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Abstract: In the study of the deep learning classification of medical images, deep learning models
are applied to analyze images, aiming to achieve the goals of assisting diagnosis and preoperative
assessment. Currently, most research classifies and predicts normal and cancer cells by inputting
single-parameter images into trained models. However, for ovarian cancer (OC), identifying its
different subtypes is crucial for predicting disease prognosis. In particular, the need to distinguish
high-grade serous carcinoma from clear cell carcinoma preoperatively through non-invasive means
has not been fully addressed. This study proposes a deep learning (DL) method based on the fusion
of multi-parametric magnetic resonance imaging (mpMRI) data, aimed at improving the accuracy of
preoperative ovarian cancer subtype classification. By constructing a new deep learning network
architecture that integrates various sequence features, this architecture achieves the high-precision
prediction of the typing of high-grade serous carcinoma and clear cell carcinoma, achieving an AUC
of 91.62% and an AP of 95.13% in the classification of ovarian cancer subtypes.

Keywords: ovarian cancer; multi-parametric magnetic resonance imaging; deep learning

1. Introduction

Ovarian cancer (OC) occupies a significant position among female malignancies, rep-
resenting an important challenge in the public health field due to its high mortality rate and
the complexity of diagnosis and treatment. the overall five-year survival rate for ovarian
cancer is between 30% to 40% [1]. However, since ovarian cancer usually shows no symp-
toms in its early stages, the survival rate for stage 4 ovarian cancer drops to as low as 3% [2],
reflecting the high lethality of ovarian cancer. Due to the high heterogeneity of ovarian
cancer, encompassing various histological subtypes such as high-grade serous carcinoma
and clear cell carcinoma, accurate preoperative subtype determination is crucial for guiding
treatment choices and predicting treatment efficacy [3]. For example, clear cell carcinoma in
ovarian cancer, which has an indolent course and is predominantly platinum-resistant, leads
clinicians to prefer a “surgery-first, chemotherapy-second” approach; whereas high-grade
serous carcinoma, known for its aggressiveness and sensitivity to chemotherapy, leads to a
“chemotherapy-first, surgery-second” preference. However, traditional subtype identifi-
cation relies mainly on invasive intraoperative pathological biopsy procedures [4], which
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not only carry a certain risk of iatrogenic tumor dissemination but also face limitations
due to tumor location or patient conditions making biopsy unfeasible.The development of
imaging technology, especially multi-parametric magnetic resonance imaging (mpMRI),
provides a new means for the non-invasive assessment of ovarian cancer typing. mpMRI
can detail the morphological features and tissue structure of tumors [5–11]. However,
the accurate diagnosis of ovarian cancer typing by MRI requires extensive expertise and is
subject to the subjective influence of the doctor’s experience [12–16].

The development of deep learning (DL) technology has had a profound impact in
the field of medical image analysis [17–30]. Through its powerful data processing and
feature recognition capabilities, deep learning can automatically extract and learn valuable
information from complex MRI data, recognizing subtle patterns and variations that might
be overlooked by human experts, providing new opportunities for the automated analysis
of complex MRI data [31,32]. Recent advancements in convolutional neural networks
(CNN) and similar deep learning models have made a significant impact in the field of
medical diagnostics. Kott et al. [33] used deep residual CNNs for the histopathological
diagnosis of prostate cancer, demonstrating the model’s capability to roughly classify
image blocks as benign or malignant. Ismael et al. [34] proposed a method using residual
networks (ResNet50 architecture) for automatic brain tumor classification, proving its
effectiveness at the patient level. Booma et al. [35] introduced a method enhanced with ML
algorithms and max pooling, achieving an accuracy rate of 89%. Wen et al. [36] utilized
a custom set of 3D filters, with accuracies ranging from 83% to 90%. Wang et al. [37]
proposed a two-stage deep transfer learning method, reaching an accuracy of 87.54%.
Despite the widespread application of deep learning in medical diagnostic tasks, research
on classifying subtypes of ovarian cancer is rare. Most studies focus on classifying a single
subtype of ovarian cancer as negative or positive [38–42]. However, ovarian cancer is not a
single disease but a group of diseases with different biological characteristics, treatment
responses, and prognoses. Subtyping, as opposed to classifying a single subtype, provides
a greater volume of information and presents a higher difficulty level. In recent years,
EfficientNet [43], supported by Neural Architecture Search (NAS) [44], maintains a balance
between classification performance and model size, and extensive testing has shown the
good generalizability of this network structure. This progress not only highlights the
application prospects of deep learning technology in the medical field but also shows
the possibility of achieving a balance between model efficiency and performance through
advanced algorithm optimization. To explore the feasibility of this approach with real
clinical data, this paper proposes an end-to-end preoperative diagnostic model for high-
grade serous carcinoma and clear cell carcinoma of ovarian cancer, based on EfficientNet
and multi-parametric MRI sequence feature fusion. Initially, we use the EfficientNet feature
extractor to independently extract features from each parametric sequence, ensuring the
globality of the extracted features. Secondly, we propose a feature fusion strategy to fully
utilize and integrate the comprehensive information of T1- and T2-weighted MRI images,
combining the complementary information from different sequences. Lastly, the model
we developed can automatically complete high-precision subtype prediction end-to-end,
making it more conducive to clinical application.

