bioengineering m\p\py

Review

Artificial Intelligence in Adult and Pediatric Dentistry: A
Narrative Review

Seyed Mohammadrasoul Naeimi

check for
updates

Citation: Naeimi, S.M.; Darvish, S.;
Salman, B.N.; Luchian, I. Artificial
Intelligence in Adult and Pediatric
Dentistry: A Narrative Review.
Bioengineering 2024, 11, 431.
https://doi.org/10.3390/
bioengineering11050431

Academic Editors: Jinshan Tang and

Sos Agaian

Received: 12 March 2024
Revised: 21 April 2024
Accepted: 24 April 2024
Published: 27 April 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

10, Shayan Darvish 2(0, Bahareh Nazemi Salman * and Ionut Luchian 4

School of Dentistry, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
emadnaeiminasir@gmail.com

2 School of Dentistry, University of Michigan, Ann Arbor, MI 48104, USA; sdarvish@umich.edu
Department of Pediatric Dentistry, School of Dentistry, Zanjan University of Medical Sciences, Zanjan
4513956184, Iran

Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and
Pharmacy, 700115 Iasi, Romania

*  Correspondence: drnazemi@zums.ac.ir

Abstract: Artificial intelligence (AI) has been recently introduced into clinical dentistry, and it has
assisted professionals in analyzing medical data with unprecedented speed and an accuracy level
comparable to humans. With the help of Al, meaningful information can be extracted from dental
databases, especially dental radiographs, to devise machine learning (a subset of AI) models. This
study focuses on models that can diagnose and assist with clinical conditions such as oral cancers,
early childhood caries, deciduous teeth numbering, periodontal bone loss, cysts, peri-implantitis,
osteoporosis, locating minor apical foramen, orthodontic landmark identification, temporomandibu-
lar joint disorders, and more. The aim of the authors was to outline by means of a review the
state-of-the-art applications of Al technologies in several dental subfields and to discuss the efficacy
of machine learning algorithms, especially convolutional neural networks (CNNs), among different
types of patients, such as pediatric cases, that were neglected by previous reviews. They performed
an electronic search in PubMed, Google Scholar, Scopus, and Medline to locate relevant articles. They
concluded that even though clinicians encounter challenges in implementing Al technologies, such as
data management, limited processing capabilities, and biased outcomes, they have observed positive
results, such as decreased diagnosis costs and time, as well as early cancer detection. Thus, further
research and development should be considered to address the existing complications.

Keywords: artificial intelligence; machine learning; deep learning; pediatrics; dentistry

1. Introduction

Information technology has experienced significant advancements in recent years,
leading to a dramatic surge in the volume of data. The need for processing large datasets,
also known as “big data”, has led to an increasing demand for the application of artificial in-
telligence [1]. The term “artificial intelligence” (Al) was initially introduced by McCarthy in
the 1950s and implied the concept of developing machines that can perform tasks typically
carried out by humans [2,3]. Al refers to the ability of machines to simulate human intelli-
gence and undertake intricate tasks like problem-solving, decision-making, and recognition
of objects [4]. As a subset of Al, “machine learning” (ML) is expected to make remarkable
contributions to clinical diagnosis due to its reasonable predictive accuracy. In addition,
ML models can process data with diverse characteristics, which is a task beyond the scope
of conventional analysis methods [5]. The connection between Al and medicine dates back
to the 1970s when projects such as the Stanford University experimental computer for
Al in medicine and the early-stage expert systems were launched [6]. Neural networks
represent a specific category of machine learning algorithms. The network imitates the
structure of the human brain by forming a computational network of cells arranged in
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a series of layers. “Deep learning” (DL) refers to multi-layered neural networks [7]. By
improving performance on complex tasks in areas like image processing (e.g., object de-
tection and facial identification) and sound processing, DL has taken human performance
to new heights [8]. ML algorithms have facilitated clinical decision-making by aiding in
the prognosis and diagnosis of various health conditions, representing the main areas of
progress for Al in the medical field [4]. AI has found numerous applications in the medical
field, ranging from radiology, dermatology, and neurology to ophthalmology, oncology,
cardiology, genetics, emergency medicine, and drug design [9]. Other significant areas of
healthcare, such as dentistry, have also adopted ML techniques. The integration of digitized
imaging and electronic medical records in dental practice enables the implementation of
virtual Al algorithms like support vector machine (SVM), artificial neural network (ANN),
and especially convolutional neural network (CNN) [10]. CNNs are the preferred choice
for image classification due to their ability to automatically extract features through re-
peated convolution and pooling. This unique architecture, with multiple layers containing
learnable filters, enables CNNs to excel in medical computer vision tasks, making them
the preferred option for Al-driven computer vision applications in dental practice, which
accounts for the majority of research conducted on Al in dentistry [11,12].

