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Abstract: Succinic acid (SA), a C4 tricarboxylic acid cycle intermediate, is used as raw material for
bulk chemicals and specialty chemicals, such as tetrahydrofuran and 1,4-butanediol, as well as also
being used to synthesize the biodegradable biopolymers PBS (polymer poly (butylene succinate)).
Actinobacillus succinogenes, which is facultative anaerobic and gram-negative, is one of the most
promising natural SA-producing organisms, but genetic engineering of A. succinogenes is rare so
far. In this study, a series of engineered strains was constructed using the pLGZ922 expression
vector and a cytosine base editor (CBE) based on CRIPSR/Cas9; we found that phosphoenolpyruvate
carboxylase (PEPC) was more important for the CO2 fixation pathway than pyruvate carboxylase
(PYC) in A. succinogenes, and the annotated oxaloacetic acid decarboxylase (Asuc_0301 and Asuc_0302)
had little correlation with the SA synthesis pathway. The by-product pathway was closely related to
cell growth, and overexpression of FDH was beneficial to growth, while the knockout of the ackA gene
reduced the growth. For the first time, the hypothetic sugars and SA transporters were mined and
identified in A. succinogenes, of which Asuc_0914 was responsible for glucose uptake, and Asuc_0715
and Asuc_0716 constituted SA exporters. This deepens the understanding of SA biosynthesis in A.
succinogenes and is also valuable for SA production by fermentation.
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1. Introduction

Production of chemicals and fuels from renewable resources is a promising route for
sustainable development in the future. The chemical synthesis of chemicals has a risk
of environmental pollution, and the sustainable production of a microbial fermentation
method is increasingly favored [1–3]. Succinic acid (SA), one intermediate of the tricar-
boxylic acid cycle (TCA), is a widely high-value chemical and is applied in numerous
fields, including food, chemicals, agriculture, and pharmaceuticals [1,4]. It is also used
as a precursor to produce other derivatives such as adipic acid, tetrahydrofuran, and
1,4-butanediol. Microbial fermentation produces SA mainly through three TCA-related
pathways: the reduction branch of the TCA cycle (rTCA pathway), the oxidation branch of
the TCA cycle (oTCA pathway), and the glyoxylic acid cycle [5]. Under anaerobic condi-
tions, it occurs mainly through rTCA with SA as the end product. In this pathway, catalytic
reactions between phosphoenolpyruvate carboxykinase (PCK) and PEP carboxylase (PEPC)
or between phosphoenolpyruvate (PEP) and oxaloacetate (OAA) played an important role.
OAA was converted to malic acid by malate dehydrogenase (MDH), then fumaric acid was
converted by fumarase (FUM), and finally SA was obtained by fumarate reductase (FRD).
Under aerobic conditions, SA was synthesized mainly through the oTCA pathway and the
glyoxylate pathway (GAC pathway) [6]. SA appeared as an intermediate and was further
converted to fumarate. To prevent the conversion of SA to FUM, the activity of succinate
dehydrogenase (SDH) must be inhibited [7–11] (Figure 1).
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and was further converted to fumarate. To prevent the conversion of SA to FUM, the ac-
tivity of succinate dehydrogenase (SDH) must be inhibited [7–11] (Figure 1). 

Many microorganisms, such as Actinobacillus succinogenes, Anaerobiospirillum suc-
ciniciproducens, Mannheimia succiniciproducens, Escherichia coli, Corynebacterium glutamicum, 
Yarrowia lipolytica, and Saccharomyces cerevisiae, have been developed for SA production 
[2,12–15]. A. succinogenes is facultative anaerobic and gram-negative, and is isolated from 
the bovine rumen [16]. It can utilize various kinds of carbohydrates, such as glucose, xy-
lose, sucrose, fructose, lactose, galactose, and maltose, and can tolerate high concentra-
tions of glucose and succinate [16,17]. The fermentation products are mainly SA, along 
with some acetic acid (AA) and a small amount of formic acid (FA). Therefore, it is consid-
ered to be one of the most promising strains for SA production. However, A. succinogenes 
also has some disadvantages as a SA production platform, such as numerous auxotrophies 
and acid sensitivity [18–20]. Engineering of A. succinogenes is a promising method for fur-
ther increasing SA production [21]. The strategies to promote SA biosynthesis mainly in-
clude redirecting carbon flow, balancing the redox ratio (NADH/NAD+), and optimizing 
CO2 supplementation [22–26]. The main by-products are AA and FA in A. succinogenes. 
Therefore, carbon flow is generally redirected by blocking the pathway of by-product syn-
thesis and SA consumption. For example, AA can be effectively removed by inactivating 
the ackA gene and the inactivation of plfB effectively removes FA [27,28]. However, the 
removal of redundant metabolic branches resulted in the imbalance of the redox ratio 
(NADH/NAD+), which affected the normal cell growth and the accumulation of SA. In 
order to improve the accumulation of SA, the key enzymes of the SA synthesis pathway 
including FUM, PCK, and MDH were overexpressed to enhance the main metabolic path-
way of SA, but SA production was not significantly enhanced [27]. 

