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Abstract: Extracellular vesicles (EVs) are defined as subcellular structures limited by a bilayer
lipid membrane that function as important intercellular communication by transporting active
biomolecules, such as proteins, amino acids, metabolites, and nucleic acids, including long non-
coding RNAs (lncRNAs). These cargos can effectively be delivered to target cells and induce a highly
variable response. LncRNAs are functional RNAs composed of at least 200 nucleotides that do
not code for proteins. Nowadays, lncRNAs and circRNAs are known to play crucial roles in many
biological processes, including a plethora of diseases including cancer. Growing evidence shows an
active presence of lnc- and circRNAs in EVs, generating downstream responses that ultimately affect
cancer progression by many mechanisms, including angiogenesis. Moreover, many studies have
revealed that some tumor cells promote angiogenesis by secreting EVs, which endothelial cells can
take up to induce new vessel formation. In this review, we aim to summarize the bioactive roles of
EVs with lnc- and circRNAs as cargo and their effect on cancer angiogenesis. Also, we discuss future
clinical strategies for cancer treatment based on current knowledge of circ- and lncRNA-EVs.
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1. Introduction
1.1. Cancer Generalities

Cancer is defined as a group of diseases that are multifactorial in nature and represent
a challenge in their diagnosis and treatment due to their etiological diversity [1]. More than
200 types of human cancer have been identified based on the cell or tissue from where they
originate, the somatic mutations acquired at any time of the progression of the disease, and
the microenvironment influences in which they develop [2]. One of the hallmark features
of cancer is its rapid and uncontrolled progression due to mutations that alter the cell
cycle and overpass checkpoint regulation between the cell cycle phases, promoting the
accumulation of mutations passed down to the progeny [3]. For this rapid progression to
occur, the growing tumor has a high demand for nutrients and other components; thus,
these cells generate molecular signaling to promote the formation of new blood vessels
from preexisting ones, a process denominated angiogenesis [4]. The angiogenesis process
is fundamental for cancer to advance locally and facilitate metastasis, and therefore, it
has been extensively studied in most cancer types [5–7]. Multiple efforts have been made
to develop antiangiogenic therapies to halt tumor growth and prevent metastasis [8,9].
Recently, the role of extracellular vesicles (EVs) between vessels in tumor communication
has triggered the interest of many researchers.

1.2. Extracellular Vesicles

Extracellular vesicles are subcellular structures that are heterogeneous in nature and
surrounded by a lipid bilayer membrane that exerts multiple functions in intercellular
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communication [10]. Based on how they are delivered from the original cell to the extra-
cellular medium, EVs can be released by inward budding of the endosomal membrane or
outward budding of the cellular membrane [11]. The recipient cell can then internalize EVs
through endocytosis or membrane fusion to unload their contents into the cell cytoplasm
(Figure 1) [12]. Since their discovery in the early 1980s, many biomolecules have been
identified as cargo in EVs, including proteins, amino acids, signaling lipids, and different
genetic molecules like DNA, RNA, and non-coding RNAs, promoting both physiological
and pathological processes [13]. Based on their biogenesis, EVs are generally classified into
microvesicles and exosomes [10], although some authors suggest a further division into
apoptotic bodies and proteasomes [14]. Microvesicles are generated by outward budding
of the plasma membrane and range from 50 nm to 1000 nm. In contrast, exosomes are
membrane vesicles smaller in size (30–100 nm) and are formed by inward budding of
the endosomal membrane to be later secreted by fusion with the cell membrane [14,15].
The role of EVs as cell-to-cell mediators in respiratory disease [16], neurodegenerative
disease [17], kidney disease [18], cardiovascular disease [19], and cancer progression and
metastasis [20–22] has been documented to ameliorate the understanding of the behavior
or these subcellular structures.
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Figure 1. Exosome biogenesis, release to the extracellular environment, and uptake by the recipient
cell. (A) Exosome biogenesis begins with early endosome formation during endocytosis. (B) Early
endosomes are then matured into late endosomes, generating multiple intraluminal vesicles (ILVs) by
the inward budding of endosomal membranes. (C) The accumulation of ILVs leads to the formation
of multivesicular endosomes (MVEs), and proteins and nucleic acids produced by the donor cell can
be sorted into exosomes during MVE formation. (D) Exosomes are released into the extracellular
environment by fusing MVEs with the cellular membrane. (E–G) Microvesicles arise from the
outward budding and shedding of the plasma membrane. (H) Extracellular vesicles are taken up by
the recipient cell by direct fusion, receptor-mediated fusion, or endocytosis. (I) Exosomal lncRNAs
can be subsequently delivered to the recipient cell to exert regulatory effects as sponges for miRNAs,
protein scaffolds, transcription and translation regulators, and chromatin activators. The detailed
functions of lncRNAs are depicted in Figure 2. Figure 1 is modified from Wang et al. [23].
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1.3. Long Non-Coding and circRNAs

