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Abstract: Various controlled delivery systems (CDSs) have been developed to overcome the shortcom-
ings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative
CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their
cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility
and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products
have been approved to treat cancer, as well as fungal and viral infections, hence the integration
of liposomes into hydrogels has attracted increasing attention because of the benefit from both of
them into a single platform, resulting in a multifunctional drug formulation, which is essential to
develop efficient CDSs. This short review aims to present an updated report on the advancements of
liposome–hydrogel systems for drug delivery purposes.
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1. Introduction
1.1. Liposomes

Conventional drug delivery systems have inherent limitations such as poor targeting
and low therapeutic indices, which result in systematic side effects and increase costs and
duration of the therapy. To overcome these drawbacks, various nano-delivery systems
have been developed for different therapeutic applications. Among them, liposomes (self-
assembled lipid vesicles) are, to date, one of the most studied nanosystems for clinical
applications [1,2]. Liposomes are self-assembled phospholipid bilayer (unilamellar) or
multiple-bilayer (multilamellar) structures that form an internal hydrophilic center with
overall diameters ranging from 30 nm to the micrometer scale (Figure 1) [3]. The liposomol-
ogy field was introduced in the mid-1960s in Cambridge [4] when Alec Bangham’s group
first described the liposome structure [5]. Since then, liposomes have been extensively
investigated as delivery vehicles for a variety of molecules such as proteins, drugs, nucleic
acids and imaging agents. As outstanding drug vehicles, liposomes protect encapsulated
molecules against physiological degradation, prolonging the half-life of the drug; they can
also provide excellent biocompatibility, safety and controlled drug release kinetics [6,7].
More importantly, liposomal delivery systems can be designed for passive and/or active
targeting of diseased sites to elevate the tolerated dose and decrease the adverse side effects
connected with the use of free drugs [8,9].
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Figure 1. The general structure of a liposome. 

As mentioned above, liposomes are biodegradable, biocompatible, non-toxic and 
they are composed of amphiphilic non-immunogenic compounds (such as cholesterol and 
phospholipids). They are able to improve solubility and tissue penetration of both lipo-
philic and hydrophilic drugs. These features have allowed their successful exploitation in 
numerous areas of nanomedicine, and, at present, twenty liposome-based formulations 
have been approved by the FDA (US Food and Drug Administration) and/or EMA (Euro-
pean Medicines Agency) (Table 1) [10]. It is worth mentioning that this list excludes na-
tionally authorized products in Europe, generics and lipid complexes (e.g., Onpattro, Am-
photec and Abelcet). Among them, Doxil (Doxorubicin HCl–liposome injection) was the 
first FDA-approved liposomal-based formulation in 1995; 57% of these products were ap-
proved before 2010. Generally, the main area of application of liposome-based drugs is 
cancer therapy; however, infection treatment, anesthesia, photodynamic therapy and vac-
cination are witnessing an increasing use of liposomal formulations. Such preparations 
are mainly used as lyophilized powders or sterile suspensions, and they can be adminis-
tered by different routes, including intramuscular, intravenous infusion, intrathecal injec-
tion, oral inhalation, epidural and local infiltration [11–13]. It should be also mentioned 
that liposomes are commonly used in different cosmetic products, as described in some 
recent reviews [14,15]. 

Table 1. List of liposomal formulations approved for clinical use by FDA and EMA, excluding lipid–
drug complexes [10]. 

Application Product Name API Approved 
Year/Area 

Therapeutic Indications 

Cancer therapy  

Doxil®/CaelyxTM 
Doxorubicin 

hydrochloride 
(DOXHCl) 

1995 (US) 
1996 (EU) 

Breast and ovarian cancer, Kaposi’s 
sarcoma 

DaunoXome® Daunorubicin 1996 (US,EU) Kaposi’s sarcoma 

Onivyde® Irinotecan hydrochloride 
trihydrate 

1996 (US) 
2016 (EU) 

Pancreatic adenocarcinoma 

Myocet® Doxorubicin 2000 (EU) Breast cancer 
Mepact® Mifamurtide 2009 (EU) Osteosarcoma 
Marqibo® Vineristine 2012 (US) Leukemia 

Vyxeos® Daunorubicin + 
cytrabine 

2017 (US) 2018 
(EU) Leukemia 

Zolsketil® Doxorubicin 2022 (EU) Breast and ovarian cancer, multiple 
myeloma, Kaposi’s sarcoma 

Other applications  

AmBisome® Amphotericin B 1997 (US, EU) Fungal infections 

DepoCyt® Cytarabine 1999 (US) 2001 
(EU) 

Lymphomatous meningitis 

Visudyne® Verteporphin 2000 (US, EU) Age-related macular degeneration 
DepoDur® Morphine sulfate 2004 (US, EU) Pain management 

Figure 1. The general structure of a liposome.

As mentioned above, liposomes are biodegradable, biocompatible, non-toxic and they
are composed of amphiphilic non-immunogenic compounds (such as cholesterol and phos-
pholipids). They are able to improve solubility and tissue penetration of both lipophilic and
hydrophilic drugs. These features have allowed their successful exploitation in numerous
areas of nanomedicine, and, at present, twenty liposome-based formulations have been ap-
proved by the FDA (US Food and Drug Administration) and/or EMA (European Medicines
Agency) (Table 1) [10]. It is worth mentioning that this list excludes nationally authorized
products in Europe, generics and lipid complexes (e.g., Onpattro, Amphotec and Abelcet).
Among them, Doxil (Doxorubicin HCl–liposome injection) was the first FDA-approved
liposomal-based formulation in 1995; 57% of these products were approved before 2010.
Generally, the main area of application of liposome-based drugs is cancer therapy; however,
infection treatment, anesthesia, photodynamic therapy and vaccination are witnessing an
increasing use of liposomal formulations. Such preparations are mainly used as lyophilized
powders or sterile suspensions, and they can be administered by different routes, including
intramuscular, intravenous infusion, intrathecal injection, oral inhalation, epidural and
local infiltration [11–13]. It should be also mentioned that liposomes are commonly used in
different cosmetic products, as described in some recent reviews [14,15].

Transferosomes are ultra-deformable carriers consisting of a phospholipid bilayer with
an edge activator (e.g., sodium deoxycholate, Tween® 80, Span® 80) and an ethanol/aqueous
core [16]. Based on the lipophilicity of the cargo, it can be encapsulated in the lipid bi-
layer or within the core. Transferosomes have shown to have an important advantage
over liposomes due to their ability to reach intact deeper regions of the skin after local
administration (via paracellular and intercellular mechanisms across the corneocytes);
consequently, they can deliver higher drug concentrations in transdermal applications.
Phosphatidylcholine (C18, the most abundant lipid component of cell membranes) is the
main component of most transferosomes and provides high tolerance for the skin, lowering
undesirable effects (e.g., hypersensitive reactions). Both small and large drugs have been
successfully encapsulated within transferosomes, such as phytocompounds like apigenin or
sinomenine against leukemia and rheumatoid arthritis, respectively. Also, macromolecules
like insulin have been entrapped in transferosomes. The key parameters to manufacture
optimal transferosomal formulations (with nanometric sizes and high drug loading) are the
optimal ratio between their components and manufacturing parameters (e.g., cost, repro-
ducibility, high mechanical stability, etc.). Applying quality by design (QbD), specifically
design of experiments (DoE), is necessary for understanding the interplay among all these
parameters for lab-scale preparation as well as for its scale-up.
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Table 1. List of liposomal formulations approved for clinical use by FDA and EMA, excluding
lipid–drug complexes [10].