Al has been employed to identify and detect different variables from dental radio-
graphs. Different measures are used to determine the overall diagnostic performance
of Al in dental science, such as accuracy (the ratio of correctly classified samples to all
samples), sensitivity (the probability of getting a positive outcome when the condition is
present), and specificity (the probability of getting a negative outcome when the condition
is not present). The reporting of a metric depends on the objectives and methodologies
employed by researchers [13]. There have been several research studies examining the
implementation of machine learning in dentistry, including the prediction of postopera-
tive pain [14], periodontal bone loss measurement [15], the need for tooth extraction in
orthodontic treatment [16], and the presence of root caries [17]. Recently, some reviews
have been published about the implementation of Al in specific subfields of dentistry, such
as orthodontics [18], radiology [7], and endodontics [19]. However, only a few studies
have approached the application of Al in the broad spectrum of dental subfields, and there
is a lack of comprehensive reviews covering different aspects of dental science at once.
Children, unlike adults, tend to be more uncooperative during dental procedures, and
managing child patients is typically more challenging than managing adults [20]. This
poses challenges when repeating tasks such as dental radiographs. However, Al can aid
practitioners in diagnosis, potentially minimizing the need for repeated procedures. More-
over, health organizations have advised routine dental screenings for children to prevent
the development of dental problems like caries, which may not show symptoms in the
initial stages [21]. Utilizing the computational capabilities of Al software, these screenings
can be enhanced, and early detection of oral conditions can be facilitated. This study not
only covers the general applications of Al in dentistry but also includes some of the recent
implementations of Al in pediatric patients.

Considering the potential of Al for reducing costs and errors, decision-making, and
diagnosis, this study aims to summarize Al-based technologies in various dental subfields
and provide insight into this rapidly advancing healthcare domain (Table 1).

Table 1. Overview of Al implementation in various dental specialties.

Author

Application Data Set AI Architecture Performance

Percent of correct key

Danks et al. [15] PBL measurement 340 images CNN points (PCK): 0.83
NN Accuracy: 0.93
Prediction of chronic RF AUC: 0.96

Kim et al. [22]

692 mouthwash samples

periodontitis severity SVM Sensitivity: 0.96

RLR Specificity: 0.81
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Table 1. Cont.