Long non-coding RNAs (lncRNAs) are a diverse group of RNAs that are not trans-
lated into proteins, and they are at least 200 nucleotides in length [24]. Recent advances
in genomic sciences through RNA sequencing have offered the identification of lncR-
NAs performing functions to control chromatin complexes, recruit transcription factors,
regulate alternative splicing, affect mRNA translation, sponge micro-RNAs by binding,
degrade other RNAs, and serve as scaffolds for protein interactions (Figure 2) [25–27].
Evidence suggests an active role of lncRNAs in most physiological processes, and their
involvement in disease has been the focus of active research in recent years [28,29]. The
involvement of lncRNAs as oncogenes or tumor suppressors in many cancer types has
also been documented. However, as new lncRNAs are discovered, the general landscape
becomes complicated as the roles they can perform become more complex [30]. For in-
stance, lncRNAs can influence the progression of cancer by promoting metastasis [31], drug
resistance [32], epithelial-to-mesenchymal transition (EMT) [33], and angiogenesis [34].

It has recently been shown that some lncRNAs can take a circular shape and join
covalently at the ends, and these are called circRNAs [35]. This type of lncRNA can
perform similar functions to linear lncRNAs, as sponges to recruit specific miRNAs or
as effectors to regulate the expression of certain genes [36]. circRNAs have recently been
widely studied, arousing interest due to their stability, since, unlike linear non-coding
RNAs, they are difficult to degrade [37].Non-Coding RNA 2024, 10, x FOR PEER REVIEW 4 of 21 
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Figure 2. Molecular functions of lncRNAs. (A) lncRNAs can guide chromatin complexes, controlling
between transcriptionally active euchromatin and silent heterochromatin. (B) The recruitment of
polymerase II and transcription factors can be inhibited or facilitated by lncRNAs. (C) lncRNAs
contribute to transcriptome complexity by regulating alternative splicing of pre-mRNAs. (D) lncRNAs
affect the stability and translation of mRNA by base-pairing with mRNA molecules. (E) They
influence the expression of miRNAs by binding to them and preventing their function. (F) lncRNAs
can act as siRNAs and target other RNAs, which subsequently could result in target degradation.
(G) lncRNAs can join multiple protein factors as flexible scaffolds to interact with or cooperate in
protein–protein interactions. (H,I) The scaffold function is also important for protein activity and
localization as well as subcellular structures. Modified from Peña-Flores et al. [38].
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Recently, the presence of both coding and non-coding RNA in EVs has motivated
research to elucidate RNA’s role in various biological mechanisms in cancer and other
diseases [39,40]. This review aims to provide recent evidence on the influence of exosomal
lncRNAs on cancer angiogenesis. A systematic screening of papers was performed on
PubMed, Google Scholar, Cochrane Library, Web of Science, and EMBASE up to July 2023
for articles matching the following criteria: (long non-coding RNA or lncRNA or ceRNA
or circRNA or circular RNA) and (angiogenesis or lymphangiogenesis or vasculogenic
mimicry) and (extracellular vesicles or EV or exosome or exosomal). The titles and abstracts
were carefully read, and full-text manuscripts relevant to the subject of study were acquired
for further analysis.

2. Mechanism of Angiogenesis

The angiogenesis process embodies forming new blood vessels from existing vessels
in response to physiological and pathological mechanisms [41]. During embryogenesis, the
vascular network develops through a combination of vasculogenesis, referred to as the de
novo formation of the heart and new blood vessels from stem endothelial cells, namely,
angioblasts, and angiogenesis, which expands the initial primitive vascular plexus [42].
Although most blood vessels remain quiescent under physiological conditions, tissue repair
and regeneration through wound healing, ovulation, and endometrial thickening through-
out the menstrual cycle are based on angiogenesis for proper functioning [43–45]. While
vascular growth varies depending on where angiogenesis is initiated and the tissue to
which they will provide a new blood supply, several mechanisms are common in forming
these vessels [46]. In a hypoxic state, the recruitment of cells that promote inflammation;
angiogenic growth factor production; degradation of the basement membrane; and en-
dothelial cells (ECs) sprouting, migrating, proliferating, differentiating, and modulating
vascular support cells are some of the shared characteristics in angiogenesis [47].

The angiogenic process (Figure 3) comprises several stages involving the sprouting,
migration, and proliferation of ECs guided by the vascular endothelial growth factor
(VEGF) [48]. Following VEGF stimulation, pericytes from the vessel wall detach, and the
basal membrane is weakened by proteolytic degradation. At the same time, ECs adopt
an invasive and motile phenotype called tip cells that send out filamentous pseudopodia
to guide vascular budding [49]. The cells behind the tip cells are denominated stalk cells,
which proliferate to maintain the integrity of the structure and function of the nascent
vessels, mainly expanding the vascular lumen [50]. ECs modify their shape by negatively
charging glycoproteins on the apical surface to repel each other and open the lumen
while redistributing cell-to-cell adhesion to the periphery [51]. For maturation to occur,
pericytes must be recruited by the platelet-derived growth factor subunit B (PDGF-B) and
angiopoietin 1 (Ang1) signaling along with the strengthening and consolidation of the
adhesion between ECs with junctional molecules such as VE-cadherin, while a basement
membrane is deposited by tissue inhibitors of metalloproteinases (TIMPs) [52,53].