In our study, we constructed a comprehensive clinical dataset, collecting data from
311 patients, of which 250 were used for training and validation, and 61 for independent
testing. All patients included enhanced T1 and T2 sequences, and the subtypes were
diagnosed by intraoperative pathological tissue biopsy. To evaluate the performance of the
built model, we used metrics such as the area under the receiver operating characteristic
(ROC) curve (AUC), accuracy, sensitivity, and specificity to assess the model’s efficacy. The
experimental results demonstrate the potential application of our deep learning model in
the preoperative non-invasive subtype assessment of ovarian cancer. Through the fusion of
multi-sequence MRI features, our model not only achieved high-accuracy prediction but
also provided a safer, more accurate, and less subjective new mode of automatic diagnosis
for ovarian cancer. The structure of this paper is as follows: The Section 2 will present the
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materials and methods, including data sources, data preprocessing, model architecture,
and parameter details. The Section 3 will analyze experimental results and discuss model
parameter selection. The Section 4 will discuss the findings and limitations of the study.
Finally, the Section 5 will summarize the research and explore its significance and potential
application prospects in related fields.

2. Materials and Methods

This study included 311 patient samples, of which 248 were used for model training
and validation, and the remaining 63 were used for independent testing. All patient
samples contained enhanced T1 sequence and T2 sequence images, and all typing results
were confirmed by intraoperative pathological biopsy. A multi-parametric feature fusion
model was constructed for this experiment. First, we used the EfficientNet feature extractor
to independently extract features from each sequence. Secondly, we fused the features of
MRI’s T1 and T2, combining information from different sequences. Finally, our system
was capable of end-to-end prediction of ovarian cancer subtype classification, with the
input being the MRI image sequences of T1 and T2, and the output being the predicted
classification of ovarian cancer for the patient.

2.1. Data Sources

In this study, we included patients from Fudan University Cancer Hospital preliminar-
ily suspected of having epithelial ovarian cancer, who underwent MRI examinations before
surgery. This study was approved by the relevant ethical review board. Figure 1 provides a
detailed demonstration of the sources, screening, and division of data in this study. The in-
clusion criteria for patients were as follows: no contraindications for MRI examination,
surgery, and histopathology confirmed high-grade serous ovarian cancer/ovarian clear cell
carcinoma (HGSOC/OCCC), underwent a pre-treatment pelvic MRI examination, and no
history of chemotherapy. Based on these criteria, we excluded some patients: those who
received neoadjuvant chemotherapy before initial debulking surgery, those confirmed as
early-stage HGSOC/OCCC, lost to follow-up patients, those who did not receive stan-
dardized chemotherapy, those confirmed as peritoneal HGSOC/OCCC, and those with
poor image quality or a lack of solid components. Ultimately, a total of 311 patients were
included in the study. These patients were then allocated to different datasets: 198 patients
were assigned to the training dataset, 50 to the validation dataset, and 63 to the test dataset.
This division was made to evaluate the performance of the developed models and ensure
the models have a good generalizability across various datasets.