Author Application Data Set AI Architecture Performance
Leeetal. [11] Diagnosis for periodontal disease 45,553 participants DT Accuracy: 0.85
Shimpi et al. [23] Estimation of periodontitis 11,048 patients DT Specificity: 0.90
Gao etal. [14] Estimation of pain after RCT 300 patients ANN Accuracy: 0.95
Saghiri et al. [24] Locating minor apical foramen 50 images ANN Accuracy: 0.96
Precision: 0.93
Fukuda et al. [25] Vertical root fracture detection 300 images CNN F measure: 0.83
Recall: 0.75
Benyo et al. [26] Detecting medial axis of the root Micro Cill"nc;;s::-section ANN Accuracy: 0.95
Sukegawa et al. [27] Classification of third molar 1330 images CNN Accuracy: 0.84
Vranckx et al. [28] Molar angulation measurement 838 images CNN Accuracy: 0.80-0.98
Hiraiwa et al. [29] Root morphology measurement 760 image sets CNN Sensitivity: 0.85-0.87
Patcas et al. [30] Facial attractiveness measurement 146 patients CNN Mean difference: 1.22
Kuwada et al. [31] Cleft detection 383 images CNN Accuracy: 0.82
Alzubaidi et al. [32] Osteoporosis classification 575 images SVM Accuracy: 0.92
Accuracy: 0.956
Kwon et al. [33] Diagnosis fogoctis;:virs‘ld tumors of 1282 images CNN Senig&t}(r)g(;l 889
Specificity: 0.956
Takahashi et al. [34] Claz‘jﬁiiﬂgﬁs;iiﬁ;auy 1184 images CNN 0.9A9C5a1\1/1£:>c<}i,1‘la
0.997 Mandible
Takahashi et al. [35] Identification of prostheses 1904 images CNN Precision: 0.59-0.93
Sukegawa et al. [36] Clasisriii;laat;c;r;);f;ntal 9767 images CNN Accuracy: 0.9908
Zhang et al. [37] Detect marginal bone loss 81 patients SVM AUC: 0.967
Mameno et al. [38] Predicting peri-implantitis 489 patients SVM AUC: 0.64
Jung et al. [39] Diagn;iﬁocggggtch;g;;ﬁ;otm for Lateriéggﬁgjil:érams, Neural network Accuracy: 0.93
Kok et al. [40] Growth determination 300 images ANN Accuracy: 0.78-0.93
Kunz et al. [41] Cephalometric analysis 1792 images CNN Absolut%rjllze_a; 1dsifference:
Leite et al. [42] Tooth segmentation 153 images CNN Precision: 0.96
Sathya et al. [43] Human identification 3159 images CNN Accuracy: 0.95
Farhadian et al. [44] Age estimation CBCT scans, 300 subjects Neural network MAEF: 4.12 Years
Tamaki et al. [45] Dental caries prediction Szl(i)x(z)a;lirjr;i)tlss, CNN E;I;illtfllzllg 8;;
Liu et al. [46] Dental caries prediction 1144 subjects GRNN AUC: 0.626
Moutselos et al. [47] Caries classification 88 images CNN Accuracy: 0.67-0.89
You et al. [48] Plaque detection 984 images CNN MIoU: 0.726 & 0.165
Wang et al. [49] Eva(l)lizfi?fniil;gg;en's 545 subjects XGboost Sensitivity: 0.93
Ahn et al. [50] Mesiodens classification 1100 images CNN Accuracy: 0.927
Abdalla-Aslan et al. [51]  Classification of dental restorations 83 images SVM Accuracy: 0.93
Choi et al. [52] Detection of TMJOA 1189 images CNN Accuracy: 0.78

2. Materials and Methods

A comprehensive electronic search was conducted using MeSH terms, including ar-
tificial intelligence, machine learning, deep learning, pediatrics, and dentistry, from the
inception of available data until February 2024 across online databases such as PubMed,
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Google Scholar, Scopus, and Medline. Additionally, non-MeSH terms such as implantol-
ogy, cariology, VRF, and odontogenic were manually searched in combination with the
aforementioned MeSH terms using Boolean operators in order to ensure the inclusion of
appropriate papers. Papers with higher citation rates and those published in reputable jour-
nals within their respective fields were prioritized, aiming to include the most credible Al
applications in dental practice. Non-English articles and incomplete papers were excluded.
Preference was given to papers that emphasized the clinical application of Al in dentistry
rather than focusing solely on theoretical aspects of Al algorithms. Ultimately, 84 papers
were chosen as the most relevant for the purposes of this review.

3. Review

Al in dentistry excels at detecting bone loss and predicting pain in periodontics,
diagnosing conditions like cleft palate in oral and maxillofacial surgery, designing dental
arches in prosthodontics, and detecting implant systems and complications in implantology.
It also aids in treatment planning in orthodontics and predicts plaque and treatment
needs in pediatric dentistry and cariology. In the upcoming sections, we will explore Al
applications in each field individually.

3.1. Applications of Al in the Field of Periodontics

Periodontal disease is a multifactorial condition that results from the inflammatory
response of the host’s immune system to multiple bacterial species in the oral cavity [22].
Periodontitis ranks as the sixth most widespread disease globally, and it can cause peri-
odontal bone loss (PBL). Hence, early detection of PBL, which can be a complex task for
novice practitioners, is crucial for the diagnosis and treatment of periodontitis [53]. Using a
deep neural network on periapical radiographs from 63 patients, Danks et al. estimated the
PBL and its severity with a combined accuracy of 83.3% [15].

Kim et al. used ML to estimate the level of periodontitis progression based on salivary
samples. They collected mouthwash samples from 692 patients and measured the copy
number of the nine most important bacterial species that cause periodontal disease. The
input features for the ML algorithms (NN, RF, SVM, RLR) were the copy numbers of the
pathogens [22]. Two studies compared different ML models to find the best-performing
algorithm for detecting the most important factors in periodontal disease. They both
demonstrated that the decision-tree model can identify the complex risk factors for PD
with higher accuracy and sensitivity than other models [23,54].