Under physiological conditions, angiogenesis is strongly regulated by factors ranging
from metabolites to hormones [54]. Various molecular pathways have been extensively stud-
ied that comprise the angiogenesis process, including the VEGF-VEGFR, Angiopoietin-Tie,
Delta-Notch, and Ephrin-Eph [55]. Angiogenesis, vasculogenesis, and lymphangiogenesis
are mostly regulated by six VEGF members encoded in the human genome, namely, VEGF-
A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, and the placenta growth factor (P1GF) [48,56].
According to their molecular configuration and affinity, the aforementioned factors may
bind to different tyrosine kinase receptors VEGFR-1, VEGFR-2, and/or VEGFR-3; VEGF-A
binds to VEGFR-2 to contribute to angiogenesis, whereas VEGF-C and VEGF-D enhance
lymphatic vessel sprouting by binding to VEGFR-3 [57]. Another group of angiogenesis
inducers are the platelet-derived growth factors (PDGF), which induce ECs proliferation
and migration by binding to two tyrosine kinase receptors, PDGFR-α and PDGFR-β [58].
Another angiogenesis factor is the fibroblast growth factor (FGF) 2, responsible for inducing
metalloproteinase (MMP) secretion to degrade the basement membrane and promote vessel
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sprouting along with VEGF [59]. Angiopoietin 1, interleukin 8 (IL-8), epidermal growth
factor (EGF), and tumor necrosis factor α (TNF-α) also exert a pro-angiogenic effect in ECs
through several signaling pathways [60–63]. Conversely, angiopoietin 2, angiostatin, endo-
statin, vasostatin, and TIMPs inhibit angiogenesis and play an important role in achieving
vascular homeostasis [64,65].
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Figure 3. Stages of the angiogenic process. (A) Angiogenic signals, such as VEGF, promote pericyte
detachment from the basement membrane and weaken the extracellular matrix. (B) Endothelial cells
display characteristic phenotypes after VEGF stimulation: migratory tip cells or proliferating stalk
cells. (C) Attractive and repulsive forces control endothelial cells, forming a vessel lumen to initiate
blood flow. (D) PDGF-B and Ang1 signaling lead to pericyte recruitment, while junctional molecules
consolidate EC–EC adhesion. Modified from Viallard et al. [47].

Extracellular vesicles produced by many cellular lineages under specific circumstances
can be taken up by ECs to promote and regulate angiogenesis [66]. For instance, a study in
endometrial stromal cells (HESCs) found active secretion of EVs during decidualization in
a controlled manner by the hypoxia-inducible factor 2 alpha (HIF2α)–Ras-related protein
Rab-27B (RAB27B) cascade, revealing a cargo with a variety of growth regulators, signaling
molecules, metabolic modulators, and factors that control the expansion and remodeling of
ECs [67]. In a myocardial infarction animal model, stem cell-derived small extracellular
vesicles (sEVs) loaded with miR-486-5p promoted cardiac angiogenesis via fibroblastic
MMP19-VEGFA cleavage signaling [68]. Moreover, Gregorius et al. [69] evaluated the ef-
fects of mesenchymal stromal cell (MSC)-derived sEVs on the proliferation, migration, and
tube formation of cerebral microvascular ECs. Interestingly, hypoxic preconditioning en-
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hanced angiogenesis and increased post-ischemic endothelial survival by regulating several
miRNAs through the uptake of protein-enriched sEVs cargo. Another study demonstrated
that HS-1 protein X-1 (HAX1), a major regulator of myeloid homeostasis, was present in
EVs secreted by nasopharyngeal carcinoma (NPC) tumors, promoting an angiogenesis
phenotype by activating the focal adhesion kinase (FAK) pathway in ECs by increasing
the expression level of integrin subunit beta 6 (ITGB6) [70]. Conversely, EVs produced by
bone marrow MSCs were found to be enriched in the cluster of differentiation 39 (CD39),
TIMP-1, and CD73, inhibiting tumor angiogenesis by targeting the extracellular matrix
remodeling and the endothelial cell migration [71].

3. Exosomal Long Non-Coding and Circular RNAs in Cancer Angiogenesis

LncRNAs in EV cargo have been demonstrated lately, mainly in cancer [72–74]. A
recent study launched an online repository of EV long RNAs (exLRs) in diverse human
body fluids, comprising 19,643 mRNAs, 15,645 lncRNAs, and 79,084 circRNAs obtained
from human blood, cerebrospinal fluid, bile, and urine samples. The database provides
novel exLR signatures to help discover new biomarkers that could aid in diagnosing and
treating many diseases [75]. Based on available recent research, Casado-Díaz et al. [76]
concluded that lncRNAs and other RNAs included in MSC-derived EVs can be applied
in chronic skin ulcers to improve accelerated healing and decrease scar formation due
to immunosuppressive and immunomodulatory properties. Conversely, in a diabetic
wound-healing animal model, upregulated lncRNAs packed in EVs from fibroblasts en-
hanced keratinocyte MMP-9 expression to induce collagen degradation, delaying wound
healing [77]. Recently, the long non-coding repressor of NFAT (NRON) was detected in
BMSC-derived EVs, inhibiting osteoclast differentiation and osteoporotic bone loss in vitro
and in vivo [78].