Application Product Name API Approved
Year/Area Therapeutic Indications

Cancer therapy

Doxil®/CaelyxTM
Doxorubicin

hydrochloride
(DOXHCl)

1995 (US)
1996 (EU)

Breast and ovarian cancer,
Kaposi’s sarcoma

DaunoXome® Daunorubicin 1996 (US, EU) Kaposi’s sarcoma

Onivyde® Irinotecan hydrochloride trihydrate 1996 (US)
2016 (EU) Pancreatic adenocarcinoma

Myocet® Doxorubicin 2000 (EU) Breast cancer

Mepact® Mifamurtide 2009 (EU) Osteosarcoma

Marqibo® Vineristine 2012 (US) Leukemia

Vyxeos® Daunorubicin + cytrabine 2017 (US)
2018 (EU) Leukemia

Zolsketil® Doxorubicin 2022 (EU)
Breast and ovarian cancer,

multiple myeloma,
Kaposi’s sarcoma

Other
applications

AmBisome® Amphotericin B 1997 (US, EU) Fungal infections

DepoCyt® Cytarabine 1999 (US)
2001 (EU) Lymphomatous meningitis

Visudyne® Verteporphin 2000 (US, EU) Age-related macular
degeneration

DepoDur® Morphine sulfate 2004 (US, EU) Pain management

Arikayce® Amikacin 2018 (US, EU) Lung infections

Exparel® Bupivacaine 2020 (EU) Anesthesia

Vaccines

Epaxal® Inactivated hepatitis A virus
(RG-SB strain) 1994 (EU) Hepatitis A

Inflexal V®
Influenza virus surface antigens

(haemagglutinin and neuraminidase),
Virosomal, 3 different strains

1997 (EU) Influenza

MosquirixTM
Proteins found on the surface of the

Plasmodium falciparum parasites and
the hepatitis B virus

2015 (EU) Malaria

Shingrix® Recombinant varicella-zoster virus
glycoprotein E

2017 (US)
2018 (EU)

Shingles and post-herpetic
neuralgia

COMIRNATY™ mRNA 2021 (US, EU) COVID-19

SPIKEVAX™ mRNA 2022 (US, EU) COVID-19

Clinical studies have confirmed the tolerability of transferosomal formulations; how-
ever, more studies are still necessary to develop standard protocols in combination with
other technologies to enhance the permeation, such as electroporation, iontophoresis and
micro-needles, to facilitate drug delivery across the skin [17–21]. In general, there are many
strategies yet to be explored in order to modify the properties of transferosomes and close
the gap between lab-scale knowledge and clinical technology, for example, in order to
address the long-term stability challenges of transferosomes in liquid media. Regarding
the clinical trials of a licensed topical ketoprofen transferosomal gel (Diractin®, licensed
by the Swiss Regulatory Agency in 2007), promising results have been obtained in the
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alleviation of symptoms in osteoarthritis with non-severe skin and subcutaneous tissue side
effects [22]. However, six months after its approval, the product was withdrawn from the
market, probably due to the higher cost of the medicine (compared with conventional gels)
linked to its expensive production process. This highlights the need for precise formulation
design for the development of sustainable industrial manufacturing.

Liposome preparation methods can be divided into two main categories of (1) con-
ventional and (2) innovative methods, as summarized in Table 2. Lamellarity, morphology,
composition and size strongly depend on the preparation method. There are standard-
ized and optimized conventional methods, especially for laboratory-scale preparation.
Conventional methods include the following:

(1) Thin-lipid film hydration is the most common methodology, used to prepare differ-
ent structures, including small unilamellar (SUVs), multilamellar (MLVs) or giant
unilamellar (GUVs) vesicles [23–25]. The limitations of this method are broad size
distribution, high temperature, possible liposome degradation upon sonication or low
drug encapsulation yield.

(2) Reverse-phase evaporation [26] is the second most used technique to obtain large
unilamellar vesicles using water-in-oil formation from a surfactant/lipid mixture with
an aqueous solution of the drug. The organic solvent is then removed under reduced
pressure; however, the trace amounts of organic solvent in the final formulation can
influence vesicle stability.

(3) Solvent injection is based on the injection of an organic phospholipid solution into an
aqueous phase of the selected drug at a temperature above the organic solvent boiling
point. Vesicle size can be controlled with this method; however the presence of organic
solvent in the final product is considered a major disadvantage for this approach.

To address the limitations of such traditional methods, more efficient novel approaches
are being developed. In this regard, microfluidic technology has evolved at both lab and
industrial scales to obtain monodisperse liposomes [27,28] by controlling parameters such
as micro-channel size and flow rates. The main advantages of this method are high yields,
efficient liposomal distribution and high drug encapsulation efficiencies. However, for
scaling-up, the device fabrication and optimization of different fluid phases and multiple
fluid inputs may be challenging and are, therefore, considered the main limitations of
microfluidic technologies.

Microfluidic devices are microscale circuits used to synthesize nanoparticles as well as
liposomes [29]. By finely controlling the mixing of phases, microfluidic devices provide
the possibility to optimize the quality and encapsulation efficiency of liposome-based drug
delivery systems [30]. Compared to conventional technologies (e.g., solvent evaporation),
the reproducibility of the synthesis is generally improved thanks to the automation of this
technique. The continuous nature of this method can save the cost and time of studying
scarce or costly materials, allowing optimization even at low volumes [31]. It should be
mentioned that microfluidic devices usually have complex engineering, which limits their
scale-up. This barrier may be addressed by using 3D printing technology, which is a
more cost-effective way to improve the channel resolution with a variety of commercially
available materials possessing suitable properties, such as being biocompatible, transparent
and non-fluorescent [32]. In this regard, the use of PDMS chips for the manufacturing of
nanomedicines has been extensively reviewed [33].

Using high-resolution 3D printing based on stereolithography or fused deposition
modeling, reliable patterning of channel features with ~200 µm dimensions has been
performed, providing the possibility to prepare high-quality nanomedicines (<100 nm at a
production rate of 4 mg/min) [34]. This may be achieved thanks to the development of
flow-focusing micro-channels that support large volumetric flow rates and high-throughput
nanoparticle synthesis [35] with tunable dimensions [23]. However, solvent removal and
the presence of free drugs remain a challenge for continuous manufacturing using this
method. The applicability of 3D-printed microfluidic chips for the manufacturing of nano-
delivery systems has recently been demonstrated, and a few examples are presented [36–38].
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For example, curcumin-loaded liposomes were synthesized using FDM-printed chips (with
1000 µm channels), in which liposomes of about 200 nm and 99% encapsulation efficiency
were obtained [39].

Table 2. Main liposome preparation methods [1].

Preparation Method Particle Size
(nm) Advantages Disadvantages Ref.

Thin-lipid film hydration 100–1000 Most widely used method
Low encapsulation efficiencies,

sonication, temperature exposure,
heterogeneous size distribution

[40]

Reverse-phase
evaporation 100–1000 High encapsulation efficiency Organic solvent traces [41]

Solvent injection (ether
or ethanol) 70–200 Ability to control vesicle size

Dilution of liposomes,
heterogeneous populations, use of

high temperatures
[42]

Microfluidic technologies 100–300
Synthesis of monodisperse

liposomes, high
encapsulation efficiency

Large-scale fabrication may be
complex and requires optimization [43]

Supercritical
reverse-phase
evaporation

100–1200
Environmentally friendly

process, high
encapsulation efficiency

High pressures and temperatures [44]

Spray drying 100–1000
Control over particle

formation, easily translated to
large-scale production

Expensive and time-consuming [45]

Membrane contactor
technology ~100

Homogeneous and small sizes,
high encapsulation efficiency,

simplicity for scaling-up

Hydrophilic drug encapsulation
needs optimization [46]

Crossflow injection ~50 Liposomes of defined size Vessicle instability due to
residual solvent [47]

Other effective industrial techniques have been developed, like supercritical reverse-
phase evaporation [48], which uses supercritical CO2 as a non-toxic and non-flammable
fluid to dissolve phospholipids, providing an environmentally friendly process and an
excellent alternative to the use of organic solvent methods for preparing liposomes. Consid-
ering this, this technology usually has higher encapsulation efficiencies than conventional
procedures. Other alternative methods, including crossflow injection [49], membrane
contactor technology [50] and spray drying [51], have also been described for liposome
industrial production, thanks to their cost-effectiveness and short duration processes.

The main advantages and disadvantages of conventional liposome applications are
summarized in Table 3. Industrial applications of liposomes are generally focused on the
preparation of drug delivery systems and vaccine adjuvants in medicine, as well as support
matrices for various ingredients and penetration enhancers in cosmetics. Furthermore,
liposomes are used as signal enhancers/carriers in medical diagnostics and analytical
biochemistry, as solubilizers for various ingredients, etc. [52].
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Table 3. Main advantages and disadvantages of liposomes [35].