Al can take multiple factors of periodontal disease into account for diagnosis with high
accuracy, which can be a challenging and arduous task for dental practitioners. Therefore,
with the help of ML, dentists can determine periodontitis sooner than before, prevent
further complications, and decrease treatment costs for the patient.

3.2. Applications of Al in the Field of Endodontics

Al has been employed in endodontics to detect fractures and several other tooth
characteristics, such as minor apical foramen, to increase successful treatment outcomes [55].
Root canal treatment (RCT) can result in postoperative pain, which is affected by various
factors, and anticipating the pain is crucial for the planning of subsequent therapeutic
schedules. Xin Gao et al. used an ANN model to predict postoperative pain after receiving
RCT. The Al model was trained using input data such as medication during RCT, oral
hygiene, gender, and age. The perceived pain was graded according to the patient’s
subjective experience, and the final accuracy of the model was 95.60% [14]. Several studies
have implemented ML methods to locate minor apical foramen and calculate working
length. While placing the root filling material, instrumentation beyond the apical foramen
should be avoided. Accurate measurement of the working length (WL) and limiting the
placement of root-filling material only to the canal can prevent exacerbation of postoperative
pain and reduce the periapical immune response to RCT material [55]. Saghiri et al.
compared the accuracy of an ANN in finding the location of the minor apical foramen to
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the assessment done by endodontists (which was accurate in 76% of the teeth). Surprisingly,
Al yielded a higher accuracy of 96% [24,55]. Vertical root fractures (VRFs) are a significant
complication, accounting for 2% to 5% of crown/root fractures, and they may require either
root resection or tooth extraction [19]. With early detection of VRFs, dentists can save other
remaining roots. Fukuda et al. used a convolutional neural network (CNN) to detect VRFs
with a precision of 93% on three hundred panoramic radiographs, which included a total
of 330 VRF teeth with clearly discernible fractures [25]. Moreover, recognizing the shape
of the root canal can be extremely helpful in multiple endodontic treatments. Benyo et al.
detected the medial axis of the root canal based on the fuzzy clustering method in order
to provide a better understanding of the root morphology [26]. Molars have always been
of great importance to endodontists. Al was utilized for the classification of mandibular
third molars [27], prediction of third molar eruption [28], and recognition of molar root
morphology [29].

In endodontics, Al contributes to treatment when it comes to detecting minute tooth
characteristics” alterations that can be hard to recognize for humans.

3.3. Applications of Al in the Field of Oral and Maxillofacial Surgery

ML models have performed well in various surgical procedures, including orthog-
nathic surgery, landmark detection, cyst and lesion detection, and osteoporosis classifica-
tion. Orthognathic treatment aims to address both functional and aesthetic issues related
to dentofacial deformities by utilizing a combination of orthodontic and surgical inter-
ventions. Research studies have been conducted on assessing the need for orthognathic
surgery, evaluation of maxillary sinusitis, diagnosis of orthognathic surgery, and blood loss
during surgery. Patcas et al. applied Al to evaluate the influence of orthognathic treatment
on facial esthetics and estimated age. According to this study, 66.4% of the patients had
improved appearance after the surgery [30].

Cleft palate (CP) and cleft alveolus (CA) are congenital conditions that create chal-
lenges for children and their families. Early surgical interventions to stabilize maxillary
segments are typically done around ages 8-10. Panoramic radiography plays a vital role in
evaluating cleft status. However, interpreting these images can be challenging for inexperi-
enced radiologists. Kuwada et al. used panoramic radiographs from 383 children to create
a DL model capable of identifying cleft alveolus (CA) and cleft palate (CP) that can assist
clinicians in detecting clefts [31].

