforms can facilitate inves-
tigating cellular interactions, transport mechanisms, and barrier function within the context
of the BLB [105]. However, several obstacles must be addressed to effectively apply on-chip
tools for inner ear research. These include the need for robust differentiation protocols to
generate functional inner ear cell types from iPSCs, optimization of culture conditions to
mimic the unique microenvironment of the inner ear, and validation of barrier properties
in BLB models. Despite these challenges, leveraging on-chip technologies for inner ear
research presents exciting opportunities to advance our understanding of BLB physiology
and develop targeted therapies for inner ear disorders.

Three-dimensional bioprinting improves the structural fidelity of these models, which
is a prerequisite for replicating the cochlea’s tonotopic organization [38,53]. Additionally,
the use of unique geometries in culture scaffolds can influence cellular behavior and
differentiation, promoting the development of more sophisticated otic organoid models.
Progress in this domain has been facilitated by bioengineered scaffolds incorporating
extracellular matrix (ECM) components like laminin and collagen. Additionally, the use
of decellularized cochlear tissues as scaffolds has shown promise in promoting human
cell integration [106–108]. However, precise delivery and integration within the cochlea
continue to pose significant challenges [29,109–111]. The introduction of proangiogenic
factors or endothelial cells may lead to the formation of vascularized organoids, which
could improve graft viability for in vivo applications [112,113].

The application of CRISPR/CAS-9 technology has been instrumental in enhancing the
maturity of inner ear otic organoids and expanding their utility. CRISPR/CAS-9 allows
for the precise manipulation of genetic elements, enabling researchers to modify genes
associated with otic development and maturation. By optimizing the genetic makeup of
organoids, researchers can accelerate the differentiation of cells and improve the overall
functionality of these models. Furthermore, CRISPR/CAS-9 has opened doors for studying
various genetic disorders affecting the inner ear and evaluating potential therapeutic
interventions [54]. Comparative analyses of stem cell therapy and CRISPR/Cas9 gene
editing suggest that combined approaches may be efficacious for SNHL treatment [114].

By better recapitulating the native inner ear environment, otic organoid models pave
the way for innovative approaches to restoring auditory and vestibular function in individ-
uals with hearing loss or balance impairments. Advancements in pathway manipulation
for the proliferation of tissue-specific progenitors have resulted in the generation of “otic
spheres” from murine cochlear and vestibular cells, which further differentiate into HCs, or
supporting cells [115,116]. Techniques for expansion, such as those developed by McLean
et al. (2017), exploit Lgr5-positive supporting cells and modulate Wnt and Notch sig-
naling pathways to facilitate HC differentiation [117]. Moreover, culturing human fetal
cochlear progenitors has yielded sensory HCs and supporting cells, furthering the potential
of in vitro applications in ototoxicity and regeneration research [43]. These milestones
underscore the role of inner ear organoids as a pivotal platform for elucidating and ad-
dressing SNHL, setting the stage for precision medicine that aligns with individual genetic
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predispositions and contributing to drug discovery, disease modeling, and therapeutic
innovation [18,118].

6. Challenges and Limitations

Within otic organoid research, scientists face a series of technical challenges, confront
substantial limitations, and navigate a complex landscape of ethical considerations. One
major technical obstacle is the limited efficiency of inducing otic cell fates compared to other
ectodermal derivatives, which is essential for the accurate representation of the inner ear’s
complex cellular architecture in disease modeling and therapeutic applications [119–121].
Furthermore, the adoption of three-dimensional culture systems to facilitate necessary
morphogenetic shifts has been difficult, leading to challenges in generating consistent and
reproducible organoids [37]. Another significant hurdle is the delivery and functional
integration of stem cells into the cochlea for the treatment of SNHL, requiring a deeper
understanding of differentiation pathways and critical signaling pathways such as Wnt,
β-catenin, and Notch [122–124]. Lastly, different cell lines, iPSC vs. ESC, and especially
within iPSCs, may have variable responses to induction and maturation.

Despite advancements, limitations persist, particularly in the requirement for sophis-
ticated techniques like 3D bioprinting or microfluidic systems to create precise inner ear
organoids [93,94,96,104]. Additionally, while much focus has been placed on neurosensory
cell characterization, a comprehensive understanding of all inner ear cell types is still
needed to develop more effective treatments and understand ear diseases and injuries
thoroughly [119–121]. By recapitulating the cellular composition and physiological char-
acteristics of the inner ear, including the stria vascularis, otic organoids hold potential
for elucidating the mechanisms underlying age-related hearing loss, such as presbycusis,
and other forms of hearing impairment associated with dysfunctions in these cell types.
For instance, organoid models have been used to study ion transport mechanisms in the
stria vascularis, which are critical for maintaining the endocochlear potential and cochlear
homeostasis [38]. Furthermore, the development of co-culture systems involving multi-
ple cell types within otic organoids facilitates the study of cell–cell interactions and the
pathogenesis of age-related hearing loss [125]. Ethical considerations are equally pivotal,
especially with the use of ESCs, shifting the preference towards hPSCs and iPSCs [123,124].
The direction of research must also consider the origins of stem cells, adherence to research
guidelines, and the necessity of animal research.

7. Conclusions and Future Direction

In conclusion, this review has highlighted significant progress in the field of human
inner ear modeling via hPSCs and iPSCs. Over the past ten years, hPSCs have become
pivotal to the advancement of regenerative therapies for the inner ear, even in the face
of challenges such as limited culture longevity, variability, and efficiency. The emergence
of hPSC-derived otic sensory epithelium models presents extraordinary possibilities for
disease modeling and the advent of new therapeutic approaches. Future progress, including
the development of vascularized three-dimensional organoids and their amalgamation with
microfluidic technologies, is anticipated to significantly refine culture and differentiation
techniques, thereby accelerating the preclinical developments for SNHL.

With diligent biological research, single-cell genomics, and sophisticated bioengineer-
ing methods, we foresee not only the enhancement of these innovative systems but also
their considerable impact on the basic understanding and treatment of inner ear conditions.
As this technology matures, the prospects for the application of stem cell therapy and
organoid culture in clinical settings become increasingly viable, propelling us toward a
future where personalized medicine for inner ear disorders becomes a reality.
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