Advantages Disadvantages

Increased efficiency and therapeutic index of drugs Low solubility

Enhanced drug stablility Short half-life

Non-toxic, flexible, biocompatible, biodegradable
and non-immunogenic

Possible phospholipid oxidation and
hydrolysis-like reactions

Decreased toxicity to the encapsulated drug Leakage and fusion of encapsulated drugs

Reduction in the exposure of sensitive tissues to
toxic drugs High production costs

Site avoidance effect Low stability

Improved pharmacokinetics

1.2. Hydrogels

Hydrogels are 3D cross-linked polymer networks with high water-absorbing abilities
similarly to body tissues, which allows them to encapsulate drugs and protect them in
physiological conditions [53–62]. Hydrogels can be classified based on their characteris-
tics and structure, for instance (1) their charge (cationic, neutral, anionic or ampholytic
hydrogels); (2) the nature of their side groups (e.g., charged or neutral); (3) their physical
structural parameters (e.g., hydrogen-bonded structures, amorphous or semi-crystalline,
supramolecular structures, hydrocolloidal aggregates); (4) the nature of cross-links (e.g.,
physical or chemical); (5) the preparation method (e.g., homo- or co-polymers); and (6) their
origin (e.g., synthetic or natural) [63]. Regarding the physical forms of hydrogels for
therapeutic applications, they can be prepared as pressed powder matrices (e.g., pills
and capsules), microparticles (e.g., wound treatment), solid molded forms (e.g., contact
lenses), beads (e.g., drug delivery), coatings (e.g., implants or catheters) and membranes
or sheets (e.g., a reservoir in a transdermal delivery patch). Since the introduction of
poly-2-hydroxymethacrylate (PHEMA)-based hydrogels for contact lens applications in
1960 [64], an increasing number of researchers have worked to develop not only polymeric
but also natural-based hydrogels to be used for therapeutic applications such as controlled
drug delivery systems. The delivery mechanism of hydrogels is usually controlled by
passive diffusion, which strongly depends on hydrogel structure (e.g., hydrogel pore size,
cross-linking degree, stimuli-sensitive hydrogel capacity, etc.). However, for clinical appli-
cations, there is a possibility of undesired and immediate drug release upon contact with
the medium, which may increase the local concentration of the drug (“dose dumping”),
causing an unexpected in vivo toxicity. To minimize this effect, several strategies have
been reported, which are based on structural modifications of the hydrogel and/or the
drug [65–67].

1.3. Integration of Hydrogels and Liposomes (Liposomes–Hydrogels)

Despite the development of both liposome- and hydrogel-based technologies, some-
times their drug delivery applications are limited by several shortcomings such as instability
and rapid degradation. To address these issues and improve their efficacy, the integration
of hydrogels and liposomes (liposomes–hydrogels) could represent a promising strategy
to minimize fast drug release, especially in special fields including sustained drug deliv-
ery and wound therapy. More importantly, both hydrogels and liposomes may improve
each other structurally, for instance, a hydrogel can modify the mechanical stability and
membrane integrity of encapsulated liposomes. These things considered, the interaction of
liposomes with hydrogels, lipid composition and liposome concentration may improve
the swelling/deswelling properties of hydrogels and their rheology [68,69], consequently
modulating the drug release profiles from the whole hybrid system. So, the combination
of liposomes and hydrogels could improve both drug formulation and drug administra-
tion routes.
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Regarding the preparation methods for liposomes–hydrogels, they are mainly based
on incubating pre-formed hydrogels with liposomes. However, the self-assembling of
phospholipids and bilayer stabilities of liposomes should be considered [70]. This combi-
nation strategy has been successfully employed in the preparation of a wide number of
liposomes–hydrogels (both synthetic and natural hydrogels) to obtain stimuli-responsive
hybrid materials.

For clinical applications, the use of biodegradable and biocompatible hydrogels has
attracted a paramount importance over the last few decades. The first liposome–hydrogel
system of this kind was introduced by Weiner’s group in 1985 [71], containing two peptide
hormones (growth hormone and insulin) into a collagen hydrogel. The authors reported
slow release rates of the hormones and observed an improved release from liposome–
hydrogel formulations, compared to liposomes. Since then, hybrid liposome–hydrogel
systems have emerged as a promising approach for obtaining advanced drug delivery
systems. This review describes the most relevant examples of liposomes encapsulated in
different types of hydrogels, including peptide-based, biopolymeric and synthetic polymer
hydrogels, for drug delivery applications.

2. Liposomes Encapsulated in Different Types of Hydrogels
2.1. Liposomes Encapsulated in Peptide/Amyloid Hydrogels

In clinical application, there are many biological barriers that limit the successful de-
livery of a drug to its target site. This limitation can be improved designing advanced drug
delivery systems, which modify the targeting ability, solubility, metabolism and cytotoxicity
of the drug [72]. Doxorubicin (Dox) is a commonly used anticancer drug, which interca-
lates within DNA to inhibit topoisomerase II [73]. Despite its therapeutic applications,
the clinical use of Dox is restricted by its dose-limiting toxicity, resulting in cardiotoxic
and myelosuppression side effects that increase cardiovascular risk [74]. Furthermore,
a dose-dependent cardiotoxicity of Dox appears from the very first administration and
increases for each following anthracycline cycle. To overcome these drawbacks, different
nanoformulations encapsulating Dox have been proposed as an alternative strategy for its
administration. Currently, two Dox liposomal formulations, Caelyx®/Doxil® and Myocet®

and their bioequivalent formulations are used in clinical settings. The liposomal spatial
confinement of Dox allows altering the biodistribution of the drug, minimizing its toxicity,
increasing its half-life and therapeutic index, while improving its pharmaceutical profile,
thus leading to increased patient compliance. The integration of liposomes into amyloid
hydrogels has been explored for the sustained delivery of Dox [75]. Amyloid hydrogels are
made of insoluble fibrils, containing highly ordered protein self-assemblies, which provide
high mechanical and chemical stability. Such systems have been proposed as promising
drug nanodepots [76]. In this regard, Trusova et al. designed a new liposome–amyloid
hydrogel for delivering Dox and a hydrophobic europium coordination complex [77]. Two
types of liposomes were developed, containing (1) the lipid phosphatidylcholine (PC)
and (2) its mixture with the anionic lipid cardiolipin (CL, 10 mol %), as well as two types
of amyloid hydrogels, composed of (1) bovine serum albumin (BSAF) and (2) egg yolk
lysozyme (LzF). The results revealed that the negative charge of albumin fibrils of the BSAF
hydrogels facilitates Dox encapsulation into PC multilamellar liposomes but shows the op-
posite effect on CL-type liposomes. Conversely, LzF hydrogels showed no sensitivity to the
presence of fibrillar proteins in CL10/Dox/LzF and PC/Dox/LzF systems. Regarding the
hydrophobic europium complex, neither BSAF nor LzF hydrogels affected its encapsulation
into liposomes. Therefore, this study highlighted the increasing Dox payload efficiency by
using liposome–amyloid hydrogels.

In 2014, Wickremasinghe et al. synthesized a unique hydrogel by the stepwise self-
assembly of liposomes (made of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphos-
phatidylglycerol (DPPG) and cholesterol) and multi-domain peptide (MDP) fibers [78] to
provide the controlled release of desired cytokines and growth factors. The self-assembled
peptide, K(SL)3RG(SL)3KGRGDS, was conjugated with a liposomal system encapsulating
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three different GFs/cytokines labeled with a reporter molecule (Figure 2) for the controlled
release of bioactive factors. The rheological data showed that the hydrogel is not affected
by the entrapped liposomes, and the release studies of different growth factors showed
a sustained release by liposomes in the hydrogel compared to a rapid release from the
pristine hydrogel. This liposome–peptide hydrogel formulation can be further studied
in systems where timed cascades of biological signals may be valuable, such as in tissue
regeneration applications.
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2.2. Liposomes Encapsulated in Biopolymeric Hydrogels

Different natural polymers have been used for preparing hydrogels for the inclusion
of drug-loaded liposomes, including alginate, collagen, gelatin, chitosan (CS), dextran
and fibrin [79,80]. The release profiles of loaded drugs can be easily tuned by modify-
ing liposome–peptide hydrogel parameters (e.g., hydrogel and liposome composition,
cross-linker) [81–83]. These liposome–hydrogel composite materials can control the release
of incorporated low molecular weight drugs [84]. To this aim, Ciobanu et al. synthe-
sized CS/gelatin hydrogels through double cross-linking with sodium sulphate/sodium
tripolyphosphate and glutaraldehyde, to entrap MLVs or SUVs of phosphatidylcholine
liposomes loaded with calcein (used as a model hydrophilic drug) [85]. This polymeric
hydrogel creates a stabilizing network for the liposomal surface to stabilize the liposome–
drug system as well as providing prolonged drug release. Various CS/gelatin ratios and
different types/amounts of ionic cross-linkers have been studied. The results showed that
the release of calcein can be precisely controlled within the range from several days to
weeks by tuning the structure of the composite system (i.e., multilamellar or small unilamel-
lar vesicles). Multilamellar liposomes demonstrated a better release behavior, indicating
that they remain intact after release from the hydrogel network, due to their enhanced
stability provided by the multiple protective layers. However, when small unilamellar lipo-
somes were used, calcein was predominantly released from the hydrogel matrix due to the
unilamellar-related instability of the liposomes. Therefore, by tuning hydrogel features (i.e.,
the type/mount of cross-linking agent and the components ratio) and liposome structures
(i.e., lamellarity and size), this study may be extended to regulate drug release kinetics of
other water-soluble drugs for various biomedical applications.

