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Abstract: The pressing demand for novel compounds to address contemporary health challenges has
prompted researchers to venture into uncharted territory, including extreme ecosystems, in search of
new natural pharmaceuticals. Fungi capable of tolerating extreme conditions, known as extremophilic
fungi, have garnered attention for their ability to produce unique secondary metabolites crucial for
defense and communication, some of which exhibit promising clinical significance. Among these,
halophilic fungi thriving in high-salinity environments have particularly piqued interest for their
production of bioactive molecules. This review highlights the recent discoveries regarding novel
compounds from halotolerant fungal strains isolated from various saline habitats. From diverse
fungal species including Aspergillus, Penicillium, Alternaria, Myrothecium, and Cladosporium, a plethora
of intriguing molecules have been elucidated, showcasing diverse chemical structures and bioactivity.
These compounds exhibit cytotoxicity against cancer cell lines such as A549, HL60, and K-562, an-
timicrobial activity against pathogens like Escherichia coli, Bacillus subtilis, and Candida albicans, as
well as radical-scavenging properties. Notable examples include variecolorins, sclerotides, alternaro-
sides, and chrysogesides, among others. Additionally, several compounds display unique structural
motifs, such as spiro-anthronopyranoid diketopiperazines and pentacyclic triterpenoids. The results
emphasize the significant promise of halotolerant fungi in providing bioactive compounds for phar-
maceutical, agricultural, and biotechnological uses. However, despite their potential, halophilic fungi
are still largely unexplored as sources of valuable compounds.

Keywords: halotolerant fungi; biomolecules; extreme; ecosystem; specialized metabolites

1. Introduction

Environments with extreme conditions have typically been considered as malicious
to be inhabited by organisms. The discovery of extremophiles changed this belief, and
numerous micro-organisms, including the members of archaea, prokarya, and eukarya,
have been reported in natural habitats with very high heat [1], cold, extreme pH, or high
salinity. Those organisms exclusively growing in hypersaline conditions are called salt-
loving organisms or halophiles. Hypersaline conditions are found in several locations
across the globe, including littoral and arid regions as well as artificial salterns developed
for mining salts [2]. Under hypersaline conditions, a water-limiting situation is generated
due to the chemical binding of water to salt molecules. These water-limiting conditions
prohibit the majority of life forms from growing in hypersaline environments; on the other
hand, these are favorable conditions for halophiles to flourish. Most of the identified and
studied extremophiles are archaea; however, other micro-organisms, such as bacteria, algae,
and fungi, are also found in extreme environments. This wide variety of extremophilic or-
ganisms attracts the scientific community to investigate their uniqueness, which may enable
inferring the evolutionary process of stress tolerance in other living forms. For the first time,
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the presence of eukaryotic fungi was reported in the hypersaline environment of the Dead
Sea by [3] and in salterns by [4]. Since then, numerous novel species, including those once
considered merely food contaminants, have been identified in hypersaline environments
worldwide [5]. Researchers predominantly concentrate on bacteria, archaea, and algae
when exploring extremophiles and extremozymes from saline environments, overlooking
filamentous fungi, which remain largely unexplored [6]. However, extremophilic fungi
hold significant promise in uncovering novel compounds given that fungi contribute over
40% of the active compounds derived from microorganisms [7–14]. This review aims to
elucidate the ecological niche and adaptive strategies of halophilic fungi in natural hyper-
saline ecosystems, along with the pharmaceutical potential of their bioactive metabolites
for prospective drug development.

2. Physiology of Halophilicity in Fungi

Fungi living under hypersaline conditions possess a specialized physiology that
enables them to flourish in such conditions that are considered harsh for other organisms.
The hypersaline environment imposes two major limitations inhibiting the growth of
organisms: (1) high osmolarity and (2) ionic toxicity due to the high ionic concentration.
The hypersaline conditions lead to high osmolarity, resulting in very low water activity.
This low water activity is generated due to the bonding of water molecules (H2O) with
salt (NaCl). Thus, water activity is one of the most determinative factors for the growth of
fungal life under hypersaline conditions. The mitigation strategies of halophiles to survive
and grow in hypersaline environments mainly include maintaining a low water potential
condition in comparison to their surrounding environment. These mitigation strategies
involve several physiological mechanisms, such as selective modification of the fluidity of
the plasma membrane, generation and accumulation of compatible solutes, and the high
osmolarity glycerol (HOG) pathway [15–17].

