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Abstract: The analysis of body motion is a valuable tool in the assessment and diagnosis of gait
impairments, particularly those related to neurological disorders. In this study, we propose a
novel automated system leveraging artificial intelligence for efficiently analyzing gait impairment
from video-recorded images. The proposed methodology encompasses three key aspects. First,
we generate a novel one-dimensional representation of each silhouette image, termed a silhouette
sinogram, by computing the distance and angle between the centroid and each detected boundary
points. This process enables us to effectively utilize relative variations in motion at different angles to
detect gait patterns. Second, a one-dimensional convolutional neural network (1D CNN) model is
developed and trained by incorporating the consecutive silhouette sinogram signals of silhouette
frames to capture spatiotemporal information via assisted knowledge learning. This process allows
the network to capture a broader context and temporal dependencies within the gait cycle, enabling
a more accurate diagnosis of gait abnormalities. This study conducts training and an evaluation
utilizing the publicly accessible INIT GAIT database. Finally, two evaluation schemes are employed:
one leveraging individual silhouette frames and the other operating at the subject level, utilizing a
majority voting technique. The outcomes of the proposed method showed superior enhancements in
gait impairment recognition, with overall F1-scores of 100%, 90.62%, and 77.32% when evaluated
based on sinogram signals, and 100%, 100%, and 83.33% when evaluated based on the subject level,
for cases involving two, four, and six gait abnormalities, respectively. In conclusion, by comparing
the observed locomotor function to a conventional gait pattern often seen in healthy individuals, the
recommended approach allows for a quantitative and non-invasive evaluation of locomotion.

Keywords: gait disorders; gait analysis; deep learning; assisted knowledge learning; silhouette images

1. Introduction

Gait is the way an individual walks. It is the locomotion attained through the move-
ment of limbs influenced by the integrated functioning of the musculoskeletal and nervous
systems [1]. Any change in this distinctive sequential walking pattern can provide im-
portant clues about the state and development of a wide range of underlying health
problems [2]. One reliable way to detect declining health symptoms caused by aging,
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physical dysfunction, or neurodegenerative conditions is by observing gait. Such disease
and disorders include, among others, Parkinson’s disease, multiple sclerosis (MS), and
strokes [3–6]. Clinicians analyze the gait patterns of patients using various types of data,
such as temporal–spatial, kinematic, kinetic, or electromyography data. By doing so, they
can accurately classify these gait patterns through clinically significant groups and develop
suitable interventions accordingly [7,8].

When gait pattern and characteristics can be reliably identified in the clinical setting
and then tracked and evaluated over time, it opens the door to more effective personalized
therapy and more accurate predictive outcome evaluation [2]. It was reported by [9] that
understanding clinical rehabilitation and machine learning is crucial, as shown by the
evaluation of future research. There has been a recent paradigm shift towards personalized
medicine, which considers the uniqueness of each patient. The use of instrumented gait
analysis is being extensively employed in the assessment of patients, serving as a valu-
able tool in clinical decision-making processes and the evaluation of various treatment
outcomes [10].

Clinical gait analysis is a multi-dimensional procedure that entails the comprehensive
examination and analysis of data derived from various sources [11]. Neurologists and
rehabilitation therapists are responsible for conducting various diagnostic examinations to
evaluate and manually quantify gait disorders. The development of an automated system
capable of identifying individuals with impaired mobility based on their gait patterns
holds great promise for enhancing health care and various other applications related to
gait analysis [12–16]. Physical examinations, the collection of patient history, and three-
dimensional motion analysis collectively provide valuable data pertaining to the patient’s
gait impairments. Identifying patterns and trends within this extensive dataset can pose
challenges. Nevertheless, the interpretation of clinical gait analysis results and subsequent
treatment decisions are predominantly based on subjective pattern recognition by clinicians.
Hence, the development of a method to accurately classify gait data could be beneficial in
identifying cohorts of individuals sharing widespread underlying clinical conditions.

The utilization of automated recognition techniques for human gait patterns enables
several valuable applications. Firstly, it facilitates a quantitative and non-invasive diagnosis
of locomotion by comparing the observed locomotor function to a standard gait pattern
associated with healthy individuals [17,18]. Secondly, it facilitates the identification of
personalized gait training tasks by automatically adapting assistance based on the individ-
ual’s recognized motor function [15]. Thirdly, it aids in the planning of potential treatment
strategies tailored to the specific needs of the user, considering their previously identified
gait impairment through automated recognition approaches [19]. Lastly, it enables the
measurement and description of the progress made in gait treatment by assessing the
individual’s gait patterns during initial and follow-up sessions [7,20]. Moreover, these
automated systems utilized in clinical gait analysis represent an impartial method for the ex-
tensive manipulation of gait data, and they offer enhanced efficiency and cost effectiveness
compared to the traditional procedures commonly employed by clinicians [21].

The existing research on gait analysis can be broken down into two groups: model-
based and appearance-based techniques. In order to obtain reliable pose parameters,
model-based approaches often use a motion capture device or wearable sensors. However,
model-based techniques require controlled laboratory conditions and subject cooperation;
subjects must wear specialized equipment or gadgets in order to obtain accurate measure-
ments of the trajectories of their joints and other moving body parts. Additionally, they
typically endure high computation costs and poor pose estimation quality. On the other
hand, appearance-based solutions employ captured videos directly; this eliminates the
requirement for individuals to wear any specialized equipment. The method relies on
analyzing a person’s gait in order to determine things like their gender and verify their
identity; the gait energy image (GEI) [22] is one such feature that has the potential to be
employed for gait classification due to its strong authentication performance for individuals
based on gait. In addition to its other benefits, the GEI does not necessitate high-quality
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silhouette extraction and is hence highly resilient against the noise that is invariably present
in extracted silhouette images. Due to its definition as the mean of successive silhouettes
over a certain walking period, the GEI is well suited to encoding the shape of people and
thus could prove useful for verification purposes. Despite the remarkable performance
exhibited by the GEI feature in gait classification, it relies on prior knowledge of gait cycle
sequences and requires the use of a two-dimensional classification model. To solve this
problem, the proposed study seeks to investigate the effectiveness of alternative image fea-
tures, namely silhouette sinograms, which bear resemblance to the GEI feature, in detecting
gait impairments. To utilize these features, a 1D classification model that does not rely
on gait cycle information is required. The following are the novel contributions achieved
through this study.

1. Novel silhouette sinogram signals are generated for each silhouette image by comput-
ing the angle and distance between the centroid and all boundary points, facilitating
the extraction of prominent representations of relative variations in pathological
gait patterns.

2. We develop a 1D CNN model that can integrate multiple silhouette sinogram signals
and train them together to enhance the network’s understanding of gait abnormalities
through assisted knowledge learning.

3. We analyze the influence of varying k-assisted silhouette sinogram signals, used
as prior knowledge and fed into the network (k = 1, 10, 20, and 30). This work
also conducts comprehensive experiments encompassing three distinct sizes of gait
abnormalities, categorized into n = 2, 4, and 6 classes.