Kwon et al. developed a CNN model for automatic diagnosis of odontogenic cysts
and tumors in the upper and lower jaws using panoramic radiographs. The CNN model
was trained on both histopathological diagnoses from biopsies and clinical diagnosis by
two radiologists with over 15 years of experience, resulting in a 95.6% accuracy rate in the
classification of lesions [33]. Osteoporosis is a systemic skeletal disorder distinguished by a
reduction in bone density and deterioration of bone architecture, leading to a higher risk
of bone fractures and pain [56]. Several studies have used dental radiographs to classify
mandibular bone density for early detection of osteoporosis. Alzubaidi et al. calculated the
thickness and roughness of the mandibular cortical bone and employed a support vector
machine (SVM) to categorize each Dental Panoramic Radiograph (DPR) into three groups
based on the probability of osteoporosis [32]. The gold standard for the detection of oral
lesions and diseases is based on histopathology, which can be invasive and time-consuming,.
In contrast, diagnosis with high-precision Al models is non-invasive and can vastly reduce
treatment costs. Moreover, as Immanuel Kant has stated, aesthetic judgment is a subjective
task and is prone to human error. Therefore, Al can help us achieve a universal standard
for the assessment of post-surgery appearance without human bias.

3.4. Applications of Al in the Field of Prosthodontics

In prosthodontics, Al technology is still scarcely used. Al has been applied to computer-
aided design and manufacturing systems, removable partial dentures, implant prosthetics,
and orofacial anatomy [57]. Designing removable partial dentures (RPDs) is based on the
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classification of the dental arch as the first step. Takahashi et al. utilized a CNN to classify
dental arches. A total of 1184 dental arch images were employed, with 748 images for the
maxilla and 436 images for the mandible. The images were categorized into four types of
dental arches: edentulous, complete dentition, arches with missing posterior teeth, and
arches with limited edentulous space. The classification accuracy of the model was found
to be 99.5% for the maxilla and 99.7% for the mandible [34].

To effectively plan dental treatments for patients, obtaining detailed information about
the condition of their teeth and mouth is essential. A recent study conducted in 2021 utilized
a DL approach to develop a method for identifying dental prostheses and restorations by
analyzing 1904 oral photographic images of dental arches. This approach aimed to improve
the accuracy and quality of intraoral data available for treatment planning purposes [35].

3.5. Applications of Al in the Field of Dental Implantology

For over half a century, dental implants have been utilized as a dependable long-term
solution (with a success rate of over 90% lasting for more than ten years) with the purpose
of replacing missing teeth [36]. However, mechanical and biological complications, such as
screw loosening, fractures, low stability, and peri-implantitis, occur frequently [58].

Dental implant systems come in a wide variety, with over 4000 different types pro-
duced by several companies. Additionally, there is a variety of fixture structures available,
including straight, tapered, conical, elliptical, trapezoidal, internal, and external, each
having different surface treatment techniques such as machined, blasted, acid-etched,
hydroxyapatite-coated, titanium plasma-sprayed, and oxidized [59]. Therefore, in case of
failures, repair and follow-ups can become extremely complicated if dentists do not classify
the implant system correctly. Several studies have developed ML models to identify dental
implants and their brand names with high accuracy. The study conducted by Sukegawa
et al. demonstrated the successful utilization of multi-task DL for developing a classi-
fier that can categorize implant brands using dental panoramic radiographic images [36].
Marginal bone loss (MBL) is a significant contributor to dental implant failure. Zhang et al.
employed ML algorithms that utilize the internal architecture of bone tissue to forecast
the onset of significant marginal bone loss (MBL) in dental implants. The study used four
different ML models, of which SVM produced the most accurate results, with an AUC of
0.967 [37].

Plaque accumulation causes peri-implantitis, an inflammatory disease, which can
lead to bone loss around the insertion site of implants. In a cohort study conducted by
Mameno et al., an ML-based model was developed to detect the onset of peri-implantitis.
Three ML models were used to analyze the risk factors linked with the development of
peri-implantitis. The AUC of the random forest model (the most precise model in this
study) was 71% [38].

In the last decade, there have been incredible innovations and advancements in dental
implantology. Despite its relatively recent widespread clinical implementation by dentists,
Al has demonstrated potential in assisting clinicians to reduce the risk of failures and
minimize the time required for repairs in case of failures.