3. Ecology and Biodiversity of Halophilic Fungi

Similar to other abiotic factors such as temperature, water, and light, salinity also im-
poses deleterious effects on the growth and development of organisms. The water activity
of saline environments defines the extent of adverse impacts on organisms; however, some
fungi belonging to different phylogenetic origins growing in hypersaline conditions showed
their halotolerant and halophilic nature [18]. Research indicates that halophilic fungi thrive
in various hypersaline environments worldwide, including regions like Slovenia, Romania,
Thailand, China, India, Brazil, and others [19–22]. These fungi have been found in habitats
with diverse salinity levels, such as marine environments (sea water, marine plants, and
mangroves) [23], solar salterns used for salt production through seawater evaporation [24],
natural salt lakes, salt mines [25,26], saline soil, salt deserts, sebkhas (resulting from salt lake
evaporation, characterized by a range of soluble salts) [27], and high-salt-content foods and
fermented products [28]. Kirk et al. [18] noted that, among the 106 existing orders of fungi,
10 were identified as tolerant to low water activity (aw). Halophilic or halotolerant character-
istics were observed in certain orders, including Wallemiales, Trichnosporales, and Sporidiales
within Basidiomycota, and Capnodiales, Eurotiales, and Dothideales within Ascomycota.
Various yeast species such as Rhodotorula, Debaryomyces, Aureobasidium, and Trichosporum,
along with filamentous fungi like Cladosporium, Scopulariopsis, Alternaria, and species of
Aspergillus and Penicillium, were described as halotolerant. Halophilic species were identi-
fied within genera such as Wallenia, Hortea, Phaetotheca, and Trimmatostroma [29,30]. Several
studies have consistently reported the presence of numerous fungi in hypersaline water
and environments across different continents [4]. Fungi from orders including Dothideales,
Capnodiales, and Eurotiales of Ascomycota, as well as Wallemiales and Tremellales of Ba-
sidiomycota, demonstrated halotolerance, with black yeasts being particularly prominent
in the hypersaline water of salterns [31]. These yeasts have melanized cell walls, enabling
them to withstand high-salt-stress conditions [32]. Notably, among black yeasts, Hortaea
werneckii is widely distributed across saline environments, thriving optimally at 3.0–4.5 M
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NaCl [5]. Wallemia ichthyophaga (Basidiomycetes) stands out as a genuinely halophilic
fungus requiring a minimum of 10% NaCl for growth [33,34].

4. Role in Production of Therapeutic Compounds

Halophiles, organisms capable of surviving in high-salinity conditions and sometimes
requiring salt for growth, span all domains of life [35], predominantly represented by
bacteria, archaea, algae, and fungi [36]. These microorganisms produce various intrigu-
ing biomolecules with distinctive properties suitable for diverse industrial applications.
Halophilic fungi, in particular, continue to be unearthed, yielding novel compounds reg-
ularly. A variety of novel compounds have been discovered from the halotolerant fun-
gal strain Aspergillus variecolor B-17, which was isolated from sediments collected in the
Jilantai salt field, Alashan, Inner Mongolia, China. Among these compounds are Varie-
colorquinones A–B (1–2), two new quinone-type compounds showing cytotoxic activity
against A549 cells (compound 1, IC50 3.0 µM), HL60 cells (compound 2, IC50 1.3 µM),
and P388 cells (compound 2, IC50 3.7 µM) [37]. Variecolorins A–L (3–14) showed no cy-
totoxicity against the P388, HL-60, BEL-7402, and A-549 cell lines. However, compounds
A–K (3–13) exhibited weak radical-scavenging activity against DPPH, with IC50 values
ranging from 75 to 102 µM [38]. Variecolortides A–C (15–17) shared a unique ‘spiro-
anthronopyranoid diketopiperazine’ structure with a stable hemiaminal function. All three
compounds showed weak cytotoxic activity against the K-562 cell line, with IC50 values
of 61, 69, and 71 µM, respectively (the positive control paclitaxel IC50 0.93 µM), and slight
radical-scavenging activity against the DPPH radical, with IC50 values of 63, 84, and 91 µM,
respectively (the positive control vitamin C IC50 22 µM) [39]. Pennicitrinone C (18) and
penicitrinol B (19), two new citrinin dimers, were produced by the halotolerant fungal
strain Penicillium citrinum B-57, obtained from sediments in the Jilantai salt field, Alashan,
Inner Mongolia, China. Compound 18 scavenged DPPH radicals with an IC50 value of
55.3 µM (the positive control L-ascorbic acid IC50 22.7 µM) but exhibited no cytotoxic
activity against the P388, A549, BEL7402, or HL60 cell lines (IC50 > 50 µM) [40] (Figure 1).