4. This work employs two evaluation methodologies: one based on individual silhouette
frames and another operating at the subject level using a majority voting approach.

Quantitative gait analysis has been around for over 30 years, although it is still mostly
used in labs and not much in clinical practice. This is mainly because clinical teams
have varying levels of training, experience, and preferences, and because typical gait labs
include expensive and heavy equipment, complicated protocols, and data management
and analysis. Despite evidence of the decreased efficacy of quantifying gait, observational
gait and qualitative measures are still employed extensively in clinics [2]. We believe that
this gait representation method has not been proposed in the literature before. It offers
the opportunity to utilize low-cost camera-based gait data collection methods to obtain
detailed information about the movement of different parts of the body, similar to what
sensor-based methods offer. Furthermore, the computational complexity is very modest,
allowing for real-time implementation.

The rest of this paper is outlined as follows: Section 2 introduces related works and
investigations for gait impairment analysis. Section 3 describes our proposed methodology,
including the generation of silhouette sinogram signals and the developed 1D CNN model.
Section 4 presents the experimental results and comparisons. Sections 5 and 6 discuss the
findings and draw conclusions, respectively.

2. Related Works

The application of movement analysis has demonstrated its utility in comprehending
the underlying mechanisms of various pediatric diseases and enhancing their subsequent
monitoring and evaluation [23]. The utilization of a particular intervention in the manage-
ment of cerebral palsy has experienced significant prevalence in recent years. According to
Hebda-Boon et al. [24], the implementation of this intervention within hospital settings has
led to a decrease in the number of surgical treatment recommendations. Additionally, it has
been employed to enhance rehabilitation in diverse pediatric conditions by emphasizing
the osteoarticular hazards caused by excessive trunk tilt motions [25]. Furthermore, the
integration of motion analysis with X-ray imaging has been employed to enhance our com-
prehension of the correlation between alterations in skeletal structure and corresponding
modifications in individuals with cerebral palsy [23] as well as those with diverse postural
abnormalities [26].



Bioengineering 2024, 11, 477 4 of 25

We can categorize the current body of literature on gait analysis into two distinct cate-
gories: model-based approaches and appearance-based approaches. Typically, model-based
approaches employ either a motion capture system [27–30] or wearable sensors [27,31–35]
to accurately capture pose parameters. In their study, Hallemans et al. [36] employed a
three-dimensional motion capture system to assess head orientation, stride length, and
trunk flexion. Their objective was to investigate the potential impact of impaired vision on
the dynamic stability of walking. Several model-based studies conducted between 2015
and 2020 have used camera-recorded movies to estimate pose parameters. These studies
achieved this by employing fitting and tracking techniques on various body components.
In their study, Khan et al. [37] utilized a skeletal model to analyze binary human silhouettes.
This analysis allowed them to determine the posture lean and stride cycles of individuals,
with the aim of detecting Parkinsonian gait. Costin et al. [38] have proposed a novel auto-
mated image processing technique for the assessment of human gait in patients undergoing
rehabilitation. The present study assessed the atypical gait patterns exhibited by patients
as a result of lower limb injuries. They used the MoveNet Thunder model to determine the
positions of joints and key points in a human’s body based on video data. The magnitudes
as well as variations in the angles resulting from the symmetrical articulations of the human
body are assessed in different frames, following the identification of specific body parts.
The purpose of this evaluation is to analyze and monitor these angles throughout the
rehabilitation process. The concept of a rehabilitation degree was established and quanti-
fied as the mean percentage of the pertinent angles of the body segments relative to the
domains of normality for those angles. Based on the encouraging outcomes obtained from
the utilization of these two model-based methodologies, it is affirmed that the identification
of disordered gait necessitates the consideration of crucial factors such as the walking
posture, temporal cue, and stability property. Indeed, model-based methodologies have
the capability to accurately quantify the trajectories of mobile joints and bodily elements.
However, their implementation necessitates controlled laboratory conditions and the ac-
tive participation of the subjects, who are required to don specialized attire or apparatus.
Moreover, it is common for these systems to exhibit subpar accuracy in estimating poses
and require significant computational resources. Therefore, these methods are not suitable
for the scheme we aim to accomplish.

In contrast, appearance-based methodologies rely on the direct utilization of recorded
videos, thereby eliminating the necessity for subjects to use any specialized equipment.
Chen et al. [13,14] employed binary silhouettes derived from color images as a means of
differentiating individuals diagnosed with Parkinson’s disease from those without the condi-
tion. Their study used binary images directly for classification purposes, making the results
significantly dependent on the caliber of each silhouette. Previous studies [22,39,40] have
attempted to analyze gait observations in order to identify certain characteristics that can be
utilized for the purposes of gender recognition and human authentication. One frequently
employed feature in gait analysis is the gait energy image, which has gained recognition for
its ability to effectively authenticate individuals based on their gait patterns. One additional
benefit of the GEI method is its ability to handle noise present in extracted silhouette images
without the need for high-quality silhouette extraction. Given that GEIs are characterized as
the means of consecutive silhouettes within a walking interval, it possesses a strong capability
to accurately represent the physical form of individuals. Consequently, it is reasonable to
assert that the GEI is a highly efficient method for the identification of pathological gait
impairments from 2D camera-based and video-recorded images.

Gait recognition is a contemporary biometric technique that has gained prominence
for its potential applications in security. It is characterized by its unobtrusive learning
method. Bakchy et al. [41] employed the GEI feature for the purpose of gait recognition
in security-related applications. The GEI effectively retains both the dynamic and static
characteristics inherent in a gait sequence. The static information pertaining to the human
body encompasses its physical appearance and shape, while the dynamic information
encompasses fluctuations in frequency and phase. Nevertheless, the temporal aspect that
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normalizes each silhouette within the GEI is not taken into account. In response to this
issue, Luo et al. [42] suggested the cumulative frame difference energy image, which can
reflect the time properties. Subsequently, gait recognition was achieved by employing the
nearest neighbor classifier, which relied on the Euclidean distance metric. The experimental
findings indicate that the proposed algorithm exhibits superior performance compared
to the hybrid GEI and 2D-PCA methods, while also satisfying the real-time constraints.
The GEI feature has demonstrated remarkable efficacy in gait classification, prompting us
to improve the accuracy of current classification models by harnessing the capabilities of
convolutional neural networks. One potential approach to achieve this objective involves
employing sinogram images as an alternative to GEIs.