3.6. Applications of Al in the Field of Orthodontics

The objective of orthodontic treatment is to restore individual normal occlusion and
enhance facial aesthetics in patients with malocclusion [60]. The field of orthodontics has
seen significant investments in research and development of Al technologies, with an
estimated economic return of 3.6 billion dollars [9]. Decision-making is an integral part of
orthodontics, and Al has opened new horizons in dentistry by providing multiple agile
architectures with adequate precision and accuracy. Although the final diagnosis still must
be made by dentists, ML can act as a potent auxiliary tool in the process of orthodontic
treatment. Recent studies employing ML models in orthodontics focused on areas such as
tooth segmentation, landmark identification, treatment planning, growth determination,
the need for orthodontic extraction, and impact on face attractiveness.
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Timing plays a vital role in orthodontic planning for growing patients [40]. It has
been stated that clinical effects of the therapy are observed at the earliest in patients whose
treatment commenced at the right time, i.e., during the peak growth period [61]. Deter-
mining the proper time to initiate treatment is based on the patient’s skeletal maturation
and bone age [62]. The assessment of skeletal maturity is essential to carry out an effective
treatment with the use of orthodontic appliances in children with class II malocclusion [61].
Kok et al. developed an ML model to determine growth by cervical vertebrae maturation
stages. Seven Al classification algorithms were used on cephalometric radiographs from
300 children and adolescents aged between 8 and 17. ANN was the most stable algorithm
in this study, with an accuracy of 55.6%-93% [40]. A necessary step in devising the optimal
orthodontic treatment plan is the recognition of anatomic landmarks in radiographs, with
the purpose of measuring various angles, distances, and ratios. Kunz et al. employed a
CNN algorithm (using Keras & Google Tensorflow) to analyze cephalometric X-rays with a
level of accuracy close to clinicians (considered the current gold standard) [41].

Another integral part of treatment planning is whether to perform extraction and to
determine the teeth that should be extracted. Jung et al. collected lateral cephalograms
from 156 patients and selected a two-layer neural network for ML. The overall success rate
of the decision-making process between extraction and non-extraction was 93% [39].

3.7. Applications of Al in the Field of Forensic Dentistry

The process of forensic identification involves comparing the characteristics present
in a sample of evidence to those of a known reference sample to draw conclusions about
the source of the evidence [63]. Forensic odontology is a reliable method for identification
based on robust dental traits [64]. Most Al-based studies in this area focused on person
identification, classifying tooth types, and estimation of age using teeth.

Tooth detection and numbering in dental radiographs is one of the initial stages in
most forensic odontology tasks. Leite et al. developed an Al-based tool that demonstrated
improved speed and accuracy in detecting and segmenting teeth on panoramic radiographs
compared to manual segmentation [42].

Nowadays, with the rise in crime, missing people, and natural disasters all over the
world, human identification has become increasingly important [65]. Sathya et al. adopted
the popular CNN architecture, AlexNet, to conduct human identification through dental
radiographs in a two-stage process. In the classification stage, the neural network identifies
the tooth number in the post-mortem query image (images taken after the candidate’s
death). In the second stage, candidate matching is performed by comparing the query
image with corresponding images in the ante-mortem database (images taken when the
candidate was alive) [43].

Furthermore, teeth are considered to be useful biological indicators for estimating the
age of an individual, as they can remain intact for an extended period of time after death.
Farhadian et al. created a neural network age prediction model using the pulp-to-tooth
ratio in canines. The model was trained on radiographs of 300 subjects between the ages of
14 and 60 years and was able to predict age with an acceptable mean absolute error (MAE)
of 4.12 years [44].

3.8. Applications of Al in the Field of Cariology

Tooth decay, commonly known as dental caries, is a widespread and chronic condition
that affects a considerable portion of the world’s population [66]. Dental caries is caused
by three primary factors, which include microorganisms that produce acid, dietary car-
bohydrates, and host factors such as eating patterns [67]. Caries that are not treated in
permanent teeth are now the most prevalent health issue worldwide, affecting 34.1% of the
population, and can lead to various oral diseases [68]. Al models are particularly useful in
predicting carious lesions early on to decrease further treatment needs. With the help of
ML, caries can be detected and classified on different tooth surfaces.
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Detecting dental caries at an early stage is crucial for providing appropriate preven-
tion and treatment to patients with this condition [69]. Various studies utilized different
input data types for their ML prediction models. Tamaki et al. developed a dental caries
prediction model using data mining techniques. Their CNN model utilized several input
variables, including salivary levels of mutans streptococci and lactobacilli, salivary pH, and
the frequency of sweet snack consumption, resulting in a sensitivity of 0.73 and specificity
of 0.77 [45]. In 2020, a study was carried out in China to predict dental caries in the high-risk
population of geriatric citizens. The study involved 1144 elderly patients, and a prediction
model using a generalized regression neural network (GRNN) was created to determine
the possibility of tooth decay. The results from the GRNN early warning model showed
that cases with a history of toothache and tobacco use were more susceptible to dental
caries [46].