In tumors, the high rate of cell proliferation forces the formation of new blood ves-
sels [79]. However, in most cases, these blood vessels are dilated, tortuous, and immature,
leading to excessive permeability and increased hypoxia [80]. In addition, vascular dis-
organization causes heterogeneity in the tumor blood vessel network, creating highly
vascularized tumor areas and other hypoxic areas with low vascular density [47]. Thus,
hypoxia becomes a major driver of tumor angiogenesis, along with other mechanisms pro-
moted by activated oncogenes or loss of tumor suppressor genes, in which lncRNAs play
an important role, mainly through acting as competing endogenous RNAs for miRNAs [81].
Similarly, circRNAs have been extensively studied in cancer, elucidating important roles in
tumor development, growth, and angiogenesis [82]. For instance, VEGFR-related pathways
have been linked to circRNAs by affecting tumor angiogenesis by sponging miRNAs [83,84].
The landscape of exosomal lnc- and circRNAs in angiogenesis in cancer is summarized in
Table 1 and Figure 4.

Table 1. The landscape of exosomal lnc- and circRNAs in angiogenesis in cancer.

Lnc/circRNA Molecular Target Donor Cells Recipient Cells Effect Reference
OSTEOSARCOMA

OIP5-AS1 miR-153/ATG5 HOS HUVECs Promotes Li 2021 [85]
MIAT miR-613/GPR158 U2OS, MG63, and 293T HUVECs Promotes Wang 2022 [86]

NORAD miR-877-3p/CREBBP 143B, MG-63, Saos2, HOS, and
U20S Osteosarcoma cells Promotes Feng 2022 [87]

EWSAT1 miR-326/KRas 143B, MNNG/HOS, MG63,
U20S BMSCs, HMEC-1 Promotes Tao 2020 [88]

CHONDROSARCOMA
RAMP2-AS1 miR-2355-5p/VEGFR2 SW1353 HUVECs Promotes Cheng 2020 [89]

PANCREATIC

UCA1 miR-96-5p/AMOTL2 PANC-1, MIA PaCa-2, BxPC-3,
Aspc-1, Sw1990 HUVECs, HEK293T Promotes Guo 2020 [90]

NASOPHARYNGEAL
Linc-ROR p-AKT/p-VEGFR2 pathway CNE2 HUVECs Promotes Zhang 2022 [91]

CCAT2 NR CNE2, NP69 HUVECs Promotes Zhou 2020 [92]
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Table 1. Cont.

Lnc/circRNA Molecular Target Donor Cells Recipient Cells Effect Reference
ESOPHAGEAL

FAM225A miR-206/NETO2 and FOXP1 ECA109, TE-1, KYSE150,
KYSE140 HET-1A, HUVECs Promotes Zhang 2020 [93]

GLIOMA/GLIOBLASTOMA
CCAT2 VEGF-A and TGF-B A172, U87-MG, U251, T98G HUVECs Promotes Lang 2017 [94]
POU3F3 bFGF/bFGFR/VEGFA A172, U87-MG, U251, T98G HBMECs Promotes Lang 2017 [95]
HOTAIR VEGFA A172 HBMVECs Promotes Ma 2017 [96]

aHIF NR * U87-MG, U251-MG, A172,
T98G HUVECs Promotes Dai 2019 [97]

COLORECTAL
CircFNDC3B miR-97-5p/TIMP3 LoVo, SW480, SW602, HCT116 HUVECs Suppresses Zeng 2020 [98]

APC1 MAPK pathway HTC116, DLD-1, SW480, LoVo,
SW116 HEK293T, HUVECs Promotes Wang 2019 [99]

CircTUBGCP4 miR-146b-3p/PDK2/Akt SW480 HEK297T Promotes Chen 2023 [100]
LIVER/HEPATOCELLULAR

LINC00161 miR-590-3p/ROCK2 axis Huh-7, HCCLM3, MHCC-97L,
MHCC-97H WRL-68, HUVECs Promotes You 2021 [101]

UBE2CP3 ERK1/2/HIF-1α/VEGFA HepG2, SMMC-7721 HUVECs Promotes Lin 2018 [102]
H19 NR * Huh-7, Sk-Hep HUVECs Promotes Conigliaro 2015 [103]

Circ100338 VE-Cadherin

Hep3B, HLE, Huh-7, BEL7402,
SMCC7721, MHCC97L,
HCCLM3, MHCC97H,

HCCLM6

HUVECs Promotes Huang 2020 [104]

LUNG
MFI2-AS1 miR-107/PI3K/AKT pathway PC9, A549, H1299 HUVECs Promotes Xu 2023 [105]

LincRNA-p21 miR-23a, miR-146b, miR-330, and
miR-494 H23, HCC44 HUVECs Promotes Castellano 2020 [106]