In the work of Chen et al. [13], they used an LDA as a feature extractor, followed
by a minimum distance classifier (MDC) to differentiate patients with Parkinson’s from
normal subjects using video sequences as the input, and reached an overall accuracy of
95.49%. Their dataset comprised seven healthy subject and seven PD patients having video
sequences of around 2.57 ± 0.5 min. In 2018, Verlekar et al. [43] used SVM to classify
four gait patterns using the INIT. The involved features were body-related features such
as the torso orientation and the shift in the center of gravity, and feet-related features
such as the step length and the ratio between the foot flat period to the stance period.
The parameters involved in their system involved the entire video sequence for both
the training and the testing phases, and they reached an accuracy of 98.8%. In 2021,
Albuquerque et al. [44] created their own simulated dataset named GAIT-IT and trained
their CNN on it. They used GEIs and achieved an accuracy of 93.4% and 89.8% when
testing on GAIT-IT and GAIT-IST [45], respectively. They included five gait types for
classification purposes, namely, normal, scissor, spastic, steppage, and propulsive, which
differ from the pathologies included in the INIT dataset. The same team, in their published
work [46], achieved an accuracy of 96.5% and 91.4% when testing on GAIT-IT [44] and
GAIT-IST [45], respectively. In this work, they selected nine key frames per gait cycle,
then used a pretrained CNN for spatial feature extraction and a bidirectional LSTM for
temporal feature extraction. Finally, the classification was performed by two fully connected
neural network layers. In the studies of [13,43,44,46], the accuracy was the sole evaluation
metric computed.

The current state of the art for predicting gait impairment in medical applications
lacks advanced deep learning methods such as Federated Learning (FL). FL has emerged
as a promising technique in the field of machine learning, particularly within the realm
of mobile health (mHealth) [47]. Unlike conventional machine learning methods, FL
enables collaborative model training across multiple data sources without requiring direct
access to individual datasets. This approach is especially beneficial in the context of
mHealth, where medical data are often fragmented across isolated silos, and privacy
concerns pose significant barriers to data sharing. As a result, FL holds great potential for
advancing research and innovation in the field of mHealth, offering a privacy-preserving
solution for leveraging distributed data sources effectively. This approach, explored by
Zhang et al. [48,49] for tasks like predicting the remaining useful life, holds promise for
gait impairment prediction as well.

3. Materials and Methods
3.1. Dataset

Gait difficulties refer to any deviation from the standard walking or gait pattern.
Neurological etiologies exhibit a higher prevalence compared to non-neurological etiologies.
There are a multitude of diseases that impact on both the central and peripheral nervous
systems, resulting in subsequent alterations to an individual’s gait. Gait disturbances
may arise as a result of subtle alterations in the interactions between these two systems.
The examination should encompass the following aspects: Posture, the act of being in an
upright position, with one’s weight supported by one’s feet, refers to the position and
alignment of the body, particularly in relation to the spine and limbs. It encompasses
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various aspects, such as narrow or wide stances. Additionally, the examination involves
the evaluation of the walking process and the measurement of the step length. The gait
cycle consists of two primary phases: stance, during which a specific foot is in contact with
the ground, and swing, during which the same foot is no longer in contact with the ground
and is propelling forward. In the context of typical human locomotion, it is anticipated that
the stance and swing phases will account for approximately 62% and 38% of a complete
gait cycle; accordingly, Figure 1 depicts the distribution of this phenomenon, as observed
from the perspective of the right limb, throughout an entire gait cycle. In this research,
a rehabilitation specialist examined several video-based indicators meant to distinguish
between gait phases and instances.
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Figure 1. An example for a representation of a series of standardized binary silhouettes.

In this investigation, we made use of an already existing data collection called the
INIT Gait database [5,50]. This dataset is made up of sequences of high-quality binary
silhouettes that were extracted from RGB movies that were recorded at the specialized
studio LABCOM at University Jaume I. LABCOM is a part of the audiovisual facilities
at the university. A group of ten individuals, consisting of nine males and one female,
were recruited as healthy volunteers to participate in a study including the simulation of
several aberrant gait styles on a green chroma background. The utilization of a consistent
background aided the process of converting the frames into binary form and extracting
silhouettes of superior quality. This, in turn, decreased the level of uncertainty when
assessing the precision of features. A total of seven different gait types were mimicked,
involving modifications to both limb movement and overall body posture. The individuals
in question draw inspiration from problematic gait patterns that are commonly associated
with specific neurological disorders, such as Parkinson’s disease. Additionally, a novel
eighth style characterized by natural and uncontrived movement was incorporated. Each
participant was recorded twice for each gait pattern, and all sequences were obtained
from a lateral perspective, enabling a more detailed description of limb action and body
position. Hence, a total of 160 sequences were captured, including a collective count of
41,104 silhouette images. Each of these images has a frame size of 400 × 800 pixels. The
following table, Table 1, provides a summary of the gait styles contained in the INIT
Gait database.

Table 1. Description of INIT Gait database walking patterns.

Gait Style Description

Normal (NM) It depicts the normal gait pattern of a healthy person, which is also referred to as neutral or
regular appearance in the database.

Abnormal right leg (RL) A pattern of walking in which the right leg takes steps that are approximately one half as
short as the ones taken by the left leg.

Abnormal left leg (LL) A pattern of walking in which the left leg takes steps that are approximately one half as
short as the steps taken by the right leg.

Abnormal full body (FB)
A damaged gait pattern in which the complete body shows a multitude of abnormal gait
symptoms, including the following: participants walk slowly, bending their knees, and
taking extremely tiny steps, barely lifting their feet off the ground (shuffling gait).
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Table 1. Cont.

Gait Style Description

Abnormal half right arm (RA-0.5) A walking pattern in which the right arm swings about one half as far as the left arm does.
Abnormal half left arm (LA-0.5) A walking pattern in which the left arm swings about one half as far as the right arm does.

Abnormal right arm (RA) A walking pattern in which the right arm does not swing at all while walking.
Abnormal left arm (LA) A walking pattern in which the left arm does not swing at all while walking.

3.2. Proposed Framework

This study proposes a new pipeline for gait impairment analysis, consisting of three
main stages. Firstly, silhouette sinogram signals are generated utilizing a novel angular
centroid distance algorithm. Subsequently, a one-dimensional convolutional neural net-
work (1D CNN) model is developed and trained by integrating shared information through
assisted knowledge learning. Finally, two evaluation schemes are employed: one based on
individual silhouette frames and another based on the subject level, utilizing a majority
voting approach. The diagram scheme of the proposed framework is illustrated in Figure 2.
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3.2.1. Generation of Silhouette Sinogram Signals

(1) Image Cropping

The first step is to segment and crop all binary silhouettes in each subject’s gait cycle
so that they fit within the same image size. This is achieved by projecting the original
silhouettes in the horizontal and vertical directions, then searching for nonzero elements
within these projections to find the start and end points as the minimum and maximum
of nonzero element positions. Given an initial binary silhouette image n in the sequence
Sn(x, y), the procedure can be expressed mathematically as follows:

Snx(y) = ∑x S(x, y) and Sny(x) = ∑y S(x, y). (1)

Then, the cropped image Sc
n(x, y) can be obtained as the subset of rows and columns

where the projections in the x and y directions are both nonzero, such that

Sc
n(x, y) = {Sn(x, y)} Snx(y)>0 and Sny(x)>0. (2)
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The cropped image sizes Nnx and Nny are obtained as the cardinality of all nonzero
elements in the projection vectors Sny(x) and Snx(y), which can be calculated as the 0-norm
of each:

Nnx =
∥∥Sny(x)

∥∥
0, Nny = ∥Snx(y)∥0. (3)

Each binary silhouette is cropped in both the horizontal and vertical directions to
contain only the points from the start and end point locations. This results in a sequence of
binary silhouette images of variable horizontal and vertical sizes. In order to make all of
them have the same size, all images are zero-padded equally from both directions to the
maximum vertical and horizontal sizes of all nonuniformly sized cropped images to obtain
uniformly sized cropped binary silhouette images. The common binary silhouette sizes in
a particular sequence are obtained as follows:

Nx = max
n

{Nnx}, Ny = max
n

{
Nny

}
. (4)

The result of zero-padding all binary silhouette images in the sequence to the common
sizes Nx and Ny is termed Scz

n (x, y) for the image n in the sequence. This will ensure
consistency in the subsequent movement assessment steps for the different silhouettes in
the gait sequence.

(2) Centroid and Boundary Calculations

For each gait sequence, the centroid location
(
cnx, cny

)
of each of the uniformly sized

cropped binary silhouette images Scz
n (x, y) is calculated as the location of the center of mass

of each assuming uniform mass density everywhere in the silhouette region. This can be
expressed mathematically as

cnx =
∑y ∑x x Scz

n (x, y)

∑y ∑x Scz
n (x, y)

, cny =
∑y ∑x y Scz

n (x, y)

∑y ∑x Scz
n (x, y)

. (5)

Then, uniformly sized cropped binary silhouette images undergo a boundary tracing
operation to obtain an ordered sequence of points that represent the silhouette boundary.
This is more sophisticated than edge detection in that the boundary is given as an ordered
sequence of boundary image points rather than a binary contour image, particularly with
complex silhouette region shapes. This can be performed using a number of existing
approaches such as pixel-following- or vertex-following-based methods, where the basic
assumptions of having input binary images that are zero-padded with no boundary points
at the edge of the image matrix. In this study, the boundary tracing procedure was
implemented based on the Moore neighbor tracing algorithm modified by Jacob’s stopping
criteria [51]. This starts with a boundary point (preferably the uppermost and leftmost
one) and proceeds to examine its eight neighbors one by one in the same direction (for
example, clockwise) starting from a neighbor that has a zero value (lies in the background)
and selecting the first neighbor that has a one value (lies within the silhouette) to be the
next point in the boundary and sequence. This process is repeated until one of Jacob’s
stopping criteria is met whereby the sequence of boundary points reaches the starting point.
The result of this boundary detection operation is a list of boundary points’ horizontal and

vertical locations
{→

b nx,
→
b ny

}
for each cropped binary silhouette image Scz

n (x, y). It should

be noted that the size of such boundary sequences will vary across different images within
the same sequence.

(3) Silhouette Sinogram Calculations

In this part, the detected boundaries
{→

b nx,
→
b ny

}
of uniformly sized cropped binary

silhouettes Scz
n (x, y) along with their centroids

(
cnx, cny

)
are used to generate a novel one-

dimensional representation of each silhouette, which we will term a silhouette sinogram.
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This is achieved by computing the vectors of distances and angles
{→

Dn,
→
An

}
between the

centroid and each of the silhouette boundary points, as shown in Figure 3. The mathematical
representation of these calculations for the point m in the boundary sequence are as follows:

Dnm =

∥∥∥∥[cnx
cny

]
−

[
bnmx
bnmy

]∥∥∥∥
2
, Anm = tan−1

(
bnmy − cny

bnmx − c_nx

)
. (6)
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It should be noted that this representation is a generalization of the so-called signature
of the 2D boundary [51], where the angles included in this representation are nonuniformly
sampled in this work. We observe that this distance is, in essence, a projection of the silhou-
ette in the angle that the line between each boundary point and the centroid makes with
the horizontal direction. Such a one-dimensional representation of the two-dimensional
silhouette in terms of projections bears similarity to the sinograms encountered in com-
puted tomography. Hence, such a distance versus angle representation will be termed the
silhouette sinogram in reference to such similarity.

Since the result of the above step is a set of nonuniformly sampled angles and their
corresponding distances, issues related to the multiplicity of boundary points at the same
angle as well as the comparison of the distance profiles across different silhouettes in
the sequence may arise. Given that the same angle can have multiple distances, such as
those corresponding to the proximal and distal boundary points of an extended arm, the
algorithm should be able to resolve such multiplicity occurrences when detected to have
only one distance value for each angle. This is achieved by sorting the set of angles and
their corresponding distances by the angle values, the detection of multiplicity for each
angle, and selecting the maximum distance for each angle from the different distance values.
This ensures that the maximum extension information is kept given its greater relevance to
the classification. The above steps can be expressed mathematically as follows:{

A′
nm

}
= Sort

m

({
A′

nm
})

. (7)

D′
nm = max({Dnm} ∀ Dnm with similar Anm). (8)
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Subsequently, the set of angles and their corresponding distances now contain con-
sistent entries that are repeated whenever multiplicity is encountered. Therefore, this set

should be reduced to include only distinctive angle/distance pairs
{→

D′n,
→
A′n

}
, such that

→
D′

n =
{

A′
nm

}
̸= ,

→
A′

n
=

{
D′

nm
}
̸=. (9)

Here, the common mathematical notation of { .} ̸= is used to express the selection of
unique elements within the enclosed set.

Furthermore, given that the resultant angle values are not uniformly sampled and
that such sampling differs from one silhouette to another in the same sequence, resampling
of the distance versus angle data is performed. The outcome of this resampling allows
the final silhouette sinogram to be obtained as the distance versus angle data uniformly
sampled with a specified resolution ∆A from 0 to 360 degrees. This can be achieved
using 1D interpolation using linear or cubic interpolation methods to obtain the resampled

sinogram signal
→
Dr

n. Here, linear interpolation was used. This is mathematically expressed
as follows:

→
Dr

n = Resample
→
Ar

n={0, ∆A, 2∆A, ...}

({→
D′

n,
→
A′

n

})
. (10)

In this study, a 2-degree resolution was found to be robust in reducing small variations
in close points while being adequate for maintaining the details of sinogram representation.
Furthermore, the selection ensures that the resampling procedure will not encounter an
aliasing problem given that the original density of the sampling will be more than or equal
to the desired uniform sampling.

Once the silhouette sinograms are obtained from the gait sequence, we have a set of
signals with each representing the distance versus angle profile for a silhouette at a certain
point in time. The silhouette sinograms can be displayed as overlapping thin line plots
or as an image where the distance is coded as intensity. A diagram showing the process
of obtaining the silhouette sinograms is shown in Figure 3. It should be noted that the
silhouette sinograms show marked differences between the different gait classifications as
shown in Figure 4 and hence have significant potential for use in computer-aided diagnosis.
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It can be observed that the variations in such silhouette sinograms along the sequence
of images in the gait cycle provide data that are similar to those of the more expensive
sensor-based gait data acquisition setups. It should also be noted that silhouette sinograms
can be normalized such that their variations across subjects of different height or body
shape can be minimized whereas relative variations in motion at different angles are reliably
used to detect gait classification.