In another study, Billard et al. synthesized an innovative liposome–hydrogel com-
posite system made of phosphatidylcholine liposomes (MLVs and SUVs) encapsulated
inside a CS hydrogel [86]. This drug delivery system was prepared by suspending lipo-
somes into CS solutions, after which the gelation of the polymer was successfully per-
formed, as confirmed by rheological studies of the composite. The controlled release of this
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liposome–hydrogel system was studied with carboxyfluorescein (CF, a model water-soluble
molecule) encapsulated in liposomes. The results showed that CF release was delayed
by the liposome–hydrogel composite (cumulative release of ~70%), compared with the
CF hydrogel (cumulative release of ~85%), thanks to the lipid vesicles. The rheological
properties of pristine CS hydrogels were not significantly changed by the presence of
liposomes. The molecular weight of CS chains and their acetylation degrees can impact hy-
drophobic/hydrophilic domains of the hydrogel network, thus influencing their potential
interactions with liposomes.

Primary ovarian insufficiency (POI) is recognized by irregular ovulation and reduced
estrogen production, often causing lowered fertility or even infertility. To treat POI, the
traditional Chinese medicine Liu Zi Tang (LZT) has shown promising results; however,
conventional oral administration has some limitations, e.g., the liver’s first-pass effect
and gastrointestinal irritation. In 2024, Liu et al. incorporated LZT extracts into a novel
glycerol plasmid-liposome/CS hydrogel composite, to prepare a LZT-glycerol plasmid/CS
hydrogel (LZT-Gly-Lip/CS Gel) drug carrier to achieve a transdermal controlled-release
drug delivery system (Figure 3) [87]. For liposome preparation, egg yolk lecithin, cholesterol
and Tween 80 were mixed in anhydrous ethanol as the organic phase. The POI model was
tested in rats, comparing LZT-Gly-Lip/CS Gel treatment with the effects of intraperitoneal
injection of vinylcyclohexene dioxide (VCD). The rats treated with LZT-Gly-Lip/CS Gel
composite showed significant enhancements in serum estradiol concentration, body weight
and uterus index, approaching normal levels. These results demonstrated the potential of
LZT-Gly-Lip/CS Gel as a transdermal drug delivery system for addressing POI.
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The authors introduced this drug delivery system as a promising candidate for various
traditional Chinese medicines in the future. However, liposomes–hydrogels face some
limitations, such as low drug loading capacity, which should be further studied to identify
and implement solutions.

Regarding chronic inflammatory skin diseases, atopic dermatitis (AD, also known
as atopic eczema) is characterized by itchy, typically distributed eczema skin injury [88].
Worldwide, around 10% of adults and 20% of children suffer from AD [89]. Among all
skin diseases, AD is one of the most challenging encountered by skin care professionals;
more importantly, the use of AD drugs often has side effects and patients are vulnerable
to bacterial infections, which further complicates treatment. Commonly used drugs (e.g.,
tetramethylpyrazine (TMP)) show fast metabolism and low bioavailability, which is not
effective for the transdermal treatment of AD. In 2024, Xia et al. synthesized a multifunc-
tional liposome–hydrogel delivery system as a promising alternative treatment for AD [90].
For liposome preparation, the authors mixed soybean lecithin and cholesterol in anhydrous
ethanol and dissolved them using ultrasounds at 70 ◦C. They encapsulated TMP into
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liposomes, followed by surface modification with CS and sodium alginate (ALG) (Figure 4),
to prepare TMP–liposome/ALG–CS hydrogels. In vitro experiments showed antibacterial
(because of the presence of CS) as well as anti-inflammatory/antioxidant effects (due to the
presence of TMP). Furthermore, TMP–liposome/ALG–CS hydrogels provided better skin
permeability due to a moist healing environment for AD dry skin, achieving a controlled
drug release, which is necessary for treating AD. The 1-Chloro2,4-dinitrobenzene was used
to induce the lesions for in vivo experiments in mice. TMP–liposome/ALG–CS hydrogels
alleviated oxidative stress and increased SOD activity in treated mice.
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In another study, Madani et al. synthesized a controllable drug delivery system by
combining single-walled carbon nanotubes (SWCNTs) with hydrogels and liposomes [91].
They incorporated carbon nanotube–liposome complexes (CLCs) into a 3D alginate hy-
drogel for an optically controlled drug delivery system (Figure 5). To prepare the li-
posomes, the authors used a thin-lipid film hydration method to form DOPC/DOTAP
1:1 liposomes (DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine; DOTAP: 2-dioleoyl-3-
trimethylammonium propane). Fluorescein isothiocyanate dextran (FITC-Dex) was en-
capsulated into the modified liposome and then incorporated into the alginate hydrogel.
Drug release was triggered by an NIR laser specified to the optical resonance of a particular
SWCNT species, in which the amount of released FITC-Dex can be tuned by varying the
irradiation time. The potential cytotoxicity of CLC and NIR stimulation was studied using
the annexin V/propidium iodide apoptosis assay on RAW 264.7 macrophages, and minimal
in vitro toxicity was detected.

In 2020, Palmesse et al. reported the synthesis of an injectable poly(ethylene gly-
col) liposome hydrogel, containing both matrix metalloproteinase-sensitive peptide cross-
links and temperature-sensitive liposomes [92]. The liposomes were prepared by dis-
solving DPPC and DSPE-PEG-Mal in chloroform with a molar ratio of 95:5 (DPPC: 1,2-
dipalmitoyl-sn-glycero-3-phosphocholine and DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000]). A lipid film was formed
after solvent evaporation using a rotary evaporator at 40 ◦C. Rheological studies confirmed
the mechanical stability of the hydrogel to achieve a range of physically applicable mod-
uli. This thermo- and enzyme-sensitive liposomal hydrogel was used to encapsulate Dox
with a high encapsulation efficiency, and a thermo-sensitive release was observed, with
complete release after 48 h. This hydrogel composite did not compromise proliferation and
viability of both murine and human fibroblasts, supporting its potential application as a
thermo-responsive drug carrier for controlled release.
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Figure 5. DNA-wrapped single-walled carbon nanotubes and liposomes are self-assembled to form
carbon nanotube–liposome complexes (CLCs) by electrostatic forces and then encapsulated in a 3D
hydrogel matrix: (A) nano-scale components of the system: anionic DNA-wrapped SWCNTs and
cationic liposomes; (B) DNA-wrapped SWCNTs and liposomes are mixed at different ratios by using
a syringe and static mixer and CLCs self-assemble at this step; and (C) CLCs are then encapsulated
into a covalently cross-linked alginate hydrogel. Reprinted from ref. [91]; Copyright 2021 American
Chemical Society.

In 2020, Thompson et al. synthesized 150 nm liposomes from an unsaturated phospho-
lipid (lecithin, soy-phosphatidylcholine or soy-PC) and incorporated them in agar gels (the
aqueous phase also contained 0–50% of glycerol, which is an active ingredient in cosmetic
products) [93]. When this hydrogel composite was placed in quiescent water, the entrapped
liposomes were surprisingly released by the gel into the water (Figure 6), while the hydro-
gel remained stable. Liposome release rate can be modified by several parameters, e.g., the
release kinetics increased with increasing temperature, decreasing concentration of agar
and increasing liposome concentration. However, saturated phospholipid liposomes did
not release from any gels. A two-step mechanism for liposomal release was proposed: (1)
the cross-linking process in the hydrogel is a dynamic process (i.e., breaking and reforming);
therefore, large and transient pores (~100 nm) are dynamically formed in the gel matrix
and (2) the liposomes are sufficiently deformable and flexible to squeeze through the pores.
The saturated phospholipid liposomes did not release out of any gels because of their
high rigidity. These liposome–hydrogel formulations could be interesting materials for
cosmetics and transdermal delivery, and more detailed modeling should be conducted to
study the factors that affect liposomal release rates from such formulations.
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Figure 6. Scheme of the experimental setup and key findings. Initially, (left) liposomes are embedded
in a hydrogel such as agar, and water is placed above the gel in a vial. Over time (1–3 days), some
of the liposomes release out of the gel into the water above (right). The release of liposomes can be
visually observed as an upward-moving blue front in the water. Reprinted from ref. [93]; Copyright
2020 American Chemical Society.
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One of the main challenges in cancer therapy is the administration of effective con-
centrations of drugs to a tumor site while minimizing adverse side effects. To this aim,
different materials have been developed for achieving both temporal and spatial effective
release of the therapeutic molecule at the target site [94–103]. Among these materials, in situ
gelling hydrogel–drug formulations significantly enhance therapeutic effects and overcome
the pharmacokinetic limitations of intravenous injection [104,105]. Following this concept,
López-Noriega et al. designed a novel thermo-sensitive liposome–hydrogel composite
for enabling the localized release of Dox by the incorporation of thermo-sensitive lipo-
somes (loaded with Dox) in a thermo-responsive CS/β-glycerophosphate hydrogel [106].
To prepare the liposomes, dipalmitoylphosphatidylcholine (DPPC), monostearoyl phos-
phatidylcholine (MSPC) and distearoyl phosphatidylethanolamine-poly(ethylene)glycol
2000 (DSPE-PEG2000) in a molar ratio of 85.3:9.7:5.0 were dissolved in chloroform, and
a lipid film was formed in a rotavapor under vacuum at 40 ◦C. Dox was released from
this composite in two steps: (1) passive diffusion of entrapped Dox and a small portion
of Dox liposomes, and (2) an external thermal activation was used on Dox-loaded lipo-
somes, which were irreversibly entrapped in the hydrogel (Figure 7). The effect of this
controlled dosing system was in vitro tested on human ovarian carcinoma cells, and the
results showed the potential ability of this system to reduce the exposure to sublethal doses
of Dox while inhibiting the growth of cells with a short doubling time and avoiding the
development of drug resistance.
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Figure 7. (a) Lipogel is fully injectable, consisting of a CS/β-GP thermo-responsive gel hosting a
suspension of Dox-loaded thermo-sensitive liposomes. (b) In situ release from the gel is controlled
using minimally invasive hyperthermia, using high-intensity-focused ultrasounds. (c) The majority
of liposomes is locked into the gel upon initiation of cross-linking during thermogelation. (d,e) Li-
posomes sequester the majority of drug at body temperature, but rapidly become more permeable
upon mild hyperthermia and release their drug payload. Reprinted from ref. [106]; Copyright 2014
WILEY-VCH.