GAS5 miR-29-3p/PI3K/Akt 16HBE, A549, H1299, 95D HUVECs Promotes Cheng 2019 [107]
RENAL CELL

ARSR miR-34 and miR-449 to upregulate
STAT3 pathway Caki-1, ACHN, 786-O NR * Promotes Zheng 2022 [108]

CircSAFB2 miR-620/JAK1/STAT3 axis A498, 786-O, Caki-1, Caki-2,
769-P, ACHN THP-1 Promotes Huang 2022 [109]

CircSPIRE1 ELAVL1 protein NR * NR * Suppresses Shu 2023 [110]
BLADDER

BCYRN1 WNT5a/VEGF-C/VEGFR3 T24, 5637, SVHUC-1 HLECs, HDLECs,
HUVECs Promotes Zheng 2021 [111]

LNMAT2 PROX1/RNPA2B1/H3K4 UM-UC-3, 5637, T24 HLEC, SV-HUC-1 Promotes Chen 2020 [112]

ELNAT1 SOX18 UM-UC-1, RT112, RT4,
UM-UC-3, T24, 5637 HLEC, SV-HUC-1 Promotes Chen 2021 [113]

GASTRIC
Circ0001190 miR-587/SOSTDC1 NR * NR * Suppresses Liu 2022 [114]

Circ29 miR-29a/VEGF pathway SGC-7901, MGC-803 HUVECs, HEK297T Suppresses Li 2021 [115]

CircSHKBP1 miR-582/HUR/VEGF AGS, HGC27, BGC823
MGC803, GES1 HUVECs, HEK293T Promotes Xie 2020 [116]

CircFCHO2 miR-194-5p/JAK1/STAT3
pathway NR * NR * Promotes Zhang 2022 [117]

OVARIAN
MALAT1 NR * SKOV3, HO8910 SKOV3.ip1, HO8910.PM Promotes Qiu 2018 [118]

CERVICAL
TUG1 VEGF-A, MMP-9, IL-8 HeLa, CaSki HUVECs Suppresses Lei 2020 [119]

BREAST
CircHIPK3 miR-124-3p/MTDH NR * NR * Promotes Shi 2022 [120]

THYROID
FGD5-AS1 miR-6838-5p/VAV2 axis SW1736, KAT18 HUVECs Promotes Liu 2022 [121]

MULTIPLE MIELOMA

CircATP10A
miR-66758-3p, miR-3977,

miR-6804-3p, miR-1266-3p,
miR-3620-3p

NR * NR * Promotes Yu 2022 [122]

ALCOHOL-INDUCED TUMOR
HOTAIR and

MALAT1 NR * NR * HUVECs, HDMECs Promotes Lamichhane 2017 [123]

CHOLANGIOCARCINOMA
CircCCAC1 EZH2/SH3GL2 CCA cells HUVECs Promotes Xu 2021 [124]

* NR: not reported.
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3.1. Bone Malignancies

Some studies have been dedicated to studying exosomal lncRNAs in bone malignan-
cies. LncRNA Opa-interacting protein 5-antisense 1 (OIP5-AS1) was found to be over-
expressed in exosomes secreted by osteosarcoma cells, increasing angiogenesis in tubule
formation assays by mechanistically sponging miR-153 and increasing the autophagy-
related 5 protein (ATG5) [85]. Interestingly, serum samples from osteosarcoma patients
could transfer via EVs the myocardial infarction-associated transcript (MIAT), promoting
the proliferation of osteosarcoma cell lines and angiogenesis in HUVECs by sponging
miR-613 and upregulating G protein-coupled receptor 158 (GPR158) [86]. In an in vitro
and animal model, BMSC-EVs carried the non-coding RNA activated by DNA damage
(NORAD) into osteosarcoma cells and upregulated CREB-binding protein (CREBBP) by
sponging miR-877-3p to promote proliferation, invasion, migration, and angiogenesis [87].
Another lncRNA called Ewing sarcoma-associated transcript 1 (EWSAT1) was found to
regulate osteosarcoma-induced angiogenesis via two mechanisms: (1) by increasing in
sensitivity/reactivity of vascular endothelial cells triggered by exosomes carrying EWSAT1,
and (2) by increasing angiogenic factors secretion [88]. Moreover, exosomes secreted by
chondrosarcoma cells were loaded with the receptor activity-modifying protein 2 antisense
1 (RAMP2-AS1). They could enhance HUVECs proliferation, migration, and tube formation
by acting as a ceRNA for miR2355-5p to regulate VEGFR2 expression. In addition, the
overexpression of RAMP2-AS1 in the serum of chondrosarcoma patients was demonstrated
to be closely related to local invasiveness, distant metastasis, and poor prognosis [89].
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3.2. Esophageal, Gastric, and Colorectal Cancers

Some of the most prevalent tumors of the gastrointestinal (GI) tract have been ex-
plored regarding the role played in angiogenesis by exosomes loaded with different lncR-
NAs and circRNAs. For instance, the exosomal lncRNA family with sequence similarity
225 member A (FAM225A) was highly expressed in esophageal squamous cell carcinoma
(ESCC), upregulating neuropilin and tolloid-like 2 (NETO2) and forkhead box P1 (FOXP1)
expression by sponging miR-206 to accelerate tumor progression and angiogenesis [93].