3.2.2. Deep Learning Network Architecture

The main objective of the proposed deep learning network is to effectively differentiate
between various types of gait abnormalities. We have adapted and introduced a 1D CNN
architecture, inspired by the success of 2D CNNs in various image classification tasks
in both natural and medical image domains. This architecture aims to learn and extract
distinctive features of pathological gaits associated with each specific gait pattern. This
adaptation allows for a more accurate assessment and evaluation of gait impairment,
ultimately enhancing the analysis of gait-related abnormalities.

The aim behind the design of a 1D CNN structure is to seamlessly integrate it with the
input data, denoted as xi, which was generated in the aforementioned section as 1D silhou-
ette sinogram signal information for each individual ith silhouette image. The proposed
network architecture involves an encoder comprising four convolutional resolution blocks
of varying sizes and eventually attached to fully connected neural networks (FC-NNs).
Within each block, we employ two consecutive 1D convolutional layers, accompanied by
batch normalization and rectified linear unit (ReLU) activation. In place of traditional
subsampling pooling layers between these blocks, we employ stride convolutions with
a value of 2. This approach promotes the further learning of pooling operations while
enhancing the overall stability of the network [52]. Specifically, our convolutional filters
consist of feature maps with dimensions of 32, 64, 128, and 256, kernel sizes of 7, 5, 5, and 5,
and stride values of 1 for the four convolutional blocks, respectively. To further regularize
the network training and avoid overfitting, a dropout layer with a probability of 0.3 is
incorporated at the top of each block. Note that these convolutional encoder layers are
responsible for automatically extracting and learning gait features directly from the input
silhouette sinogram signals. The structural overview of the proposed 1D CNN is visually
depicted in Figure 5.
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collaborative assisted knowledge learning.

Afterwards, these representation patterns are fed into a global average pooling (GAP)
layer, which computes a single piece of spatial information from each feature map. This
pooling operation aids in preventing overfitting by eliminating the need to optimize
additional parameters, resulting in a more robust and generalized model. The extracted
prominent features are subsequently passed into three dense FC-NN layers with 64, 16,
and n neurons, respectively. Here, the value of n corresponds to the number of classes
representing the different gait impairment abnormalities under investigation. The final
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dense layer is connected to the Softmax activation function, facilitating the classification
process. It is noteworthy that this paper investigates three distinct sizes of abnormalities,
which are categorized into n = 2, 4, and 6 classes. In other words, three separate networks
are trained and tested, differing solely in the number of classes specified in the last dense
FC-NN layer.

One significant contribution of the proposed network architecture lies in its capability
to acquire and learn additional assisted knowledge from the consecutive frames or silhou-
ettes of each subject’s data. This aspect is explained in detail in the following subsection,
highlighting the network’s capacity to leverage temporal information for enhanced learning
and analysis.

3.2.3. Assisted Knowledge Learning

The proposed network is initiated by incorporating the subsequent silhouette sinogram
signals of silhouette frames along with the current xi input. This integration was achieved
through the re-design of the 1D CNN, enabling the passage of multiple inputs into the
network instead of a single signal. The objective of this process is to emulate the provision
of essential knowledge about the gait cycle, thereby enhancing the network’s ability to
discern gait abnormalities more effectively. Specifically, multiple k-assisted silhouette
sinogram signals are utilized as prior knowledge, derived from the same subject exhibiting
a similar pattern. This assistance aids the network in making more accurate diagnostic
decisions regarding the main xi input. It is of note that this process represents a significant
improvement compared to using only a single sinogram signal xi.

The process of collaboratively assisted knowledge learning is accomplished through
the sharing of intelligence from subsequent xi sinogram signals. In regard to implementa-
tion, this process involves performing the following mathematic computations:

X = Concat⟨Φ(x1), Φ(x2), . . . , Φ(xk)⟩, (11)

where Φ(xi) represents the feature extractor for each consecutive sinogram signal, utilizing
a separate convolutional block with a feature map of 32 and a kernel size of 7. Concat⟨·⟩
refers to the concatenation process of all the generated features derived from the shared
information across k signals. Consequently, this collective knowledge, denoted as X, is
then utilized as an input for the designed 1D CNN model. In this study, we investigate
multiple values of k, specifically, k = 10, 20, or 30.

By incorporating this shared information into the model, we aim to leverage the ac-
cumulated insights from multiple silhouette sinogram signals to enhance the network’s
understanding of gait abnormalities. This collaborative assisted knowledge learning ap-
proach allows the network to capture a broader context and temporal dependencies within
the gait cycle, enabling the more accurate diagnosis and classification of abnormalities.
Through our investigation of various values for k, we seek to determine the optimal amount
of shared information that yields the best performance in distinguishing gait abnormali-
ties. This process is applicable to all input sinogram signals within both the training and
testing datasets. Thus, the network is equipped with a single essential sinogram signal
to evaluate, accompanied by k − 1 supportive knowledge derived from the subsequent
silhouette frames. This design results in a multiple input single output model, wherein at
any given time, the network generates a single decision pertaining to the essential input
signal. By adopting this approach, we ensure that the network’s classification decisions are
based on a comprehensive understanding of the gait cycle, leveraging both the individual
silhouette sinogram signals and the collective information provided by the subsequent
frames. Figure 5 illustrates the concept of assisted knowledge learning.

3.2.4. Technical Specifications

This study employs a supervised learning approach to train the proposed 1D CNN.
This methodology involves tuning and optimizing the network parameters through forward
and backward propagation during training epochs. The optimization process compares the
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early predictions of the network with reference true labels. The implementation details of
the proposed work are outlined as follows. A learning rate of 0.003 is initially set, and then
exponentially decreased by a factor of 10 until the 50th epoch. To ensure the inclusion of all
frames or silhouette images of one gait cycle, a batch size of 50 is utilized. The networks
are optimized using the Adam optimizer with the categorical cross-entropy loss function
(LCE). The LCE is defined as

LCE = −
i=N

∑
i=1

yi·log(ŷi), (12)

where yi and ŷi are the true label and predicted results from the proposed network, re-
spectively. The summation over N represents the integration of cross-entropy loss for
all classes.

The system implementation for this work was carried out on a PC equipped with a
Cuda-enabled GPU, specifically the NVIDIA GeForce RTX 3080, and had 64 GB of RAM.
The implementation of this work was performed using Python programming language
version 3.7.10, along with the Tensorflow framework and the Keras library.