The halotolerant fungus Alternaria raphanin THW-18, isolated from sediment in the
Hongdao Sea salt field, China, yielded three new cerebrosides, alternarosides A–C (20–22),
and a novel diketopiperazine alkaloid, alternarosin A (23). These compounds exhibited
antimicrobial activity against Escherichia coli, Bacillus subtilis, and Candida albicans, with
MIC values ranging from 70 to 400 µM. However, no cytotoxicity against the P388, HL-60,
A549, and BEL-7402 cell lines or DPPH radical-scavenging activity were observed [41].
The halotolerant Aspergillus sclerotiorum PT06-1, isolated from the Putian Sea salt field,
China, produced novel cyclic hexapeptides, sclerotides A–B (24–25), in a nutrient-limited
hypersaline medium. These compounds showed inhibition against C. albicans, with MIC
values of 7.0 and 3.5 µM, respectively. Compound 25 also displayed weak cytotoxic activity
against HL-60 cells (IC50 56.1 µM) and antibacterial activity against Pseudomonas aeruginosa
(MIC 35.3 µM) [42]. Furthermore, eleven new aspochracin-type cyclic tripeptides named
sclerotiotides A–K (26–36) [43] and one new cytotoxic indole-3-ethenamide (37) from
the same halotolerant fungal strain were isolated in a nutrient-rich hypersaline medium.
Among these compounds, 26, 27, 31, and 34 exhibited antifungal activity against C. albicans,
with MIC values ranging from 3.8 to 30 µM. Compound 37 demonstrated cytotoxic activity
against A-549 and HL-60 cells, with IC50 values of 3.0 and 27 µM, respectively. Additionally,
compounds 35–36 were identified as isomers with the same molecular formula, and NMR
data suggested enantiotopic differences in the fatty acid moiety for 33/35 and 34/36,
respectively [44] (Figure 2).
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Examination of the EtOAc extract from the fermentation broth of the halotolerant
fungus Aspergillus flocculosus PT05-1 under 10% salinity led to the discovery and characteri-
zation of several compounds. Among these were a novel derivative of ergosterol (38), a new
red pyrrole pigment (42), and nine previously identified compounds: 7-norergosterolide
(39), 3β-hydroxyergosta-8, 24(28)-dien-7-one (40), cerevisterol (41), (2R,3E)-2-hydroxy-N-
[(2S,3R,4E,8E)-l-β-D-glucopyranosyloxy-3-hydroxy-9-methylnonadec-4,8-dien-2-yl] hepta-
dec-3-enamide (43), (2R)-2-hydroxy-N-[(2S,3R,4E,8E)-l-β-D-glucopyranosyloxy-3-hydroxy-
9-methylnonadec-4,8-dien-2-yl]heptadecanamide (44), cerebroside C (45), 4-(1H-pyrrol-2-
yl)-1-isoquinolone-3-carboxylic acid (46), neoaspergillic acid (47), and hydroxyneoaspergillic
acid (48). The new compound 38, along with 7-norergosterolide (39) and 3β-hydroxyergosta-
8,24(28)-dien-7-one (40), exhibited cytotoxic effects against HL-60 and BEL-7402 cells, with
IC50 values ranging from 12 to 18 µM, and antimicrobial activity against Enterobacter aero-
genes, P. aeruginosa, and C. albicans, with MIC values ranging from 1.6 to 15 µM, respectively.
Compound 42 demonstrated antibacterial properties against E. aerogenes, with an MIC
value of 3.7 µM [45]. A novel cyclopentanopyridine alkaloid, named 3-hydroxy-5-methyl-
5,6-dihydro-7H-cyclopenta[β]pyridin-7-one (49), was discovered alongside 11 previously
identified aromatic compounds in the secondary metabolites of the halotolerant fungal
strain Wallemia sebi PXP-89, cultivated in a 10% NaCl medium. Compound 49 demon-
strated antimicrobial efficacy against Enterobacter aerogenes, with a minimum inhibitory
concentration (MIC) of 76.7 µM [46]. Two novel amides, denoted as N-acetyl-2,4,10,17-
tetrahydroxyheptadecylamine (50) and N-acetyl-3,5,11,18-tetrahydroxyoctadecyl-2-amine
(51), were discovered from a halotolerant fungus, Myrothecium sp. GS-17. They were
isolated using the dilution isolation method from soil samples collected from a saline area
in Gansu Province. The cytotoxicity of these compounds against cancer cells was assessed,
revealing that compound 51 exhibited mild activity against human leukemia (HL-60) cells,
with an IC50 value of 63.61µM [47]. A new perylenequinone (52), 8β-chloro-3, 6aα, 7β,
9β, 10-pentahydroxy-9, 8, 7, 6a-tetrahydroperylen-4(6aH)-one, along with eight known
compounds, alterperylenol (53), dihydroalterperylenol (54), adenine (55), adenosine (56),
deoxyadenosine (57), guanosine (58), tryptophan (59), and hexadecanoic acid (60), was
isolated and identified from a halotolerant fungus, Alternaria sp. M6 [48]. Two novel
trichothecenes, designated as 8α-hydroxyroridin H (61) and myrothecin A (62), were dis-
covered alongside six previously identified compounds, namely 8α-acetoxy roridin H (63),
isororidin K (64), verrucarin A (65), verrucarin J (66), verrucarin L (67), and 8α-acetoxy
verrucarin L (68). These compounds were extracted from the fermentation broth of a halo-
tolerant fungus identified as Myrothecium sp. GS-17, which was isolated from a soil sample
obtained from a saline environment. Notably, compounds 61 and 62 exhibited activity