Fat grafting is considered as a main regenerative medicine method; however, it of-
ten requires repeated procedures because of volume loss and high fat reabsorption. In
2024, Kadlecová et al. introduced an injectable thermo-sensitive drug delivery system by
combining FGF2-STAB (a stable fibroblast growth factor 2 with a 21-day stability) with
a thermo-sensitive FDA-approved hydrogel (itaconic acid-modified PLGA-PEG-PLGA
copolymer), which showed higher stability (for 28 days) than wild-type FGF2 stability
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(just a few hours) [107]. In detail, the FGF2-STAB was encapsulated in biocompatible
liposomes (with diameters of 85.73 ± 3.85 nm) prepared via the eco-friendly Mozafari
method to guarantee pH protection. The liposomes made from DPPC (1,2-dipalmitoyl-sn-
glycerol-3-phosphocholine, 2 wt %), and glycerol (3% v/v) with 68.6 ± 2.2% encapsulation
efficiency allowed the controlled release of FGF2-STAB from the hydrogel. Rheological
studies showed that the proteins and liposome-encapsulated proteins did not impact the
mechanical stability of the hydrogel. The liposomes were an effective protective system for
the delivery of FGF2-STAB. Also, these liposomes demonstrated to significantly enhance
the release mechanism of FGF2-STAB, underscoring their potential in advanced therapeutic
approaches. However, this study showed that the −COOH groups of the hydrogel were
affected by the positive charge of the protein, which lowers the hydrolytic stability of the
system; therefore, the carboxylic groups of the hydrogel should be replaced or masked to
reduce the network–protein interactions for future applications.

Chlamydia trachomatis is considered as the most common cause of bacterial sexually
transmitted infections among women, with more than 127 million new infections reported
globally each year [108], resulting in serious reproductive tract complications, significantly
affecting overall health and wellbeing. The limitations of currently used oral antibiotics and
antimicrobial resistance issues require alternative and advanced therapeutic methods. In
2020, Jøraholmen proposed a novel liposome–CS hydrogel to deliver the natural polyphenol
resveratrol (RES) for the localized treatment of C. trachomatis infections [109]. To synthesize
the liposomes, RES (10 mg) was dissolved in ethanol and phosphatidylcholine (200 mg) in
methanol. The solutions were mixed, and solvents were removed by evaporation. Both free
RES and liposome–RES hydrogel prevented C. trachomatis propagation in a dose-dependent
manner, studied by the common in vitro model using McCoy cells. However, for lower
concentrations, liposome–RES hydrogel showed an enhanced anti-chlamydial effect with
78% and 94% inhibition for 1.5 and 3 µg/mL RES, respectively, compared to free RES (43%
for 1.5 µg/mL; 72% for and 3 µg/mL). In addition, liposome–RES hydrogel exhibited an
enhanced anti-inflammatory effect in a concentration-dependent inhibition of nitric oxide
generation in LPS-induced macrophages. The use of such a delivery system provided
enhanced antibacterial activity at lower concentrations (compared to the free drug) as well
as applicability for vaginal administration, which could be a promising option for the
localized treatment of C. trachomatis infections.

Other publications on liposome–biopolymer hydrogels for drug delivery applications
are summarized in Table 4.

Table 4. Publications on liposome–biopolymer hydrogels used for drug delivery applications.

Biopolymer Liposomes Delivered Agent References

Chitosan (CS) phosphatidylcholine liposomes of various sizes Mupirocin [110–116]

Gelatin vesicles made of sodium oleate Calcein [117–125]

Dextran SOPC/DOTAP liposomes N/A [126–128]

Hyaluronic acid
thermo-responsive liposomes (i.e.,

dipalmitoylphosphatidylcholine (DPPC) and
dimyristoylphosphatidyl choline (DMPC))

horseradish peroxidase [117,129–135]

Alginate dipalmitoylphosphatidylcholine liposomes cytochrome-c [136–148]

Carrageenan niosomes based on a non-ionic surfactant molecule
and cholesterol meloxicam [132,149,150]

Methylcellulose niosomes based on two non-ionic surfactants (span
20 and span 60) and cholesterol acyclovir [151]

Xanthan gum non-ionic surfactant niosomes based on Tween 20
and cholesterol caffeine, ibuprofen [152,153]
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2.3. Liposomes Encapsulated in Synthetic Polymeric Hydrogels

In 2013, Vanić et al. prepared deformable propylene glycol-containing liposomes
(DPGLs) encapsulating clotrimazole or metronidazole as efficient drug delivery vehicles
to improve the treatment of vaginal microbial infections [154]. To obtain appropriate
viscosities for vaginal administration, liposomes were entrapped into carbopol hydrogels.
DPGLs diffused through the hydrogel matrix faster than conventional liposomes. Their
in vitro drug release profiles were studied in conditions simulating human treatment
and a sustained- and diffusion-based release was observed. The textural and rheological
properties of DPGL hydrogels showed that the presence of DPGLs alone had no significant
effect on the mechanical properties of the composite hydrogels. These results suggest the
potential ability of DPGL hydrogels for the sustained release of antimicrobial drugs in
the vagina.

Regarding vaginal drug delivery applications, Wei-Ze et al. developed a novel delivery
system of post-expansile hydrogel foam aerosol of propylene glycol-containing liposomes
(PG–liposomes) (PEHFL) [155]. A model drug, matrine (MT), was used to investigate the
vaginal mucous membrane permeation properties of MT from PEHFL versus hydrogel foam
aerosol (HFA), PG–liposome foam aerosol (PLFA) and hydrogel (HYG). Results showed
the following: (i) 80.8 ± 2.6% of MT entrapment capacity in PG–liposomes; (ii) the PEHFL
composite had a lagging swelling process after being spurted from a sealed container,
and its swelling degree increased with the temperature of the surrounding environment,
favoring a uniform drug diffusion in the vaginal canal, which tightly contacts vaginal walls;
(iii) the mucoadhesive force of PEHFL foams was found to be 1460 ± 123 mN/cm2, which
could remain 85 ± 11 min in vitro; (iv) the overall mean permeated MT through unit mass
of porcine vaginal tissue from PEHFL was estimated as 7.59, 2.64 and 2.34 times higher than
that from HYG, PLFA and HFA, respectively; and (v) the quantity of MT remaining in the
vaginal tissue after 12 h was also significantly higher for PEHFL than for HYG, PLFA and
HFA. These results demonstrated some advantages of PEHFL over conventional dosage
forms, including enhancing the vaginal mucosa permeability of MT, uniform spreading in
the vaginal canal, prolonged residence time at the site of administration and induction of
MT delayed release. All these advantages suggest PEHFL as a promising delivery system
for vaginal medications.