3.2.5. Evaluation Measures

Quantitative assessments were conducted on an unseen test set, which consisted of
20% of the entire INIT Gait dataset. The testing set comprised two subjects, each with
two different experiments encompassing various gait pattern abnormalities. Therefore,
the total number of experiments in the testing set amounted to four. This paper employed
two distinct evaluation schemes. The first scheme involved comparing each predicted
sinogram signal, which corresponds to an individual silhouette image, against its corre-
sponding ground-truth label. The second evaluation scheme operated at the subject level,
using a majority voting method to consider all silhouette sinogram signals (or silhouette
images). Both evaluations involved conducting experimental studies with varying numbers
of target classes, specifically, n = 2, 4, or 6. We trained the network as a binary classifica-
tion system in the two-class problem, which distinguished between normal gait patterns
(NM) and severe gait impairment affecting the full body (FB). For the four-class problem,
two additional gait patterns were included, namely, half motion of the left leg (LL) and half
motion of the right leg (RL). The six-class problem included the four aforementioned gait
impairments, along with motionlessness in the upper limbs of the left arm (LA-0) and right
arm (RA-0).

We quantitatively evaluated all these experiments using metrics like sensitivity, speci-
ficity, accuracy, and F1-score. Additionally, we provided a confusion matrix to visually
depict the ratio of correctly predicted classes to false predictions, thereby providing an
intuitive representation of the classification performance.

4. Results and Experiments
4.1. Gait Analysis Results

In this work, a 1D-CNN model was implemented for the classification purposes of
gait pathologies. The test set comprised two subjects, each of which had two sequences
for each of the five anomalies as well as the normal unimpaired sequences (NM). The total
number of frames was 818, 1292, 1258, 843, 842, and 2616, corresponding to NM, LL, RL,
LA-0, RA-0, and FB, respectively.

In this work, three classification problems were addressed: the binary classification of
NM versus FB (n = 2); the classification of NM, FB, LL, and RL (n = 4); and the classification
of NM, FB, LL, RL, LA-0, and RA-0 (n = 6). In addition, the impact of a different number of
signals or images fed to the network was studied (k = 1, 10, 20, and 30).

For the first classification problem (n = 2 and k = 1), NM vs. FB, one image from the
sequence was sufficient to achieve perfect classification results: 100% accuracy for all of the
818 NM and 2616 FB frames. Accordingly, there was neither a need to explore the impact of
larger values of k, nor a need to evaluate based on a subject’s complete sequence. Figure 6
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displays the confusion matrices of all the other problems using both evaluation schemes.
To analyze the proportion of correct classifications vs. misclassification with respect to each
class, their proportions were calculated and are shown in Figures 7 and 8 for n = 4 and
n = 6, respectively.
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As can be seen, for all the values of n and k, no misclassifications occurred with FB
deformation, where a subject suffered from severe gait cycle impairment featuring short
steps, feet subtly touching the ground, and bending knees, chest, and head [5].

Table 2 shows the evaluation metrics for the aforementioned classification problems,
weighted by the total number of frames per class. The best results, those having the
highest F1-score, are highlighted; hence, testing the network with 20 and 30 images for
the four-class and the six-class problems, respectively, is recommended to attain the best
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performance. The accuracy is computed as the percentage of the correct classifications
divided by the entire population, as per Kelleher et al. [53]; it is also equivalent to the
weighted sensitivity, and they recommended this measure of accuracy over the weighted
accuracy for the imbalanced datasets.

Table 2. Classification results of two evaluation schemes (signal-based and subject-based) with
different number of prior frames (k = 1, 10, 20, 30) and two types of gait patterns (n = 4 and 6).

Evaluation Based on a Signal/Image

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 78.36 88.60 90.66 90.64 65.09 73.91 74.17 77.70
Specificity 95.15 97.34 97.78 97.91 94.76 96.24 96.01 96.73
Accuracy 78.36 88.60 90.66 90.64 65.09 73.87 74.17 77.70
F1-score 78.52 88.65 90.62 90.43 65.32 74.05 73.88 77.32

Evaluation Based on Majority Voting of a Sequence of a Subject

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 81.25 100 100 93.75 66.67 66.67 77.5 83.33
Specificity 93.75 100 100 97.92 93.33 93.33 95.24 96.67
Accuracy 81.25 100 100 93.75 66.67 66.67 79.17 83.33
F1-score 80.56 100 100 93.65 67 64.52 76.66 83.33

Table 2 depicts portions of the sequences fed to the network along with their predic-
tions. The results are also displayed in Appendix A, where all the evaluation metrics were
computed per class individually. Table 3 displays the class metrics for the suggested values
of k—achieving the highest weighted F1-score—that were 20 and 30 for n = 4 and n = 6,
respectively. The highest F1-score was computed for FB, followed by RL, LL, NM, RA,
and lastly, LA. On the other hand, the highest accuracy was computed for FB, followed
by NM, LL, RL, LA, and lastly, RA. These values were computed when the class in the
header of the table was regarded as the positive class and all the remaining classes were the
negative class.

Table 3. Evaluation metrics per class for the suggested k values.

Evaluation Based on a Signal/Image

NM LL RL FB LA RA

Classes n = 4 n = 6 n = 4 n = 6 n = 4 n = 6 n = 4 n = 6 n = 6 n = 6

Frames/signals k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 30 k = 30

Sensitivity 75.18 52.69 79.64 65.71 92.61 87.28 100 100 37.84 76.72
Specificity 96.92 94.28 97.8 96.68 93.74 94.91 99.97 99.94 97.42 91.2
Accuracy 93.95 89.84 93.88 91.46 93.5 93.66 99.98 99.96 90.87 89.61
F1-score 77.26 52.53 84.9 72.16 85.69 81.88 99.98 99.94 47.68 61.85

Evaluation Based on Majority Voting of a Sequence of a Subject

Frames/signals k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 30 k = 30

Sensitivity 100 50 100 100 100 100 100 100 50 100
Specificity 100 100 100 100 100 100 100 100 100 80
Accuracy 100 91.67 100 100 100 100 100 100 91.67 83.33
F1-score 100 66.67 100 100 100 100 100 100 66.67 66.67

As mentioned above, all the FB frames were successfully classified for all the values of
n and k; a sample of a sequence is shown in Table 4. In addition, the samples for an NM
subject as well as an LL subject are shown in Table 4 with different values of n and k.
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Table 4. Samples of the input signals and their corresponding predictions.