against plant pathogenic fungi, specifically Rhizoctonia solani and Fusarium oxysporum [49].
Chrysogesides A–E (69–73), five new cerebrosides, and chrysogedones A and B (74–75),
two novel 2-pyridone alkaloids, were discovered in the fermentation broth of Penicillium
chrysogenum PXP-55. This halotolerant fungus was cultivated in a hypersaline medium.
Notably, chrysogesides B–D represent the first cerebrosides containing an unsaturated C19
fatty acid. Compound 70 exhibited antimicrobial properties against Enterobacter aerogenes,
displaying a minimum inhibitory concentration (MIC) of 1.72 µM [50] (Figure 3).
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A halotolerant fungus, Myrothecium sp. GS-17, was the source of two new polyke-
tides, myrothecol (76) and 5-hydroxy-3-methyl-4-(1-hydroxylethyl)-furan-2(5H)-one (77),
along with three known compounds, 5-hydroxyl-3-[(1S)-1-hydroxyethyl]-4-methylfuran-
2(5H)-one (78), 3,5-dimethyl-4-hydroxylmethyl-5-methoxyfuran-2(5H)-one (79), and 3,5-
dimethyl-4-hydroxymethyl-5-hydroxyfuran-2(5H)-one (80). Compound 76 represents the
first naturally occurring polyketide featuring a distinctive furylisobenzofuran skeleton [51].
A strain of halotolerant fungi identified as Penicillium notatum B-52 exhibited the production
of cytotoxic metabolites against the mouse temperature-sensitive cdc2 mutant cell line
tsFT210. This strain was isolated from salt sediments gathered in Qinghai Lake, Qinghai,
China. Through bioassay-guided fractionation, researchers were able to isolate and identify
a novel citrinin dimer, named pennicitrinone D (81), alongside three known compounds:
pennicitrinone A (82), citrinin (83), and mycophenolic acid (84) [52]. A novel pentacyclic
triterpenoid known as 2-hydroxydiplopterol (85) was discovered within the metabolites
generated by the halotolerant fungal strain Aspergillus variecolor B-17. Furthermore, 2-
hydroxydiplopterol demonstrated cytotoxic effects against K562 cells, displaying an IC50
value of 22 µM [53]. Cladosporium cladosporioides OUCMDZ-187, a fungus tolerant to high
salt levels (halotolerant), was discovered in the mangrove plant Rhizophora stylosa obtained
from Shankou, Guangxi Province, China. From the fermentation broth of OUCMDZ-187
cultivated in a hypersaline medium (10% salt), three novel fatty acid esters named cla-
dosporesters A–C (86–88) and five new fatty acids labeled cladosporacids A–E (89–93)
were isolated in the ethyl acetate extract. However, none of these compounds exhibited
cytotoxic effects against three different cancer cell lines (IC50 > 50 µM) or demonstrated
any antimicrobial activity (MIC > 150 µM) [54]. Penispirolloid A (94) is a newly discovered
alkaloid with a distinctive spiro-imidazolidinyl skeleton, extracted from a halotolerant
fungal strain identified as Penicillium sp. OUCMDZ-776. This compound exhibited no-
table antifouling properties against Bugula neritina larvae, demonstrating an EC50 value
of 2.40 µg/mL [55]. Aspergillus terreus PT06-2, a fungus isolated from the sediment of the
Putian Sea Saltern in Fujian, China, yielded three novel compounds: terremides A (95)
and B (96), and terrelactone A (97), alongside twelve known compounds (98–109). The
newly discovered compounds 95 and 96 demonstrated antibacterial properties against
Pseudomonas aeruginosa and Enterobacter aerogenes, with minimum inhibitory concentration
(MIC) values of 63.9 and 33.5 µM, respectively. Compound 99 exhibited moderate activity
against H1N1 and showed reduced cytotoxicity, with IC50 and CC50 values of 143.1 and
976.4 µM, respectively [56]. Five novel pyrazin-2(1H)-one derivatives, named ochramides
A–D (110–113) and ochralate A (114), along with three previously identified analogues
(115–117), were extracted from the culture broth of halotolerant Aspergillus ochraceus LCJ11-
102, obtained from marine coral, cultivated in a nutrient-restricted medium containing 10%
NaCl. Compounds 111, 114, and 115 exhibited antimicrobial activity against Enterobacter
aerogenes, with minimum inhibitory concentration (MIC) values of 40.0 µM, 18.9 µM, and
20.1 µM, respectively [57]. The ethyl acetate extract of Penicillium sp., isolated from the sed-
iment of Egypt’s hypersaline lake Wadi El-Natrun, underwent chromatographic analysis,
yielding two new isochromans (118–119), a novel isocoumarin derivative (120), and six
known compounds (121–126). Despite screening against Staphylococcus aureus ATCC 29213,
Streptococcus pneumonia ATCC 49619, and Escherichia coli ATCC 25922 at a concentration
of 64 mg/mL, none of the isolated compounds demonstrated significant antimicrobial
activity. Furthermore, when tested against the murine lymphoma L5178Y cell line, all the
compounds exhibited mild to moderate cytotoxic effects [58] (Figure 4).
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5. Conclusions and Perspective