2.2. MRI Image Preprocessing

Preprocessing in deep learning is the step that involves preprocessing the input data in
order to make the data more suitable for model training, thereby improving the efficiency
and performance of the model. The preprocessing of the original ovarian MRI images
of patients includes images of high-grade serous carcinoma (212 images) and clear cell
carcinoma (99 images), all containing two modalities: T1 with contrast enhancement (T1+C,
hereinafter referred to as T1) and T2-weighted imaging (T2WI, hereinafter referred to as
T2). T1-weighted contrast-enhanced imaging (T1+C) involves imaging after intravenous
injection of a contrast agent on the basis of T1-weighted imaging. This imaging technique
is suitable for detecting vascular-rich tissues and tumors because they become more promi-
nent in the images due to the absorption of the contrast agent. T2-weighted imaging (T2WI)
provides information different from T1WI, mainly highlighting tissues with a high water
content. T2 is particularly useful for observing fluids and distinguishing between cystic and
solid lesions. In the diagnosis of ovarian cancer, T1 and T2 provide different information:
T1 helps assess the tumor’s angiogenesis and boundaries; T2 helps identify the nature
of the tumor (such as whether it contains cystic components) and differentiate the tumor
from surrounding tissues. The specific steps are as follows: (1) Exclude other modalities,
leaving only T1+C (hereinafter referred to as T1) and T2WI (hereinafter referred to as T2);
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(2) convert all files to NIfTI format; (3) randomly select one patient’s T1 image as a tem-
plate to register all other T1 modality images, aligning all images in size and space, using
correlation as the registration objective function; (4) align all patients’ T2 images in size
and space with the template T1 image through cross-modal registration, with the objective
function for multimodal registration being Mutual Information. The images before and
after preprocessing are shown in Figure 2, with T1 and the registered T2 serving as model
inputs after aligning the T2 image to the same size as T1.

Figure 1. Flow chart for inclusion and exclusion of patients.

Figure 2. Images of experimental T1 and T2 data: (a) The original T1 image collected. (b) The original
T2 image collected. (c) The registered T2 image.
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2.3. Ovarian Cancer Classification Prediction Model Based on mpMRI and EfficientNet
Multi-Sequence Feature Fusion

Figure 3 provides an overview of the methodology used in this paper, utilizing two
MRI sequences (T1 and T2) from the initial examination of patients. This method includes
three stages: (1) Deep feature extraction: at this stage, MRI images of ovarian cancer T1 and
T2 are input into an EfficientNet-based feature extractor to obtain features corresponding to
each patient’s MRI sequence; (2) feature fusion: this stage first aggregates the deep features
generated from all sequences of the same patient to obtain fused features; (3) ovarian cancer
subtype prediction: at this stage, deep features are passed through a fully connected layer
to obtain predictions for ovarian cancer subtypes. It is important to note whether it is
a single sequence or a fused sequence, as deep features have corresponding prediction
branches, allowing for both single sequence and fused sequence ovarian cancer subtype
predictions. As shown in Figure 3, if a patient’s initial examination is missing a sequence,
this method can still provide prediction results for other sequences; hence, the method
is robust.

Figure 3. The multi-parameter fusion model architecture.

2.4. Deep Feature Extraction Based on EfficientNet

EfficientNet [43] utilizes Neural Architecture Search (NAS) technology to find an
optimal configuration of three parameters: the network’s image input resolution, depth,
and channel width, to achieve higher predictive accuracy. This led to the development of
EfficientNet-B0 as the base model. Subsequently, through Compound Scaling, it systemati-
cally scales the input image resolution, depth, and width of the base model, generating a
series of larger models: EfficientNetB1-B7. Through ablation studies, EfficientNet-B2 was
ultimately chosen as the deep feature extractor. The ablation studies will be discussed in
detail in Section 4 of the article. Its network structure is shown in Table 1, where Conv3 × 3
denotes a conventional convolutional layer with a kernel size of 3 × 3, MBConv1 indicates
an expansion factor of 1, MBConv6 indicates an expansion factor of 6, and k3 × 3 denotes
the kernel size of 3 × 3 for layer-by-layer convolution in the corresponding module. It is
important to note that the weights of the EfficientNet feature extractor for each sequence
are different, with each EfficientNet feature extractor only extracting features from its
corresponding sequence. Using the EfficientNet feature extractor enhances network per-
formance through increased width, depth, and input resolution. Increasing the number
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of convolutional kernels (width) improves feature granularity and eases training. Adding
more layers (depth) facilitates the capture of richer and more complex features. Enhancing
the input resolution can yield higher granularity in feature templates.

Table 1. Feature extractor network structure based on EfficientNet-B2.