In gastric cancer patients, exosomal circ-SHKBP1 was overexpressed in tumor and
blood samples. When the exosomes were isolated and exposed to different cell lines, cells
showed a promoted proliferation, invasion, migration, and angiogenesis rate by mechanis-
tically regulating the miR-582-3p/HUR/VEGF axis and suppressing heat shock protein
90 (HSP90) degradation [116]. Similarly, 30 blood samples and tissues from gastric cancer
patients were taken to analyze circ-FCH and mu domain-containing endocytic adaptor
2 (FCHO2). It was found that circ-FCHO2 up-modulation led to a poor outcome, while
circ-FCHO2 silencing weakened the proliferation, invasion, angiogenesis, and stem cell
characteristics, presumably by activating the Janus kinase 1 (JAK1)/signal transducer and
activator of transcription 2 (STAT2) pathway via sponging miR-194-5p [117]. Conversely,
by acting as a miR-587 sponge to adjust the expression of the sclerostin domain-containing
1 (SOSTDC1), circ-0001190 overexpression inhibited cell viability, proliferation, angiogene-
sis, migration, and invasion of gastric cancer cell lines [114]. Moreover, circ-0044366 was
highly expressed in gastric cancer and impaired the proliferation, migration, and tube
formation of HUVECs by exosomal communication by acting as miR-29a ceRNA and
regulating the VEGF pathway [115].

In colorectal cancer (CRC), tumor growth, angiogenesis, and liver metastasis were
suppressed by exosomal circ-fibronectin type III domain-containing 3B (FNDC3B) overex-
pression by acting via the miR-97-5p/TIMP3 pathway [98]. Similarly, exosomes derived
from lncRNA adenomatous polyposis coli (APC1)-silenced CRC cells promoted angiogene-
sis by activating the mitogen-activated protein kinase 1 (MAPK) pathway in endothelial
cells, while enforced APC1 was sufficient to inhibit CRC growth, metastasis, and tumor
angiogenesis by suppressing exosome production [99]. Interestingly, exosomes loaded with
circ-tubulin gamma complex component 4 (TUBGCP4) derived from CRC cells enhanced
vascular endothelial cell migration and tube formation via inducing filopodia formation
and endothelial cell tipping by upregulating the pyruvate dehydrogenase kinase 2 (PDK2)
to activate the AKT serine/threonine kinase 1 (AKT) signaling pathway and by sponging
miR-146b-3p [100]. A very interesting study by Zhi et al. [125] compared EVs derived from
the b-Raf proto-oncogene (BRAF) wild-type CRC and the BRAFV600E mutant patients to
find the overexpression of 13 lncRNAs and downregulation of 22 lncRNAs in exosomes
from the BRAFV600E mutation type. This difference showed a higher microvascular and
micro-lymphatic vessel density of the BRAFV600E mutant CRC tissues.

3.3. Liver and Pancreatic Cancers

LncRNA-loaded exosomes from tumors from other organs related to the GI tract
have also shown some relationship with tumor angiogenesis. You et al. [101] reported
high levels of Linc-00161 in serum-derived exosomes from hepatocellular cancer (HCC)
patients and the supernatants of HCC cell lines, which are associated with poor survival.
Mechanistically, Linc-00161 promoted angiogenesis in HUVECs by inhibiting miR-590-3p
and activating the Rho-associated coiled-coil-containing protein kinase 2 (ROCK2) axis. In
an in vitro study, exosomes with lncRNA H19 were released by CD90+ HCC cells and mod-
ulated endothelial cells, promoting an angiogenic phenotype and cell-to-cell adhesion [103].
Similarly, lncRNA ubiquitin-conjugating enzyme E2 C pseudogene 3 (UBE2CP3) was over-
expressed in HCC EVs. It promoted HUVEC proliferation, migration, and tube formation
via the activation of the ERK/HIF-1α/p70S6K/VEGFA signaling cascade, promoting HCC
tumorigenicity [102]. In another study, exosomal circ-100388 affected the cell proliferation,
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angiogenesis, permeability, and vasculogenic mimicry formation ability of HUVECs and
HCC tumor metastasis [104].

In cholangiocarcinoma (CCA), the cholangiocarcinoma-associated circular RNA 1 (circ-
CCAC1) from CCA-derived EVs was transferred to endothelial monolayer cells, disrupting
endothelial barrier integrity and inducing angiogenesis. Interestingly, circ-CCAC1 in-
creased cell leakiness by sequestering the enhancer of zeste 2 polycomb repressive complex
2 subunit (EZH2) gene, thus elevating the SH3 domain-containing GRB2 like 2, endophilin
A1 (SH3GL2) expression to reduce levels of intercellular junction proteins [124].