Wang et al. studied the correlation between dental caries and genetics using logistic
regression models. A comprehensive gene set analysis was performed for dental caries,
and five gene sets were identified as potential factors for caries development [70].

The diagnosis and classification of carious lesions is also a difficult task. ML can help
dentists to improve diagnosis as a reliable second opinion [71]. Neural networks and image
processing techniques were used to detect caries on proximal and occlusal surfaces of
teeth [71,72]. Moutselos et al. utilized a dataset of 88 dental images for training a DL model
(Mask R-CNN) to detect and classify caries specifically on the occlusal surfaces of teeth,
where caries is most commonly found inside the pits and fissures. The model attained an
F-measure of 0.778 [47].

3.9. Applications of Al in the Field of Pediatric Dentistry

Pediatric dentistry contributes greatly to ensuring the proper nutrition and health of
children in society by maintaining their ability to chew properly through the preservation
of primary teeth [73]. Childhood caries and preadolescent abnormalities are among the
most recent areas of interest for ML implementation. Untreated dental plaque on primary
teeth can result in a variety of oral diseases, including caries, gingivitis, and periodontitis,
which can have negative consequences on the growth and development of permanent
dentition [74]. Detecting plaque on primary teeth can be challenging since distinguishing
a small amount of plaque from the tooth is difficult. It requires assessment by a clinician,
and when dealing with an uncooperative child, it becomes even more challenging. You
et al. developed an Al model that successfully identified plaque on primary teeth with
satisfactory accuracy using intraoral photos captured by an affordable digital camera,
making it feasible for parents to use at home [48].

Park et al. identified risk factors such as sugar consumption and allergic disease for
their early childhood caries (ECC) prediction models. Analysis of the data of 4195 children
using ML-based models showed a favorable performance in predicting early childhood
caries and high-risk groups for ECC [75].

The assessment of children’s oral health by clinicians is crucial for identifying their
treatment requirements. However, clinical diagnosis is not universally feasible, and accessi-
bility to it varies. Wang et al. employed machine learning to forecast children’s oral health
treatment needs using sociodemographic factors like language, age, sibling count, dental
insurance, and parental occupation. This method can be particularly beneficial in areas
where children lack access to dental professionals since it is user-friendly for parents and
school personnel [49].

The most common abnormality of supernumerary teeth is mesiodens, with a preva-
lence ranging from 0.15% to 1.9% [76]. Mesiodens can cause multiple complications, such as
eruption disorders and crowding. Therefore, early detection of this abnormality in children
is crucial for preventing such complications. A study by Ahn et al. utilized panoramic
radiographs from 1100 children to classify mesiodens in primary or mixed dentition using
DL models. The classification accuracy of ML models was found to be higher than 90% [50].
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The main goal of most pediatric dentistry procedures is preventive dental care. There-
fore, Al can have a great impact on improving oral health among future elderly populations.

3.10. Others

Modern dentistry emphasizes the utilization of minimally invasive procedures, leading
to a recent increase in the adoption of lasers as a preferred alternative to traditional dental
instruments [77]. Engelhardt et al. utilized an ML algorithm to classify reflected light
spectra into different tissue types (e.g., bone, mucosa, nerve) in laser dentistry. The main
objective was to provide a warning or temporarily halt the use of the laser when critical
tissue was at risk of being removed. The model exhibited an average misclassification rate
of 0.02, which can be deemed a crucial step toward enhancing the safety of laser surgery in
the oral cavity [78].

Al-based computer-vision algorithms have become increasingly popular in recent
years for automatically detecting and classifying dental restorations in panoramic radio-
graphs. Abdalla-Aslan et al. designed an ML model that can detect different dental
restorations in panoramic radiographs automatically. The study examined 738 dental
restorations across 83 panoramic images and showed that the algorithm was able to detect
94.6% of the restorations, indicating the excellent performance of the model [51].

Osteoarthritis is characterized as a degenerative condition that can bring about signif-
icant changes in joint cartilage tissues, ultimately resulting in severe pain and impaired
joint function [79]. Temporomandibular joint osteoarthritis (TMJOA) is an important sub-
type in the classification of temporomandibular disorders [80]. Choi et al. created an Al
model to detect TMJOA on orthopantomograms (OPGs) by using CBCT results that have
already been confirmed by experts. The DL model was able to match the sensitivity of an
expert while achieving a more optimal trade-off between sensitivity and specificity [52]. A
summary of the recent applications for Al can be found in Table 1.