Stage Operator Resolution Channels Layers

1 Conv3 × 3 224 × 224 32 1
2 MBConv1, k3 × 3 112 × 112 16 2
3 MBConv6, k3 × 3 112 × 112 24 3
4 MBConv6, k5 × 5 56 × 56 48 3
5 MBConv6, k3 × 3 28 × 28 88 4
6 MBConv6, k5 × 5 14 × 14 120 4
7 MBConv6, k5 × 5 14 × 14 208 5
8 MBConv6, k3 × 3 7 × 7 352 2

2.5. Multi-Sequence Feature Fusion

This study employs two MRI sequences, and the approach to multi-sequence feature
fusion significantly influences the prediction outcomes. We explore two primary fusion
strategies: Concatenate and Add. The Concatenate method joins feature vectors from
various sources end-to-end, forming an extended vector with no information loss and
straightforward implementation. Conversely, the Add method executes element-wise
addition on feature vectors, necessitating uniform dimensions across these vectors. Through
ablation studies, as detailed in Section 4, we selected the Concatenate method for our multi-
sequence feature fusion.

Given a data-augmented sequence j for patient i denoted as xj
i , and utilizing the

EfficientNet feature extractor for each sequence represented by Feat(), the deep features
for xj

i are expressed as f j
i = Feat(xj

i). The fusion via concatenation is formulated as:

fi = Concat([ f 1
i , f 2

i ]), (1)

where fi represents the fused feature vector of sample i. This fusion approach integrates
features from both the T1 and T2 MRI sequences, denoted as f 1

i (T1 features) and f 2
i

(T2 features), respectively. Following this fusion, three distinct feature sets are obtained:
features from the T1 sequence, the T2 sequence, and the combined features fi.

2.6. Ovarian Cancer Subtype Prediction

After obtaining the fused feature fi, we trained a fully connected layer as the classifier
Cls, mapping the high-dimensional features to the ovarian cancer subtype prediction
results si = Cls( fi). We first used the Sigmoid function to map the prediction results
to the classification probabilities, and then used cross-entropy as the loss function for
classification. Since we used the fused features from all sequences, this is denoted as LALL:

LALL = Ei[yi · log(σ(si)) + (1 − yi) · log(1 − σ(si))], (2)

where LALL represents the total loss of all samples in the fusion branch, ∑ i denotes the
summation over all samples, yi is the label indicating the ovarian cancer subtype of the
patient, si is the original prediction output for sample i, and σ(si) is the output of sample i
after being passed through the sigmoid activation function σ. We also performed ovarian
cancer subtype prediction for all single-sequence features, using a fully connected layer as
the classifier and cross-entropy as the loss function, similar to the fused features. The sum of
the losses from the single sequences and the multi-sequence led to the final loss L, which is:

L = LALL + LT1 + LT2, (3)
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where LALL represents the total loss of all samples in the fusion branch, LT1 represents the
total loss of samples in the T1 branch, and LT2 represents the total loss of samples in the T2
branch. The final loss function takes into account both the loss from the fused features and
the loss from each individual branch.

2.7. Training and Implementation Details

During the training process, we used binary cross-entropy loss with logits as the loss
function and employed AdamW as the optimizer to update the model parameters.The
upsampling strategy employs weighted random sampling, where weights are calculated
based on the number of samples in each category. The method for calculating weights
involves taking the reciprocal of the number of samples in each category, meaning categories
with fewer samples are assigned higher weights. Given N0 and N1 as the number of samples
for class 0 and class 1 in the training class (train_cls), respectively, the formula for calculating
weights is as follows:

weights =
1[

N0
N1

] (4)

where N0 = ∑n
i=1[train_clsi = 0] and N1 = ∑n

i=1[train_clsi = 1], where n is the total
number of samples in the training class (train_cls), and [train_clsi = 0] and [train_clsi = 1]
are indicator functions that equal 1 if train_clsi is 0 or 1, respectively, and 0 otherwise.
In mathematical terms, 1[

N0
N1

] denotes taking the reciprocal of each element N0 and N1,

yielding the weights for the respective classes. This method ensures that classes with
fewer samples are assigned higher weights, thereby addressing the issue of data imbalance.
In terms of data augmentation, a probability (p-value) of 0.3 was set, meaning that there
was a 30% chance to select and execute a specific augmentation operation each time data
augmentation was performed. This approach increases the diversity of the data while
avoiding overfitting that might result from augmenting all images. The methods used
include center cropping, scaling transformations, horizontal flipping, Gaussian noise,
Gaussian smoothing, and contrast adjustment. The learning rate was initially set at 0.001,
and it was gradually increased over the first 25 epochs. The learning rate was set to increase
linearly as the ratio of the current epoch number to the number of warm-up epochs (25),
and after the warm-up was completed (epoch greater than 25), the learning rate gradually
decreased according to the cosine function [45]. The mathematical formula can be expressed
as follows:

During the warm-up period (epoch ≤ warm-up_epoch):

lr(epoch) =
epoch

warm-up_epoch
(5)

At the beginning of training, during the first few epochs (complete passes through
the dataset), the learning rate gradually increased from a lower value to a predetermined
initial learning rate. This warm-up phase helped the model gradually adapt to the data in
the early stages of training, avoiding instability in training that could be caused by setting
the learning rate too high.