Within the captivating domain of extreme environments, where salinity reigns supreme,
a fascinating assembly of organisms arise as resilient conquerors—halotolerant and halophilic
fungi. Residing in saline habitats, these fungi defy the odds, thriving in conditions that
test the fundamental essence of life. It has been theorized that such extreme environments,
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characterized by high salt concentrations, could awaken dormant genes and activate unique
biosynthesis pathways, potentially leading to the production of structurally distinctive and
biologically active secondary metabolites. Consequently, these environments serve as fertile
grounds for the discovery of novel compounds and enzymes. The ability of extremophiles
to conduct biochemical reactions under extreme conditions offers them a distinct advantage
in the production of fuels and chemicals.

Recent advancements in biotechnology have significantly enhanced our understanding
of halophilic fungi and their potential applications through the development of innova-
tive methods for characterizing bioactive compounds. Techniques such as metabolomics,
genomics, and bioinformatics have enabled researchers to delve deeper into the intricate
metabolic pathways of these fungi, uncovering novel bioactive compounds with promising
implications across various fields, including biotechnology, agriculture, and medicine. By
deciphering the genomes of these organisms, researchers can lay the groundwork for un-
covering new biochemical processes, developing innovative applications and products, and
gaining insights into the mechanisms by which organisms overcome abiotic stresses. By
leveraging advanced analytical tools and multiomics, scientists have overcome challenges
associated with studying halophilic fungi, such as difficulties in cultivation and metabolite
extraction. Researchers have found that the multiomics approach provides a cost-effective,
comprehensive, structured, and interactive overview of biological mechanisms to explore
the spectrum from key transcriptional players in the regulation of secondary metabolite
biosynthesis and its epigenetic control to approaches for the detection of new gene clusters
and substances by genome mining, metagenomics/metatranscriptomics, and metabolomics
to the use of secondary metabolite profiles in fungal chemotaxonomy [59].