Correctly classified FB using n = 2, 4, and 6 for any k value.
Blue corresponds to predicting FB.
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Figure 9 shows the detailed results of the four-class problem on the test set. In this
figure, the x-axis denotes the subject ID along with the sequence number; e.g., NM1_Seq1
denotes the first sequence for the first subject with normal gait, and LL1_Seq2 denotes the
second sequence of the first subject representing problems with the left leg, and so on. All
the subjects’ sequences are displayed except the four FB sequences since they yielded a
100% accuracy (for both n = 4 and n = 6). This bar chart portrays the proportions of labels
for each sequence with respect to the number of frames. For example, regarding the entire
sequence of frames for one of the two experiments of the first subject, when k = 1, frames
predicted as NM, LL, and RL comprised 26%, 34%, and 40%, respectively; when k = 10,
frames predicted as NM, LL, and RL comprised 71%, 11%, and 18%, respectively; when
k = 20, frames predicted as NM, LL, and RL comprised 79%, 7%, and 14%, respectively;
and, lastly, when k = 30, frames predicted as NM, LL, and RL comprised 93%, 3%, and 4%,
respectively. For all the values of k and n, no misclassification with FB was encountered.
All of these values are visualized as the first four bars and so on for the rest of the subjects.
In a similar fashion, Figure 10 displays the detailed results of the six-class problem on the
test set.
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4.2. Comparative Experiments

This study utilizes a deep learning method to identify abnormal gait patterns associ-
ated with neurological conditions like Parkinson’s disease, multiple sclerosis, and strokes.
Our focus is on gait classification, and as shown in Table 5, several prior works have
employed similar methodologies. For instance, the vision-based system in [54] aimed to
assess Parkinsonian gait severity. However, their classifiers, trained on data with limited
availability, despite achieving good correlation with clinician labels, faced challenges due
to the small datasets. Similarly, Cho et al. [13] were limited by a dataset comprising only
seven Parkinson’s patients and seven healthy controls.

Table 5. Comparison of used dataset, methodology, and achieved accuracy.

Study Data Approach Accuracy

Chavez et al. [54] Private dataset
(Parkinsonian gait)

Classical machine learning methods
(RFC and XGBoost)

50%
(Normal vs. abnormal gait)

Cho et al. [13] Private dataset
(Parkinsonian gait)

Classical machine learning methods
(hybrid PCA and LDA)

77%
(Normal vs. abnormal gait)

Proposed study Public dataset
(INIT database [50]) Deep learning approach (1D CNN) 90% (4 classes of gait)

77% (6 classes of gait)

RFC: random forest classifier, XGBoost: extreme gradient boosting, PCA: principal component analysis, LDA:
linear discriminant analysis.

Our study offers several advancements. First, we propose a novel gait representation
method that allows us to leverage publicly available camera-based gait data from the
INIT database. This approach captures detailed body movement information, akin to
sensor-based methods, but with potentially broader accessibility and cost-effectiveness.
Additionally, we employ an advanced deep learning method for multi-class gait classifica-
tion, making it suitable for real-time implementation—a feature often absent in existing
approaches. Overall, our work contributes a fresh perspective to gait analysis, addressing
limitations in the current literature through innovative solutions.

In our study, we utilized a 1D CNN structure for its ability to effectively capture
temporal information alongside main body movement features from silhouette binary
images. Unlike 2D CNNs, which excel at learning contextual representations from 2D
images, such as identifying key objects, our task presents challenges in identifying moving
parts within a single silhouette.
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One common approach to addressing this challenge is the generation of gait energy
images (GEIs) by averaging energy across multiple sequences representing a gait cycle.
However, we hypothesize that this method may not fully capture the available gait pattern
information. Hence, we introduce a new approach to generate temporal information,
incorporating body boundary angles and distances to create sinogram signals. Our choice
to employ a 1D CNN allows us to effectively learn features by incorporating temporal
representations from adjacent sequences.

To provide comparative insights, we implemented 2D CNN and 2D Residual Network
(ResNet50) architectures using GEIs and compared their performance against our proposed
1D CNN using sinogram signals, utilizing identical training and testing splits. The results,
presented in Table 6, demonstrate the superiority of our proposed 1D CNN approach over
the 2D networks (CNN and ResNet50) for our specific task. This comparative analysis
illustrates the efficiency of deep learning networks in capturing robust and prominent
representations from the input data. Our method, which generates 1D sinogram signals,
proves its capability compared to gait energy maps by considering calculations of angles
and distances between all body boundary points and the centroid. This approach focuses
more on body part movements, thereby enhancing gait impairment analysis.

Table 6. Comparison of the proposed 1D CNN that uses the generated 1D sinogram signals against
2D CNN and ResNet50 models that use 2D gait energy images (GEIs).

Methods
Number of Classes (n = 4) Number of Classes (n = 6)

Sensitivity Specificity Accuracy F1-Score Sensitivity Specificity Accuracy F1-Score

2D CNN 82.50 94.83 82.50 82.35 70.94 89.90 70.94 70.25
2D ResNet50 86.25 91.38 86.25 86.24 67.08 85.86 67.52 67.08

Proposed 1D-CNN (k = 20) 90.66 97.78 90.66 90.62 74.17 96.01 74.17 73.88
Proposed 1D-CNN (k = 30) 90.64 97.91 90.64 90.43 77.70 96.73 77.70 77.32

5. Discussion

In this study, the following classification problems were tackled: the binary classifica-
tion of NM versus FB, the classification of NM, FB, LL, and RL, and the classification of
NM, FB, LL, RL, LA-0, and RA-0. The dataset comprised eight subjects for training and
two subjects for testing for each anomaly; each of them had two sequences with a total
number of frames of 818, 1292, 1258, 843, 842, and 2616 for NM, LL, RL, LA-0, RA-0, and
FB, respectively. In addition, the effect of having different numbers of inputs was assessed:
1, 10, 20, and 30. Hence, testing the network with 20 and 30 images for the four-class
and six-class problems, respectively, is recommended to attain the highest F1-score. It is
worth noting that no misclassifications were encountered for FB when using image-level
evaluation, and no misclassifications were encountered for RA-0, RL, LL, and FB when
using subject-based evaluation. However, it is important to mention that the test set for
subject-level evaluation was small: only two sequences for two subjects, which might be
risky to generalize.

The use of 20 and 30 silhouette frames in our framework is considered sufficient to
provide the necessary information for assisted knowledge learning. For instance, in [43],
the number of silhouette frames within each gait cycle is estimated to be around 25 to
35 frames for normal motion styles. While this number may vary and increase for full-
body gait patterns due to slower body movements, our experimental results indicate
that abnormal full-body cases were the easiest class to classify compared to other gait
patterns. Our study aimed to determine the optimal number of frames (k = 1, 10, 20, and
30) required to capture temporal information from adjacent sequences and identify the
location of gait patterns. Increasing the number of frames would result in a heavier network
architecture with more training parameters, as each frame is processed by a convolution
layer to extract features before being incorporated with others. Although this may improve
the performance to some extent, it could also lead to unfair comparisons with networks
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using fewer computations. Additionally, including more frames may introduce redundancy
by incorporating information from multiple gait cycles of the same subject.

In the work of Verlekar et al. [43], where the input was the entire video sequence for
testing purposes, they attained an accuracy of 98.8% at the subject level. Contrary to this, in
this work, only 20 frames were sufficient to attain all the values of the F1-score, specificity,
and accuracy at 100% at the subject level for the same four classes in INIT. In addition,
when testing at the image level, the F1-score, specificity, and accuracy had values of 90.62%,
97.78%, and 90.66%, respectively. Regarding the six-class problem, the F1-score, specificity,
and accuracy were 83.33%, 96.67%, and 83.33%, respectively, at the subject level. On the
other hand, at the image level, the F1-score, specificity, and accuracy were 77.32%, 96.73%,
and 77.7%, respectively.