After the warm-up, the learning rate was adjusted using the cosine function
(epoch > warm-up_epoch):

lr(epoch) = 0.5 ×
(

cos
(

epoch − warm-up_epoch
num_epoch − warm-up_epoch

× π

)
+ 1

)
(6)

After the warm-up phase, the learning rate gradually decreased in the form of a cosine
function until it approached zero. Cosine decay allows for the use of a larger learning rate
in the early stages of training for rapid progress, while reducing the learning rate in the later
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stages to stabilize training. This avoids overly large parameter updates, thereby allowing
for more fine-tuned adjustments of model parameters and achieving better training results.
Here, lr(epoch) represents the learning rate for the current epoch, epoch represents the
current training cycle, warm-up_epoch represents the number of epochs in the warm-
up period, and num_epoch represents the total number of training epochs until training
concludes. Our training process was conducted on the PyCharm platform using Python.
The trained model was then applied to validation. Detailed parameter settings are shown
in Table 2.

Table 2. Parameter Settings.

Hyperparameters Description Value

Learning Rate Learning rate in model training 0.001

Batch Size Number of samples per training batch 32

Number of Epochs The total number of rounds of
model training 100

Optimizer Optimization algorithm used to train
the model AdamW

L2 Regularization Only apply to the weight norm
scale factors 0.0001

learning rate decay Learning rate decay method with the
number of training rounds Warmup_Cosine(25)

Weight initialization Initialization strategy for model weights ImageNet Pretraining

Upsampling strategy Dealing with imbalanced class
distribution problems Weighted Random Sampling

Data Augmentation Rate Probability of applying
data augmentation 0.3

2.8. Metrics

The metrics used to measure model performance include AUC, AP, F1, ACC, SEN,
and SPEC. The remaining experiments in this article use these six indicators as evaluation criteria.

• AUC (area under the curve): This is commonly used with the ROC (receiver operating
characteristic) curve, referred to as ROC-AUC. The ROC curve is generated by plot-
ting the true positive rate (TPR) against the false positive rate (FPR) for all possible
classification thresholds. The AUC value is the area under this curve, ranging from 0
to 1. A higher AUC value indicates better model classification performance;

• AP (average precision): This measures the average performance of the model’s preci-
sion (precision) across different thresholds. It is the area under the precision–recall
curve, particularly suitable for evaluating imbalanced datasets. A higher AP indicates
better model performance;

• F1-Score (F1): This is the harmonic mean of precision (precision) and recall (recall). It
is a number between 0 and 1 used to measure the model’s precision and robustness.
A higher F1 score indicates a better balance between the model’s precision and recall;

• ACC (accuracy): The most intuitive performance metric, indicating the proportion
of correctly classified samples out of the total number of samples. A high accuracy
means that the model can correctly classify more samples;

• SEN (sensitivity) or recall: This is the true positive rate (TPR), measuring the model’s
ability to correctly identify positive cases. A higher sensitivity means the model is
more accurate in identifying positive cases;

• SPEC (specificity): This is the true negative rate, measuring the model’s ability to
correctly identify negative cases. A higher specificity means the model is more accurate
in identifying negative cases.
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3. Results

This study included 311 ovarian cancer (PAAD) patients, all of whom underwent two
types of preoperative dynamic enhanced MRI examinations (T1WI+C and T2WI), with
212 patients having high-grade serous carcinoma (HGSOC) and 99 patients having clear
cell carcinoma (OCCC). After random allocation, 198 patients were assigned to the training
queue, another 50 patients formed the validation queue, and 63 patients were assigned to
the testing queue. Moreover, the experiment employed 5-fold cross-validation to test the
model’s robustness, with the results shown in Table 3.

Table 3. Five-fold cross-validation results.