In pancreatic cancer, the expression levels of the lncRNA urothelial cancer-associated
1 (UCA1) in exosomes derived from the serum of patients were associated with poor survival,
promoting angiogenesis and tumor growth by acting as a ceRNA of miR-96-5p, relieving
the repressive effects on the expression of its target gene angiomotin like 2 (AMOTL2) [90].
Moreover, the exosomal small nucleolar RNA host gene 11 (SNHG11) promoted cell
proliferation, migration, and angiogenesis in pancreatic cancer cell lines but impeded cell
apoptosis via sponging miR-324-3p to upregulate VEGFA expression [126].

3.4. Renal and Bladder Cancers

Some urinary system tumors have observed a relationship between lncRNA-loaded
EVs and angiogenesis. In renal cell carcinoma (RCC), RCC-derived exosomes had an
lncRNA Ars operon (ARSR) that promoted macrophage polarization, cytokine release,
phagocytosis, angiogenesis, and tumor development by sponging miR34/miR-449 and
upregulating the signal transducer and activator of transcription 3 (STAT3) pathway [108].
Similarly, RCC-derived exosomal circular scaffold attachment factor B2 (circ-SAFB2) fa-
cilitated the progression, invasion, angiogenesis, and metastasis of RCC by inducing the
polarization of M2 macrophages through the miR-620/JAK1/STAT3 axis [109]. Conversely,
exosomal circular spire type actin nucleation factor 1 (circ-SPIRE1) suppressed angiogene-
sis and vessel permeability through regulating ELAV-like RNA-binding protein 1-mRNA,
binding and upregulating polypeptide N-Acetylgalactosaminyltransferase 3 (GALNT3)
and KH domain RNA-binding protein (QKI) expression [110].

In bladder carcinoma (BCa), exosomal brain cytoplasmic RNA 1 (BCYRN1) promoted
the tube formation and migration of human lymphatic endothelial cells (HLECs), upreg-
ulating the Wnt family member 5A (WNT5A) gene expression by inducing hnRNPA1-
associated H2K4 trimethylation in WNAT5a promoter, which activated Wnt/β-catenin sig-
naling to facilitate the secretion of VEGF-C in BCa [111]. Moreover, lymph node metastasis-
associated transcript 2 (LNMAT2)-loaded exosomes from BCa tissues and blood samples
stimulated the tube formation and migration of HLECs and enhanced tumor lymphan-
giogenesis and lymph node metastasis by upregulation of prospero homeobox 1 (PROX1)
gene expression by recruitment of hnRNPA2B1 and increasing H3K4 trimethylation [112].
Comparably, BCa cell-secreted EVs mediated intercellular communication with HLECs
through the transmission of the small nucleolar RNA host gene 16 (ELNAT1) and promoted
lymphangiogenesis by inducing the ubiquitin-conjugating enzyme E2 (UBC9) gene overex-
pression to catalyze the small ubiquitin-like modifier (SUMO) binding of hnRNPA1 at the
lysine 113 residue [113].

3.5. Nasopharyngeal and Lung Cancers

LncRNAs in exosomes derived from nasopharyngeal squamous cell carcinoma (NPSCC)
and their relationship with tumor angiogenesis have been mildly explored. In serum samples
from newly diagnosed NPSCC patients, the long intergenic non-protein-coding RNA, reg-
ulator of reprogramming (linc-ROR), was substantially expressed in exosomes that could
be taken up by HUVECs, increasing proliferation, migration, and angiogenesis in vitro by
mechanistically upregulating the p-AKT/p-VEGFR2 pathway [91]. Similarly, lncRNA colon
cancer-associated transcript 2 (CCAT2) was found in EVs derived from NPSCC patients,
promoting HUVEC proliferation and angiogenesis promotion [92].
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In non-small cell lung carcinoma (NSCLC), NSCLC cells secreted exosomes with
melanotransferrin antisense 1 (MFI2-AS1) to induce tube formation by HUVECs, promoting
angiogenesis and metastasis by sponging miR-107, which in turn activated the PI3K/AKT
pathway [105]. Similarly, high EV Linc-p21 was found in NSCLC blood samples from
tumor-draining pulmonary veins before tumor surgical resection. EVs with Linc-p21 were
taken up by HUVECs and promoted tube formation and enhanced tumor cell adhesion
to endothelial cells by sponging miR-23a, miR-146bv, miR-330, and miR-494 [106]. In
contrast, GAS5 was lowly expressed in human lung cancer tissues, lung cancer cells, and
cell culture supernatant exosomes. The exosomes of lung cancer cells containing high
GAS5 levels inhibited HUVECs proliferation and tube formation, increasing their apoptosis
by sponging miR-29-3p and upregulating phosphatase and tensin homolog (PTEN) and
inhibiting PI3K/AKT phosphorylation [107].