Pancreatic cancer is one of the most deadly malignancies with an all-stage 5-year
survival rate of less than 5%, highlighting the urgent need for developing advanced
and effective therapeutic methods [156]. Intratumoral delivery of anticancer drugs can
divert the undesired drug distribution into non-target organs, consequently decreasing the
systemic toxicity and increasing therapeutic efficacy. Thermo-sensitive injectable hydrogels
have attracted interest because of their non-invasiveness over other localized implantable
systems, with the ability to carry different drugs for site-specific delivery, prolonged drug
action, reduced adverse side effects and improved patient compliance [157,158]. Mao
et al. examined the delivery of paclitaxel (PTX), using a soybean phospholipid/cholesterol
liposome and a P188-added P407 thermo-sensitive hydrogel (PTX–liposome hydrogel) as a
local chemotherapy system against pancreatic cancer in a tumor-bearing mice model [159].
FDA-approved polymers, Poloxamer 407 (P407) and poloxamer 188 (P188) are most widely
studied as temperature-sensitive polymers [160]. The prepared hydrogel composite had an
appropriate sol-to-gel transition temperature. Studies on the morphology and particle size
of the liposomes demonstrated this new dosage form allowed the physical stability of the
drug without particle size growth or liposome precipitation. The in vitro release studies
of PTX–liposome hydrogels showed a much slower release, compared to PTX–liposomes,
with a good retention time inside the tumor tissue. The in vivo tests demonstrated a
better balance between systemic safety and enhanced antitumor efficacy in PTX–liposome
hydrogels, compared to other groups at equal drug dose. Therefore, this drug delivery
system can provide a high local PTX concentration, sustained release, extended drug
retention time inside of the tumor and, consequently, low toxicity towards healthy tissues.
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In another study, Mourtas et al. studied the release of calcein (a fluorescent dye) and
griseofulvin (GRF, a poorly water-soluble antifungal) from liposome hydrogels. Liposomes
composed of cholesterol (DSPC/Chol) and phosphatidylcholine (PC) or distearoyl-glycero-
PC, encapsulating GRF or calcein, were prepared by the thin-film hydration method [161].
After cleaning the drug-loaded liposomes, these were dispersed in different hydrogels
(ehydroxylethyl-cellulose (HEC), carbopol 974 or a mixture of the two). GRF or calcein
release was monitored by spectrophotometric and fluorescence techniques, respectively.
The results showed that calcein release from liposome hydrogels is slower, compared to
control gels, and can be further controlled and delayed by using rigid-membrane liposomes.
Furthermore, calcein release was not influenced by the lipid amount (in the range from 2
to 8 mg/mL); therefore, solute loading can be controlled according to needs. Conversely,
GRF release was affected by drug loading: at high loading levels, GRF was released with
a constant rate from liposome hydrogels irrespective of liposome type (DSPC/Chol or
PC). GRF and calcein release from control carbopol gels was faster, compared to HEC
and mixture hydrogels, and the same was observed for calcein in liposome hydrogels.
Rheological properties of carbopol hydrogels were found to be significantly different
(compared to the other hydrogels), implying that these characteristics are important for
drug diffusion from hydrogels.

Meloxicam (MX) is an effective hydrophobic non-steroidal anti-inflammatory drug
clinically used to reduce pain and inflammation; however, its oral use can cause many
adverse gastrointestinal issues. In 2020, Zhang et al. used a poloxamer P407-based hy-
drogel incorporated with transferosomes or flavosomes as a potential therapeutic vehicle
for MX topical delivery [162]. In detail, MX was encapsulated in conventional liposomes,
flavosomes and transferosomes made of phosphatidylcholine, cholesterol, cetylpyridinium
chloride and flavonoids. Flavosomes are deformable liposomes containing flavonoids,
specifically quercetin and dihydroquercetin. The different drug-loaded liposome formu-
lations were incorporated into a poloxamer P407 hydrogel, due to its thermo-reversible
gelation, solubilizing capacity, drug release characteristics and low toxicity. The developed
deformable liposomes showed higher entrapment efficiency (as compared to conven-
tional liposomes) with homogeneous vesicle sizes (less than 120 nm). They demonstrated
improved permeability, compared to a liposome-free gel and a conventional liposome
hydrogel, so they can be a promising alternative to MX conventional oral delivery. Interest-
ingly, flavosome–hydrogel formulations showed the highest permeability into the deeper
skin layers and decreased lag time, suggesting a potential faster on-site pain relief and
anti-inflammatory effect.

Liposomes have been introduced as a class of antimicrobial delivery vehicles thanks
to their unique high drug loading capacity, biocompatible lipid materials, bilayer structure
capable of fusing with microbial membranes and ready formulation properties [163–165].
However, the applications of small liposomes (below 100 nm) are often limited by their low
stability due to spontaneous fusion, which results in drug loss or undesired release [166,167].
To stabilize liposomes against fusion prior to reaching their target, attaching small charged
nanoparticles onto the liposome surfaces has become an effective approach. Therefore,
nanoparticle-stabilized liposomes are considered effective drug delivery systems for the
treatment of various infections. To evaluate the potential of this platform for clinical tests,
Gao et al. combined carboxyl-modified gold nanoparticle-stabilized cationic liposomes
made of EggPC (a zwitterionic phospholipid) and DOTAP (a cationic phospholipid) with
acrylamide-based hydrogels (AuC–liposome hydrogel) to design a more effective drug
delivery vehicle (Figure 8) [168]. The use of the hydrogel not only guarantees the structural
stability of the nanoparticle-stabilized liposomes, but also provides controllable viscoelas-
ticity and modulates liposome release rate. In this study, Staphylococcus aureus bacteria were
used as model pathogens to demonstrate that nanoparticle-stabilized liposomes can be
effectively released from the hydrogel matrix to the bacterial culture and that they subse-
quently combine with the bacterial membrane in a pH-dependent manner. The in vivo tests
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on mouse skin showed no observable skin toxicity within a 7-day treatment; therefore, this
system holds great promise for topical applications against various microbial infections.
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Figure 8. Schematic illustration of acrylamide hydrogels containing nanoparticle-stabilized liposomes
for topical antimicrobial delivery. Carboxyl-modified gold nanoparticles (AuC) were adsorbed
onto the outer surfaces of cationic liposomes to stabilize them against fusion. At physiological pH
(pH = 7.4), AuC–liposomes are released from the hydrogel. When the pH drops below the pKa value
of the carboxylic group (pKa ~ 5), AuC detach from the liposomes, resulting in the formation of
bare liposomes with resumed fusion activity. Reprinted from ref. [168]; Copyright © 2014 American
Chemical Society.

Spinal cord injury (SCI) is one of the most harmful issues in medicine, and it is patho-
physiologically characterized by a series of injurious biochemical cascades beyond the
initial injury [169–172]. Advanced molecular and cellular therapies have been developed
as promising approaches for targeting the secondary injury cascade of SCI [173–175]; how-
ever, they have not shown satisfactory therapeutic efficacy in clinical trials [176–178]. In
SCI, it is vital to effectively deliver drugs, targeting multiple pathophysiological path-
ways. To this aim, Wang et al. developed a clinically reliable targeted delivery of multiple
drugs to the SCI site and studied the mechanisms of neural recovery as well as the syn-
ergistic effect related to this combination therapy [179]. In this study, phospholipids and
cholesterol-based liposomes were first modified with a scar-targeted tetrapeptide (cysteine–
alanine–glutamine–lysine, CAQK), then used to encapsulate both an FDA-approved drug,
docetaxel (DTX), and a brain-derived neurotrophic factor inside liposomes. Then, the drug-
loaded liposomes were incorporated into a thermo-sensitive heparin-modified poloxamer
injectable hydrogel (HP) with affinity-bound acidic fibroblast growth factor (aFGF–HP) for
local administration to the SCI target site in a rat model (Figure 9). The specificity of the
CAQK-LIP-GFs/DTX-HP composite towards the injured site was studied using fluores-
cence imaging, along with multiple evaluations, including magnetic resonance imaging and
biotin dextran amine anterograde tracing to detect the synergistic effects and the related
mechanisms of CAQK- LIP-GFs/DTX-HP both in vitro and in vivo. The results showed the
effective delivery of multiple drugs to the injured site, supporting neuro-regeneration by
improving neuronal survival and plasticity, which affords a more permissive extracellular
matrix environment with enhanced regeneration potential. Also, this combination therapy
promoted mitochondrial transport along the regenerating axon and axonal regeneration
via moderation of microtubule function. This novel targeted multi-drug delivery system
possesses acceptable cytocompatibility, biocompatibility and thermo-sensitivity, which
offer promising translational prospects for clinical SCI treatment.
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delivery system (aFGF: acidic fibroblast growth factor; CAQK: cysteine–alanine–glutamine–lysine;
DTX: docetaxel; BDNF: brain-derived neurotrophic factor). Reprinted from ref. [179]; Creative
Commons Attribution license.