AUC AP F1-Score ACC SEN SPEC

Fold 1 0.9442 0.9742 0.8916 0.8571 0.8605 0.8500
Fold 2 0.9413 0.9580 0.9302 0.9048 0.9302 0.8500
Fold 3 0.8814 0.9288 0.8989 0.8571 0.9302 0.7000
Fold 4 0.9116 0.9560 0.8889 0.8571 0.8372 0.9000
Fold 5 0.9023 0.9393 0.8571 0.8254 0.7674 0.9500

EfficientNet-B2 was used as the feature extractor here, and the final result is the classifi-
cation result of the fused features. To ensure the accuracy and reliability of the experimental
results, a statistical analysis was performed on the results of five independently run ex-
periments, calculating their mean and standard deviation. This method helps evaluate
the stability and credibility of the model’s performance. The final statistical results are
summarized in Table 4, showing the performance of our multi-parametric EfficientNet
model across a range of key performance indicators. Specifically, the model achieved an
average AUC value of 0.9162 on the test dataset, indicating its excellent ability to differ-
entiate between positive and negative samples. At the same time, the model reached an
average accuracy of 86.3% and an average F1 score of 0.8933, both of which reflect the
model’s efficiency in correctly classifying samples. Furthermore, the average precision rate
of 86.03% further confirms the model’s reliability in processing the test queue. The model
also demonstrated an average sensitivity of 0.8651 and an average specificity of 0.85, mean-
ing it can not only accurately identify positive cases but also effectively exclude negative
ones. Notably, the standard deviation of all these metrics was below 0.1, highlighting the
consistency and stability of the model’s performance.

Table 4. Final test set results (mean ± standard deviation).

AUC AP F1-Score ACC SEN SPEC

0.9162 ± 0.0226 0.9513 ± 0.0176 0.8933 ± 0.0261 0.8603 ± 0.0284 0.8651 ± 0.0686 0.850 ± 0.0935

Figure 4 provides a visual perspective to observe these results, showing the ROC (re-
ceiver operating characteristic) curves of the multi-parametric EfficientNet model utilizing
fused features under five-fold cross-validation. The ROC curve is a tool for evaluating
the performance of classification models by depicting the change in the true positive rate
(TPR) against the false positive rate (FPR). In these five random splits of the experiment,
except for the relatively weaker performance in the third fold (fold 3), the performance in
other folds was excellent, with AUC values exceeding the 0.9 standard, further proving the
strength and reliability of our model.
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Figure 4. ROC curve and AUC value of fused features under different random divisions.

3.1. Impact of Feature Fusion on Results

Table 5 displays the prediction results of the T1 and T2 branches, separately, on the
same test set. To ensure the fairness and comparability of the experiment, both branches
were trained using settings identical to those identified as optimal in this study. The data
points shown in the table were obtained by arithmetic averaging of the results from five
independent experiments. This method helps reduce the impact of random variations,
thereby providing a more stable and reliable performance assessment. It can be seen from
Table 5 that the model proposed in this study outperformed the prediction results of the
individual branches on almost all indicators. Optimal results are shown in bold.

Table 5. Comparison of T1 and T2 branch results and fusion branch results.

Branch AUC AP F1-Score ACC SEN SPEC

T1 Branch 0.7823 0.8615 0.8065 0.7524 0.7628 0.73
T1 Branch 0.8958 0.9472 0.8629 0.8286 0.8047 0.88

Fusion Branch 0.9162 0.9513 0.8933 0.8603 0.8651 0.85

3.2. Impact of Baseline Network Architecture on Results

Table 6 details the impact of different EfficientNet network architectures on the final
prediction performance. Due to hardware limitations, EfficientNet-B5 to B7 were challeng-
ing to validate using the experimental setup, so only the effects of EfficientNet-B0 to B4 on
the results were examined. To ensure a fair and direct comparison, all selected network
structures were trained using the same parameter settings determined for the optimal
model in this study, ensuring each model was evaluated under equivalent conditions.
After conducting five independent experiments, the average prediction results for each
network structure were calculated to obtain a robust performance evaluation. This method
helps reduce the errors brought by the randomness of a single experiment, offering a more
reliable and consistent performance measurement benchmark. The experimental results
clearly demonstrated that the prediction model based on the EfficientNet-B2 architecture
excelled across several key metrics among all the compared network structures. Therefore,
EfficientNet-B2 was ultimately chosen as the baseline architecture for the model.
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Table 6. Comparison of the results using different baseline networks.