4. Discussion

Al has revolutionized different dental specialties by providing agile and cost-effective
models for clinical diagnosis and assessment of numerous oral diseases, promising a better
future for healthcare systems around the globe.

The present study aimed to provide a thorough review of recent literature on the
application of Al in various dental specialties. Because of its ability to recognize delicate
and complex patterns from all sorts of databases (especially dental radiographs), Al can be
particularly helpful in clinical dental practice in the near future. For instance, ML can aid in
orthodontics by identifying local skeletal patterns from OPGs and lateral cephalograms in
specific populations who share a common ancestry or are native to a particular geographic
location. By doing so, the need for trial and error can be eliminated, and only the necessary
treatments can be considered for that particular population. Another area in which Al
shines brightly is cariology [81]. Al algorithms can discern tooth caries from other dental
lesions in the oral cavity with acceptable precision. Dental caries is still one of the most
widespread chronic diseases globally and left undetected, it can cause numerous oral
diseases such as PBL. Therefore, automating caries detection from images by implementing
Al-based image processing methods can reduce the financial burden of governmental
healthcare sectors. Most importantly, the current study demonstrated recent applications of
Al in pediatric dentistry, a very significant subfield that had been neglected in most reviews.
The ever-growing costs and complications of dental treatment have made preventive
dentistry a highly sought-after approach for authorities worldwide. Thus, by implementing
ML methods on the gathered data from pediatric patients and detecting dental defects early
on, a decrease in dental treatment costs can be attained for future generations, leading to
the possibility of a healthier tomorrow.

Moreover, in recent decades, the World Health Organization (WHO) has emphasized
the importance of oral healthcare among children, pregnant women, and elderly popula-
tions, but unfortunately, monitoring these target groups with conventional methods cannot
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be performed effectively in developing countries because of financial issues and the lack
of resources. Due to its relatively low operating budget, Al can be particularly helpful in
less affluent or sanctioned countries that are in dire need of quality surveillance systems to
improve their healthcare systems in a short period of time.

Although the mentioned advantages are significant, there are still complexities associ-
ated with Al utilization in dentistry. Problems with data selection and preprocessing, as
well as defining gold standards, hampers results in terms of robustness and comparabil-
ity, especially since dental data availability is limited due to data and protected patient
information regulations, resulting in biased datasets. Moreover, specific algorithms are
not easily generalized for similar tasks, potentially leading to biased outcomes in some in-
stances. Additionally, the current processing power for Al computations is limited, causing
performance drops when the layers of a deep learning model increase or when training
on large datasets [82]. Although Al-specific chips are being developed, there is still room
for hardware and software improvements [83]. Another major challenge is defining clear
ethical guidelines for the clinical use of Al. The advancement of Al has raised ethical issues
such as privacy violations, security risks, and transparency. Protecting patient data through
strong encryption methods is crucial, but achieving healthcare privacy may be difficult
with extensive data sharing. Integrating Al into healthcare may worsen existing health
disparities due to potential algorithmic bias [84].

To address the current challenges effectively, deeper research is required in key areas,
including advanced data techniques for creating unbiased datasets, the development of
generalized algorithms, optimization of processing power, and the establishment of clear
ethical guidelines for responsible Al integration in dental healthcare.

5. Conclusions

Despite Al's ability to assist clinicians as an auxiliary tool in multiple criteria, results
derived from Al models should be interpreted with caution. AI models still face some
drawbacks and have not largely entered routine dental practice. Therefore, some key factors
should be considered to cope with the current challenges and limitations encountered while
implementing ML in clinical dentistry:

o  With the help of modern computational processing power, more sympathetic Al
models should be devised that can imitate human understanding and emotions to a
higher degree for the purpose of building trust with the patients and reassuring them
in stressful situations

e  Data management should move towards decentralized methods with the help of cloud
services in order to enable individual users, who have limited processing power and
information, to utilize vast amounts of polished data for training their models locally

Furthermore, systematic reviews should be conducted regarding the use cases of Alin
dentistry so as to give researchers a deeper insight into this modern technology.
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