The accuracy of the NM classification was 95.49%, 100%, 99%, and 99% in [13,43,44,46],
respectively. The number of classes involved was 2, 4, 5, and 5 in [13,43,44,46], respectively.
In this study, the NM classification exhibited an F1-score, specificity, and accuracy of 100%
at the subject level, and 77.26%, 96.92%, and 93.95%, respectively, at the image level.

To the best of our knowledge, neither classifying into six classes nor image-level testing
have been performed before. Although Albuquerque et al. [46] made their classification
based on nine key frames, they needed the entire video sequence to detect those key frames
in the first place.

6. Conclusions

The implementation of automated recognition algorithms for analyzing human gait
patterns offers numerous valuable opportunities. The proposed method enables a quan-
titative and non-invasive assessment of locomotion by comparing observed locomotor
function with a standard gait pattern often observed in individuals in good health. This
work presents a novel pipeline for the examination of gait disability, which encompasses
the following stages: The generation of silhouette sinogram signals is achieved by the
utilization of a unique method based on angular centroid distance. Following that, a
1D CNN model is constructed and trained by incorporating shared information across
multiple silhouette signals via assisted knowledge learning. This study utilized two sepa-
rate evaluation methodologies. The initial approach entailed assessing every anticipated
sinogram signal, which corresponds to an individual silhouette image, in comparison to its
matching ground-truth label. The second evaluation system considered all the silhouette
sinogram signals at the individual subject level, employing a majority vote approach. This
study focused on three classification tasks: distinguishing between NM and FB in a binary
classification issue, classifying NM, FB, LL, and RL, and classifying NM, FB, LL, RL, LA-0,
and RA-0. Furthermore, an investigation was conducted to examine the effects of varying
the quantity of signals or images inputted into the network. Specifically, this study explored
scenarios where k equaled 1, 10, 20, and 30. According to the attained findings, it was
seen that there were no instances of misclassifications in relation to FB deformation across
all the values of n and k. This was particularly evident in cases when subjects exhibited
pronounced impairment in their gait cycle, characterized by the presence of shortened
steps, subtle foot–ground contact, and flexion in the knees, chest, and head.

Quantitative gait analysis is largely used in research institutes and not in therapeutic
settings. Traditional gait laboratories’ high costs/cumbersome equipment, complex proto-
cols, and data management/analysis, as well as clinical teams’ variable training/experience
and preferences are the main reasons. Clinics use observational gait and qualitative mea-
sures most often, even if quantifying gait is less beneficial. It appears that our gait repre-
sentation method has never been published. Similar to sensor-based approaches, low-cost
camera-based gait data collecting can offer exact body component movement data. Real-
time implementation is possible due to low processing complexity.
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Appendix A

NM
Evaluation based on a signal/image

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 62.71 76.28 75.18 89.98 52.2 51.47 32.27 52.69
Specificity 89.7 94.81 96.92 95.03 86.29 91.43 93.97 94.28
Accuracy 86.01 92.28 93.95 94.33 82.66 87.16 87.39 89.84
F1-score 55.07 72.98 77.26 81.28 39.1 46.11 35.32 52.53

Evaluation based on majority voting of a sequence of a subject

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 75 100 100 100 50 25 75 50
Specificity 83.33 100 100 91.67 90 100 100 100
Accuracy 81.25 100 100 93.75 83.33 87.5 96 91.67
F1-score 66.67 100 100 88.89 50 40 85.71 66.67

LL
Evaluation based on a signal/image

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 58.51 77.79 79.64 67.72 49.85 66.49 72.99 65.71
Specificity 92.9 96.87 97.8 98.32 93.16 95.47 91.58 96.68
Accuracy 85.48 92.75 93.88 91.71 85.87 90.58 88.45 91.46
F1-score 63.5 82.24 84.9 77.92 54.3 70.41 68.04 72.16

Evaluation based on majority voting of a sequence of a subject

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 50 100 100 75 50 100 50 100
Specificity 100 100 100 100 95 100 100 100
Accuracy 87.5 100 100 93.75 87.5 100 92 100
F1-score 66.67 100 100 85.71 57.14 100 66.67 100

https://www.vision.uji.es/gaitDB/
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FB
Evaluation based on a signal/image

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 100 100 100 100 100 100 100 100
Specificity 100 99.7 99.97 99.82 100 100 99.9 99.94
Accuracy 100 99.83 99.98 99.9 100 100 99.93 99.96
F1-score 100 99.81 99.98 99.89 100 100 99.9 99.94

Evaluation based on majority voting of a sequence of a subject

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 100 100 100 100 100 100 100 100
Specificity 100 100 100 100 100 100 100 100
Accuracy 100 100 100 100 100 100 100 100
F1-score 100 100 100 100 100 100 100 100

RL
Evaluation based on a signal/image

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 63.91 84.02 92.61 95.15 55.48 76.08 73.61 87.28
Specificity 90.9 94.56 93.74 95.39 91.22 95.59 95.96 94.91
Accuracy 85.23 92.35 93.5 95.34 85.36 92.39 92.29 93.66
F1-score 64.53 82.19 85.69 89.56 55.42 76.6 75.81 81.88

Evaluation based on majority voting of a sequence of a subject

Classes n = 4 n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30 k = 1 k = 10 k = 20 k = 30

Sensitivity 100 100 100 100 100 100 100 100
Specificity 91.67 100 100 100 75 70 76.19 100
Accuracy 93.75 100 100 100 79.17 75 80 100
F1-score 88.89 100 100 100 61.54 57.14 61.54 100

LA
Evaluation based on a signal/image

Classes n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30

Sensitivity 30.37 37.72 44.25 37.84
Specificity 93.99 94.85 97.71 97.42
Accuracy 87 88.57 91.84 90.87
F1-score 33.93 42.06 54.37 47.68

Evaluation based on majority voting of a sequence of a subject

Classes n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30

Sensitivity 50 25 40 50
Specificity 100 100 100 100
Accuracy 91.67 87.5 88 91.67
F1-score 66.67 40 57.14 66.67
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RA
Evaluation based on a signal/image

Classes n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30

Sensitivity 41.69 59.03 67.22 76.72
Specificity 95.18 92.82 91.05 91.2
Accuracy 89.31 89.11 88.43 89.61
F1-score 46.12 54.35 56.07 61.85

Evaluation based on majority voting of a sequence of a subject

Classes n = 6

Frames/signals k = 1 k = 10 k = 20 k = 30

Sensitivity 50 50 100 100
Specificity 100 90 95.24 80
Accuracy 91.67 83.33 96 83.33
F1-score 66.67 50 88.89 66.67
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