Baseline
Network AUC AP F1-Score ACC SEN SPEC

EfficientNet-B0 0.8884 0.9216 0.8941 0.8571 0.8837 0.80
EfficientNet-B1 0.7663 0.8382 0.8913 0.8413 0.9535 0.63
EfficientNet-B2 0.9162 0.9513 0.8933 0.8603 0.8651 0.85
EfficientNet-B3 0.8215 0.9004 0.75 0.7143 0.6279 0.85
EfficientNet-B4 0.8291 0.909 0.8764 0.8254 0.907 0.65

Note: Bold data is the best for its column.

3.3. Impact of Hyperparameters on Results

In this section, we delve into the analysis of the relationship between model per-
formance and its hyperparameter settings, especially focusing on how fine-tuning these
parameters can achieve the best prediction effects. To comprehensively assess the impact of
various hyperparameter configurations on model performance, we systematically varied
four key parameters: the learning rate, fusion method, upsampling strategy, and cropping
method. The experimental results are summarized in Table 7. Specifically, Table 7 records,
in detail, the performance of the model across a range of performance metrics under dif-
ferent settings of learning rate, fusion method, upsampling, and cropping method. These
performance metrics include AUC, AP, F1, ACC, SEN, and SPEC, forming a comprehensive
framework for evaluating the model’s predictive capabilities. Through a comparative anal-
ysis of experimental results under different hyperparameter configurations, we discovered
that, apart from the crop method, the choice of other hyperparameters had a very minor
impact on the model’s results. The crop method, when set to CenterCrop, could signifi-
cantly enhance the timing results. Choosing a learning rate of 0.001, a Concatenate fusion
method, and employing upsampling offered a slight advantage in model performance.
These constituted our final choice of hyperparameters.

Table 7. Comparison of results using different hyperparameters.

Description EfficientNet-B2

Learning Rate 0.001 0.0001 0.001 0.001 0.001 0.001
Fusion Method Concatenate Concatenate Add Concatenate Concatenate Concatenate

Upsample Yes Yes Yes No Yes Yes
Crop Method CenterCrop CenterCrop CenterCrop CenterCrop RandomCrop Resize

AUC 0.9162 0.9093 0.9107 0.9009 0.6337 0.8756
AP 0.9513 0.9489 0.9521 0.9566 0.7874 0.9373

F1-Score 0.8933 0.8924 0.8571 0.8991 0.6389 0.881
ACC 0.8603 0.8467 0.8254 0.853 0.5873 0.8413
SEN 0.8651 0.8902 0.7674 0.9302 0.5349 0.8605
SPEC 0.85 0.78 0.88 0.73 0.70 0.80

Note: Bold data is the best for its column.

4. Discussion

This article represents significant progress in the sub-classification of ovarian cancer.
From an academic standpoint, we have developed a novel classification model utiliz-
ing multi-parametric MRI (mpMRI), achieving an AUC of 0.9162 and an accuracy of
89.33%. From a clinical perspective, we have made advancements in advising whether
surgery or chemotherapy should be prioritized. Our research is specifically focused on
the sub-classification of ovarian cancer, which contrasts with prior studies that primarily
concentrated on the general classification of ovarian cancer, distinguishing tumor samples
as either negative or positive [38–42]. Our approach holds greater clinical significance due
to its ability to provide more nuanced categorization. We posit that integrating various
parameters allows for a more comprehensive learning process within the model, thereby
yielding favorable experimental outcomes.
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Regarding limitations, several points are noteworthy: Firstly, while the sample size
in this study suffices for exploratory scientific research and method validation [46,47], its
expansion is warranted for generalization and broader clinical applicability. Combining
a larger dataset with our model could enhance its potential clinical utility. Secondly,
we are the first to undertake deep learning sub-classification research in this domain,
and the absence of comparable studies limits our ability to benchmark our results [38–42].
Future investigations may involve comparative analyses with sub-classification efforts in
other types of cancer. Lastly, substantial refinement is necessary before our model can be
effectively deployed in clinical settings.

5. Conclusions

The model proposed in this article is feasible and plays a promotional role in both
clinical application and scientific research. Our proposed model can sub-classify ovarian
cancer, which is innovative compared to existing studies that categorize tumors as negative
or positive, and there is a more urgent clinical demand for sub-classification. Overall, this
study has potential for clinical application, and its limitations can be addressed through
further research.
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