3.6. Glioma and Gliobastoma

A few studies have reported evidence of the role of exosomal lncRNAs in glioma and
glioblastoma angiogenesis. An in vitro study with glioma cell lines demonstrated that
HUVECs can take up exosomal CCAT2 to promote migration, proliferation, tubular-like
structure formation, and arteriole formation [94]. Similarly, the POU class 3 homeobox 3
(POU3F3) was upregulated in glioma tissue. When human brain microvascular endothelial
cells (HBMVECs) were treated with exosomes loaded with POU3F3, they exhibited better
migration, proliferation, tubular-like structure formation, and arteriole formation. Mecha-
nistically, POU3F3 was shown to upregulate bFGF, bFGFR, VEGFA, and Angio [95]. More-
over, cell line A172 was cultured to demonstrate that EVs loaded with the HOX transcript
antisense RNA (HOTAIR) had a pro-angiogenic activity in HBMVECS via VEGFA [96]. In
glioblastoma, lncRNA HIF1A antisense RNA 2 (AHIF) was found upregulated in tissue
samples, and when cultured with glioblastoma cell lines, exosomal AHIF regulated factors
associated with migration and angiogenesis [97].

3.7. Other Cancer Types

In ovarian cancer, an in vitro study revealed that lncRNA activated by TGF-β (ATB)
promoted viability and angiogenesis of HUVECs by sponging miR-204-3p and thus up-
regulating TGFβ-R2 [127]. Similarly, elevated serum exosomal metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) promoted angiogenesis and was highly correlated
with an advanced and metastatic phenotype of epithelial ovarian cancer [118]. Another study
demonstrated taurine-upregulated 1 (TUG1) overexpression in human cervical cancer cell
lines. When TUG1 was depleted, the exosome-mediated pro-angiogenic potential of HUVECs
was impaired by modulating angiogenesis-related genes like VEGFA, MMP9, TGFβ, IL-8, and
bFGF [119]. In breast cancer cell lines, the metadherin (MTDH) gene improved cell viability
and angiogenesis in endothelial cells. The molecular cascade was promoted by exosomal
circular homeodomain-interacting protein kinase 3 (circ-HIPK3), which sponged miR-124-3p
and in turn upregulated MTDH [120]. Liu et al. Campo [121] demonstrated that exosomal
overexpression of the FYVE, RhoGF, and PH domain-containing 5 antisense 1 (FGD5-AS1)
enhanced the proliferation, migration, angiogenesis, and permeability of HUVECs by regu-
lating the endothelial miR-6838-5p/Vav guanine nucleotide exchange factor 2 (VAV2) axis.
A total of 25 peripheral blood samples from 20 multiple myeloma patients and 5 matched
healthy controls showed overexpression of the circular ATPase phospholipid-transporting
10A (circ-ATP10A) in the multiple myeloma samples, mechanistically acting as a sponge of
several miRNAs to consequently regulate the expression of downstream VEGFB, HIF1A,
PDGFA, and FGF [122].

4. Clinical Relevance and Future Perspectives

In recent years, a plethora of studies have demonstrated the role played by lncRNAs
and circRNAs in many molecular and cellular processes, ranging from early development
to complex diseases such as cancer [128–130]. Although the intracellular expression of
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these non-coding RNAs has been documented, the presence of DNA and RNA fragments
in extracellular vesicles and exosomes has also been discovered, demonstrating the ability
of cells to transmit information not only to their environment and surrounding cells but
also to distant areas through fluids like plasma, bile, and urine [131–133]. For instance,
exosomes derived from serum from pancreatic cancer patients were associated with poor
survival when loaded with UCA1 [90]. Similarly, elevated serum exosomal MALAT1 was
an independent predictive factor for ovarian cancer overall survival [118]. In the sera
of chondrosarcoma patients, exosomal RAMP2-AS1 was closely related to local invasive-
ness, distant metastasis, and poor prognosis [89]. Serum-derived exosomes loaded with
linc-00161 from hepatocellular cancer patients were significantly associated with poor sur-
vival [101], and high EV linc-p21 levels in blood were associated with shorter time to relapse
and shorter overall survival in lung cancer [106]. The presence of cholangiocarcinoma-
derived EVs loaded with circ-CCAT1 was detected in bile samples from perihilar and
distal CCA patients, demonstrating a worse overall prognosis [124]. Interestingly, 63% of
patients with bladder cancer evaluated as lymph node metastasis (LN)-negative by CT
were correctly predicted as being LN-positive by the detection of urinary EV-mediated
ELNAT1 [113].

EV-mediated lncRNAs are promising early diagnostic biomarkers and potential thera-
peutic targets in many diseases. As the relationship between exosomal lnc- and circRNAs
and their role in angiogenesis is further studied, tools may be developed for early and ac-
curate diagnosis of diseases such as diabetes and cancer, establishing therapeutic pathways
that promote a better prognosis for patients with these and other diseases. The sensitivity
and specificity for the detection of circulating RNAs must be improved to apply these
techniques in regular clinical practice.

5. Conclusions

Exosomes have recently been the subject of study due to the molecular cargo they possess
since they apparently function as intercellular communication mechanisms. Among the
components that can generate changes in other cells are lnc- and circRNAs, which can influence
fundamental processes for functional and pathological development, such as angiogenesis.
As the roles of exosomal lnc- and circRNAs in angiogenesis are elucidated, diagnostic and
prognostic tools can be developed to improve advanced systemic disease therapies.
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