Hernia is a common surgical issue that refers to tissues or visceral organs that protrude
through a weakness or damaged wall area [180,181]. Polypropylene (PP) mesh has been
frequently used in hernia repair as a prosthetic material due to its excellent mechanical
properties and biocompatibility. However, abdominal adhesion between the PP mesh and
visceral tissues is still a major issue; therefore, Wei et al. designed an anti-adhesive PP mesh
using poly(vinyl alcohol) (PVA)–hydrogel and a liposome-based drug delivery system. First,
a PVA–hydrogel coating was performed on the surface of PP mesh using freezing–thawing
processing cycles to form PVA-c-PP. Then, the coated PP mesh was immersed in a rapamycin
(RPM)-loaded liposome (made from soybean lecithin and cholesterol) solution to obtain
the final anti-adhesion mesh: RPM–liposome/PVA-c-PP (Figure 10) [177]. RPM was used
because of its various functions, including strong anti-angiogenesis, immunosuppression,
anti-fibrosis and low side effects [182]. RPM has been commonly used in the treatment
of lung transplantation, kidney transplantation and autoimmune diseases. It was shown
that the hydrogel coating can remain on the PP surface even after being immersed in
PBS solution at 40 ◦C for up to one month. In vitro cell tests demonstrated the excellent
cytocompatibility of this composite and its potential to inhibit cell adhesion. Moreover,
in vivo experiments confirmed the enhanced anti-adhesive effects of RPM–liposome/PVA-
c-PP mesh, compared to the uncoated PP mesh throughout the duration of implantation. In
addition, the results proved that the modified mesh has lower inflammation responses and
significantly looser fibrous tissue surrounding the PP filaments, compared to pristine PP.
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3. Conclusions: Current Challenges and Future Trends

Hydrogels have found numerous uses for drug delivery applications thanks to their in-
herent properties of biodegradability and biocompatibility, and many therapeutic molecules
have been successfully entrapped into different hydrogel carriers. These soft materials have
substantial potential to be employed for various pharmaceutical applications; however,
there are still many challenges and hurdles that need to be surpassed before clinically
approving a hydrogel product. For instance, one of the major concerns is uncontrolled drug
release from the polymer matrix, which may induce undesirable side effects. Nevertheless,
in recent years, the FDA has approved several commercialized hydrogel-based products
such as Revanesse® VersaTM, Belotero balance®, Teosyal® RHA, SpaceOAR®, TraceIT®

and Radiesse® [183,184]. A successful future is ahead for marketed hydrogel products, as
the needs for patient-specific healing treatment continue to grow day by day. It should be
mentioned that hydrogels developed for controlled drug delivery often present several lim-
itations, and to address these issues and improve their efficacy, the integration of hydrogels
and liposomes could represent a promising strategy to minimize fast drug release. Lipo-
somes have been the most successful family within the field of nanomedicine, and a number
of liposomal–drug formulations have reached the market. In liposome–hydrogel formu-
lations, both hydrogels and liposomes can improve each other structurally, for instance,
the hydrogel can modify mechanical stability and membrane integrity of the encapsulated
liposomes. In this particular approach, a number of parameters should be optimized such
as particle size, lipid composition of liposomes and morphology and surface charge of
both hydrogels and liposomes to efficiently encapsulate hydrophobic and/or hydrophilic
therapeutic agents. Remarkably, the protecting effect of liposomes to drugs can be further
improved through their incorporation with hydrogels. More importantly, the possibility
of tuning either liposome and/or hydrogel structures to be sensitive to environmental
stimuli (e.g., pH, light, temperature) makes them promising candidates for development of
novel drug delivery systems. Three types of hydrogels containing liposomes discussed in
this review have proven their efficacy in controlled drug delivery. In conclusion, targeted
controlled drug delivery systems are of great significance to achieve a huge breakthrough
in treating many diseases, specifically for cancer therapy. Advanced liposomes–hydrogels
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can target tumor sites, releasing smart nanovesicles (like liposomes) and encapsulating an-
ticancer drugs in a sustained manner, which leads to a highly localized drug concentration
in the tumor environment, while preserving healthy cells and consequently minimizing the
side effects of the therapy.

As a perspective view, more studies should be conducted to study the possibility of
transferring liposome–hydrogel composites from the lab-scale to industrial applications by
taking into consideration several parameters such as liposomes’ potential leakage, stability
issues, cytotoxic effects, effective sterilization methods, batch-to-batch reproducibility and
scale-up. Despite undeniable progress and benefits of these hybrid materials shown both in
in vitro and in vivo experiments, no liposome–hydrogel-based material has been launched
into clinical trials so far. This may be mainly due to expensive manufacturing processes,
stability issues and the need for these materials to be implanted in most cases because of
their dimensions and elastic properties. These disadvantages might still limit the clinical
use and large-scale preparation of such liposome–hydrogel materials in the future.
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4. Düzgüneş, N.; Gregoriadis, G. Introduction: The Origins of Liposomes: Alec Bangham at Babraham. In Methods in Enzymology;

Academic Press: Cambridge, MA, USA, 2005; Volume 391, pp. 1–3. [CrossRef]
5. Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as

observed in the electron microscope. J. Mol. Biol. 1964, 8, 660–668. [CrossRef]
6. Niu, M.; Lu, Y.; Hovgaard, L.; Guan, P.; Tan, Y.; Lian, R.; Qi, J.; Wu, W. Hypoglycemic activity and oral bioavailability of

insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose. Eur. J. Pharm.
Biopharm. 2012, 81, 265–272. [CrossRef]

7. Wang, N.; Wang, T.; Li, T.; Deng, Y. Modulation of the physicochemical state of interior agents to prepare controlled release
liposomes. Colloids Surf. B 2009, 69, 232–238. [CrossRef]

8. Zeng, H.; Qi, Y.; Zhang, Z.; Liu, C.; Peng, W.; Zhang, Y. Nanomaterials toward the treatment of Alzheimer’s disease: Recent
advances and future trends. Chin. Chem. Lett. 2021, 32, 1857–1868. [CrossRef]

9. Li, C.; Zhang, Y.; Wan, Y.; Wang, J.; Lin, J.; Li, Z.; Huang, P. STING-activating drug delivery systems: Design strategies and
biomedical applications. Chin. Chem. Lett. 2021, 32, 1615–1625. [CrossRef]

10. Giordani, S.; Marassi, V.; Zattoni, A.; Roda, B.; Reschiglian, P. Liposomes characterization for market approval as pharmaceutical
products: Analytical methods, guidelines and standardized protocols. J. Pharmaceut. Biomed. 2023, 236, 115751. [CrossRef]

11. Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: Nanoparticles in the Clinic. Bioeng. Transl. Med. 2016, 1, 10–29.
[CrossRef]

12. Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [CrossRef] [PubMed]
13. Elkhoury, K.; Koçak, P.; Kang, A.; Arab-Tehrany, E.; Ward, J.E.; Shin, S.R. Engineering Smart Targeting Nanovesicles and Their

Combination with Hydrogels for Controlled Drug Delivery. Pharmaceutics 2020, 12, 849. [CrossRef] [PubMed]
14. Ferraris, C.F.; Rimicci, C.; Garelli, S.; Ugazio, E.; Battaglia, L. Nanosystems in Cosmetic Products: A Brief Overview of functional,

market, regulatory and safety concerns. Pharmaceutics 2021, 13, 1408. [CrossRef] [PubMed]
15. Yadwade, R.; Gharpure, S.; Ankamwar, B. Nanotechnology in cosmetics pros and cons. Nano Express 2021, 2, 022003. [CrossRef]
16. Fernández-García, R.; Lalatsa, A.; Statts, L.; Bolás-Fernández, F.; Ballesteros, M.P.; Serrano, D.R. Transferosomes as nanocarriers

for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020, 573, 118817. [CrossRef] [PubMed]
17. Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [CrossRef] [PubMed]

https://doi.org/10.1039/C5BM00481K
https://www.ncbi.nlm.nih.gov/pubmed/26818789
https://doi.org/10.3390/ma15155340
https://www.ncbi.nlm.nih.gov/pubmed/35955275
https://doi.org/10.3390/molecules27041372
https://doi.org/10.1016/S0076-6879(05)91029-X
https://doi.org/10.1016/S0022-2836(64)80115-7
https://doi.org/10.1016/j.ejpb.2012.02.009
https://doi.org/10.1016/j.colsurfb.2008.11.033
https://doi.org/10.1016/j.cclet.2021.01.014
https://doi.org/10.1016/j.cclet.2021.01.001
https://doi.org/10.1016/j.jpba.2023.115751
https://doi.org/10.1002/btm2.10003
https://doi.org/10.1002/btm2.10143
https://www.ncbi.nlm.nih.gov/pubmed/31572799
https://doi.org/10.3390/pharmaceutics12090849
https://www.ncbi.nlm.nih.gov/pubmed/32906833
https://doi.org/10.3390/pharmaceutics13091408
https://www.ncbi.nlm.nih.gov/pubmed/34575484
https://doi.org/10.1088/2632-959X/abf46b
https://doi.org/10.1016/j.ijpharm.2019.118817
https://www.ncbi.nlm.nih.gov/pubmed/31678520
https://doi.org/10.1038/nbt.1504
https://www.ncbi.nlm.nih.gov/pubmed/18997767