For instance, Zhou et al. utilized transcriptomics to investigate the expression of the
genes involved in the bioactive compound biosynthesis in the medicinal fungi Sanghuang.
Their study demonstrated how the multiomics approach offers a cost-effective and compre-
hensive understanding of biological mechanisms, ranging from transcriptional regulation
to genome mining and metabolomics analysis for the detection of new gene clusters and
substances [60]. Similarly, Gonçalves et al. employed untargeted metabolomics coupled
with genome sequencing to explore the chemical diversity of Emericellopsis cladophorae
MUM 19.33, revealing a rich repertoire of genes encoding various enzymes, transporters,
and secondary metabolite biosynthetic gene clusters. This integrated approach shed light
on the resilience mechanisms of fungi against harsh environmental conditions, including
the biosynthesis of osmolytes and ion transport systems [61]. Additionally, Gómez et al.
pioneered the use of multiomics, specifically transcriptomics and metabolomics, to com-
pare the saturation and optimal concentrations of salt for halophilic Aspergillus sydowii
fungi. This interdisciplinary collaboration provided valuable insights into the adaptation
mechanisms of halophilic fungi to saline environments [62]. Overall, the integration of
multiomics and interdisciplinary collaboration is crucial for fully exploring the potential of
halophilic fungi for bioactive metabolites. These innovative approaches not only facilitate
the identification and isolation of bioactive compounds but also contribute to a deeper
understanding of the ecological functions and survival strategies of halophilic fungi.

This review delves deeply into the intricacies of salt-loving fungi, probing their unique
adaptations and revealing the diverse array of secondary metabolites that hold the po-
tential to revolutionize our understanding of biology and medicine. For instance, the
halotolerant fungal strain Aspergillus variecolor B-17, sourced from sediments in the Jilantai
salt field, Inner Mongolia, China, has unveiled several intriguing compounds. Variecol-
orquinones A–B exhibited cytotoxic activity against cancer cell lines, while Variecolorins
A–L displayed radical-scavenging properties. Similarly, Variecolortides A–C demonstrated
cytotoxic and radical-scavenging activity. Pennicitrinone C and penicitrinol B showcased
radical-scavenging abilities. The halotolerant fungus Alternaria raphanin THW-18, isolated
from a sea salt field in China, produced cerebrosides and a diketopiperazine alkaloid
with antimicrobial activity. Aspergillus sclerotiorum PT06-1 yielded cyclic hexapeptides and
cyclic tripeptides with antifungal and cytotoxic properties. Moreover, the halotolerant
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fungal strain Aspergillus flocculosus PT05-1 generated compounds including a derivative
of ergosterol and a red pyrrole pigment with cytotoxic and antimicrobial effects. Sim-
ilarly, Wallemia sebi PXP-89 produced a cyclopentapyridine alkaloid with antimicrobial
efficacy. Compounds such as N-acetyl-2,4,10,17-tetrahydroxyheptadecylamine and N-
acetyl-3,5,11,18-tetrahydroxyoctadecyl-2-amine exhibited cytotoxicity against cancer cells,
while others like perylenequinone showed promise against plant pathogenic fungi. Halo-
tolerant fungi such as Penicillium chrysogenum PXP-55 and Myrothecium sp. GS-17 unveiled
cerebrosides, alkaloids, and polyketides with antimicrobial activity. A variety of novel com-
pounds with antimicrobial and cytotoxic properties were also discovered from Penicillium
notatum B-52, Aspergillus terreus PT06-2, Aspergillus ochraceus LCJ11-102, and Penicillium sp.
from Wadi El-Natrun, Egypt.

In summary, these findings underscore the vast industrial potential of halotolerant
fungi, offering a rich source of bioactive compounds for pharmaceutical, agricultural, and
other industrial applications. Further exploration and development of these compounds
could lead to valuable products with diverse commercial uses. Despite the myriad of
advantages and vast potential they offer, the mycobiota of saline environments remain
largely unexplored, suggesting that numerous biomolecules with exceptional properties
may still lie concealed within. Hence, further research on halophilic fungi is imperative to
fully harness their potential.
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