Gels 2024, 10, 284 20 of 26

18. Malakar, J.; Sen, S.O.; Nayak, A.K.; Sen, K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal
insulin delivery. Saudi Pharm. J. 2012, 20, 355–363. [CrossRef]
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144. Hanuš, J.; Ullrich, M.; Dohnal, J.; Singh, M.; Štěpánek, F. Remotely Controlled Diffusion from Magnetic Liposome Microgels.
Langmuir 2013, 29, 4381–4387. [CrossRef] [PubMed]

145. Kang, D.H.; Jung, H.; Ahn, N.; Yang, S.M.; Seo, S.; Suh, K.Y.; Chang, P.; Jeon, N.L.; Kim, D.H.; Kim, K. Janus-Compartmental
alginate microbeads having polydiacetylene liposomes and magnetic nanoparticles for visual Lead(II) detection. ACS Appl. Mater.
Interfaces 2014, 6, 10631–10637. [CrossRef] [PubMed]

146. Machluf, M.; Apte, R.N.; Regev, O.; Cohen, S. Enhancing the Immunogenicity of Liposomal Hepatitis B Surface Antigen (HBsAg)
By Controlling Its Delivery From polymeric Microspheres. J. Pharm. Sci. 2000, 89, 1550–1557. [CrossRef] [PubMed]

147. Aikawa, T.; Ito, S.; Shinohara, M.; Kaneko, M.; Kondo, T.; Yuasa, M. A drug formulation using an alginate hydrogel matrix for
efficient oral delivery of the manganese porphyrin-based superoxide dismutase mimic. Biomater. Sci. 2015, 3, 861–869. [CrossRef]
[PubMed]

148. Van Elk, M.; Ozbakir, B.; Barten-Rijbroek, A.D.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E.; Vermonden, T.; Deckers, R. Alginate
microspheres containing temperature sensitive liposomes (TSL) for MR-Guided embolization and triggered release of doxorubicin.
PLoS ONE 2015, 10, e0141626. [CrossRef] [PubMed]

149. Kulkarni, C.V.; Moinuddin, Z.; Patil-Sen, Y.; Littlefield, R.; Hood, M. Lipid-hydrogel films for sustained drug release. Int. J. Pharm.
2015, 479, 416–421. [CrossRef] [PubMed]

150. El-Menshawe, S.F.; Hussein, A.K. Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin
delivery. Pharm. Dev. Technol. 2011, 18, 779–786. [CrossRef] [PubMed]

151. Kapadia, R.; Khambete, H.; Katara, R.; Ramteke, S. A novel approach for ocular delivery of acyclovir via niosomes entrapped in
situ hydrogel system. J. Pharm. Res. 2009, 2, 745–751.

152. Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P.; Nagar, B.J. Locust bean gum: A versatile biopolymer. Carbohydr. Polym.
2013, 94, 814–821. [CrossRef]

153. Carafa, M.; Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Di Meo, C.; Matricardi, P.; Alhaique, F.; Coviello, T. A new vesicle-loaded
hydrogel system suitable for topical applications: Preparation and characterization. J. Pharm. Pharm. Sci. 2011, 14, 336. [CrossRef]
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174. Tykocki, T.; Poniatowski, Ł.A.; Czyż, M.; Koziara, M.; Wynne-Jones, G. Intraspinal pressure monitoring and extensive duroplasty
in the acute phase of traumatic spinal cord injury: A Systematic review. World Neurosurg. 2017, 105, 145–152. [CrossRef]

175. Nowrouzi, B.; Assan-Lebbe, A.; Sharma, B.; Casole, J.; Nowrouzi-Kia, B. Spinal cord injury: A review of the most-cited
publications. Eur. Spine J. 2016, 26, 28–39. [CrossRef] [PubMed]

176. Widerström-Noga, E. Neuropathic pain and spinal cord injury: Phenotypes and pharmacological management. Drugs 2017, 77,
967–984. [CrossRef] [PubMed]

177. Wei, D.; Huang, Y.; Liang, M.; Ren, P.; Tao, Y.; Xu, L.; Zhang, T.; Ji, Z.; Zhang, Q. Polypropylene composite hernia mesh with
anti-adhesion layer composed of PVA hydrogel and liposomes drug delivery system. Colloids Surf. B 2023, 223, 113159. [CrossRef]
[PubMed]

178. Tse, C.M.; Chisholm, A.E.; Lam, T.; Eng, J.J. A systematic review of the effectiveness of task-specific rehabilitation interventions
for improving independent sitting and standing function in spinal cord injury. J. Spinal Cord Med. 2017, 41, 254–266. [CrossRef]
[PubMed]

179. Wang, Q.; Zhang, H.; Xu, H.; Zhao, Y.; Li, Z.; Li, J.; Wang, H.; ZhuGe, D.; Guo, X.; Xu, H.; et al. Novel multi-drug delivery
hydrogel using scar-homing liposomes improves spinal cord injury repair. Theranostics 2018, 8, 4429–4446. [CrossRef]

180. Elango, S.; Perumalsamy, S.; Ramachandran, K.; Vadodaria, K. Mesh materials and hernia repair. Biomedicine 2017, 7, 16. [CrossRef]
181. Papavramidou, N.; Christopoulou-Aletras, H. Treatment of “Hernia” in the writings of Celsus (First century AD). World J. Surg.

2005, 29, 1343–1347. [CrossRef] [PubMed]
182. Xie, Z.; Zhang, Z.; Lv, H. Rapamycin loaded TPGS-Lecithins-Zein nanoparticles based on core-shell structure for oral drug

administration. Int. J. Pharm. 2019, 568, 118529. [CrossRef]

https://doi.org/10.1126/scitranslmed.3004334
https://doi.org/10.1016/j.jconrel.2013.10.006
https://doi.org/10.1517/17425247.2014.867326
https://doi.org/10.1002/jps.24693
https://doi.org/10.1016/j.ejpb.2006.11.022
https://doi.org/10.1016/j.colsurfb.2006.12.005
https://doi.org/10.2147/IJN.S274954
https://www.ncbi.nlm.nih.gov/pubmed/33262590
https://doi.org/10.1038/nrd1632
https://www.ncbi.nlm.nih.gov/pubmed/15688077
https://doi.org/10.2174/092986710790416290
https://doi.org/10.1039/c3tb21238f
https://doi.org/10.1021/ja036138+
https://doi.org/10.1073/pnas.0602766103
https://doi.org/10.1021/nn500110a
https://doi.org/10.1038/sc.2016.46
https://www.ncbi.nlm.nih.gov/pubmed/27067654
https://doi.org/10.1016/j.apmr.2017.06.012
https://doi.org/10.1016/j.apmr.2017.05.020
https://www.ncbi.nlm.nih.gov/pubmed/28647550
https://doi.org/10.12688/f1000research.7586.1
https://www.ncbi.nlm.nih.gov/pubmed/27303644
https://doi.org/10.1016/j.spinee.2003.07.007
https://www.ncbi.nlm.nih.gov/pubmed/15246307
https://doi.org/10.1016/j.wneu.2017.05.138
https://doi.org/10.1007/s00586-016-4669-z
https://www.ncbi.nlm.nih.gov/pubmed/27329616
https://doi.org/10.1007/s40265-017-0747-8
https://www.ncbi.nlm.nih.gov/pubmed/28451808
https://doi.org/10.1016/j.colsurfb.2023.113159
https://www.ncbi.nlm.nih.gov/pubmed/36736174
https://doi.org/10.1080/10790268.2017.1350340
https://www.ncbi.nlm.nih.gov/pubmed/28738740
https://doi.org/10.7150/thno.26717
https://doi.org/10.1051/bmdcn/2017070316
https://doi.org/10.1007/s00268-005-7808-y
https://www.ncbi.nlm.nih.gov/pubmed/16151666
https://doi.org/10.1016/j.ijpharm.2019.118529


Gels 2024, 10, 284 26 of 26

183. Patel, G.; Dalwadi, C. Recent Patents on Stimuli Responsive Hydrogel Drug Delivery System. Recent Pat. Drug Deliv. Formul.
2013, 7, 206–215. [CrossRef]

184. FDA. FDA Executive Summary: Classification of Wound Dressings Combined with Drugs. In Proceedings of the Meeting of the
General and Plastic Surgery Devices—Advisory Panel, Gaithersburg, MD, USA, 20–21 September 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2174/1872211307666131118141600

	Introduction 
	Liposomes 
	Hydrogels 
	Integration of Hydrogels and Liposomes (Liposomes–Hydrogels) 

	Liposomes Encapsulated in Different Types of Hydrogels 
	Liposomes Encapsulated in Peptide/Amyloid Hydrogels 
	Liposomes Encapsulated in Biopolymeric Hydrogels 
	Liposomes Encapsulated in Synthetic Polymeric Hydrogels 

	Conclusions: Current Challenges and Future Trends 
	References