In this study, the effects of increasing the CO2 fixation pathway, reducing the oxalo-
acetic acid outflow, and eliminating the production of the by-products acetic acid and 
formic acid in the synthesis of SA were investigated by using the pLGZ922 expression 
vector and a cytosine base editor (CBE) in A. succinogenes. In addition, genes associated 
with sugar transporters and SA transporters were mined and identified, which will useful 
in improving the fermentative production of SA by A. succinogenes. 

 
Figure 1. Biosynthetic pathway of SA. OAA: oxaloacetate; MAL: malate; FUM: fumarate; SA: suc-
cinic acid; SUCC: succinyl CoA; AKG: α-ketoglutarate; ICI: isocitrate; CIT: citrate; AcCoA: acetyl 
CoA; ACTP: acetyl phosphate; ACALD: acetaldehyde; ackA: acetokinase; pyc: pyruvic carboxylase; 
pta: phosphoacetyltransferase; pdc: pyruvate decarboxylase; adh: alcoholdehydrogenase; pflB: py-
ruvate formate-lyase; fdh: formate dehydrogenase; ldh: lactate dehydrogenase; pyk: pyruvate kinase; 
pck: phosphoenolpyruvate carboxykinase; cit: citrate synthase; me: malic enzyme; mdh: malate 

Figure 1. Biosynthetic pathway of SA. OAA: oxaloacetate; MAL: malate; FUM: fumarate; SA: succinic
acid; SUCC: succinyl CoA; AKG: α-ketoglutarate; ICI: isocitrate; CIT: citrate; AcCoA: acetyl CoA;
ACTP: acetyl phosphate; ACALD: acetaldehyde; ackA: acetokinase; pyc: pyruvic carboxylase; pta:
phosphoacetyltransferase; pdc: pyruvate decarboxylase; adh: alcoholdehydrogenase; pflB: pyruvate
formate-lyase; fdh: formate dehydrogenase; ldh: lactate dehydrogenase; pyk: pyruvate kinase; pck:
phosphoenolpyruvate carboxykinase; cit: citrate synthase; me: malic enzyme; mdh: malate dehydro-
genase; fum: fumarase; sdh/frd: succinate dehydrogenase/fumarate reductase; suc: succinyl-CoA
thiokinase; ogdc: oxoglutarate dehydrogenase complex; icd: isocitrate dehydrogenase; acn: aconitase;
cit: citrate synthase; acc: acetyl-coa carboxylase; mcr: malonyl-coa reductase; pcs: propionyl-CoA
synthase; pcc: propionyl-CoA carboxylase; mmcEM: methylmalonyl-CoA exomerases and mutants.

Many microorganisms, such as Actinobacillus succinogenes, Anaerobiospirillum suc-
ciniciproducens, Mannheimia succiniciproducens, Escherichia coli, Corynebacterium glutam-
icum, Yarrowia lipolytica, and Saccharomyces cerevisiae, have been developed for SA produc-
tion [2,12–15]. A. succinogenes is facultative anaerobic and gram-negative, and is isolated
from the bovine rumen [16]. It can utilize various kinds of carbohydrates, such as glucose,
xylose, sucrose, fructose, lactose, galactose, and maltose, and can tolerate high concentra-
tions of glucose and succinate [16,17]. The fermentation products are mainly SA, along with
some acetic acid (AA) and a small amount of formic acid (FA). Therefore, it is considered
to be one of the most promising strains for SA production. However, A. succinogenes also
has some disadvantages as a SA production platform, such as numerous auxotrophies and
acid sensitivity [18–20]. Engineering of A. succinogenes is a promising method for further
increasing SA production [21]. The strategies to promote SA biosynthesis mainly include
redirecting carbon flow, balancing the redox ratio (NADH/NAD+), and optimizing CO2
supplementation [22–26]. The main by-products are AA and FA in A. succinogenes. There-
fore, carbon flow is generally redirected by blocking the pathway of by-product synthesis
and SA consumption. For example, AA can be effectively removed by inactivating the ackA
gene and the inactivation of plfB effectively removes FA [27,28]. However, the removal of
redundant metabolic branches resulted in the imbalance of the redox ratio (NADH/NAD+),
which affected the normal cell growth and the accumulation of SA. In order to improve
the accumulation of SA, the key enzymes of the SA synthesis pathway including FUM,
PCK, and MDH were overexpressed to enhance the main metabolic pathway of SA, but SA
production was not significantly enhanced [27].

In this study, the effects of increasing the CO2 fixation pathway, reducing the ox-
aloacetic acid outflow, and eliminating the production of the by-products acetic acid and
formic acid in the synthesis of SA were investigated by using the pLGZ922 expression
vector and a cytosine base editor (CBE) in A. succinogenes. In addition, genes associated
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with sugar transporters and SA transporters were mined and identified, which will useful
in improving the fermentative production of SA by A. succinogenes.

2. Materials and Methods
2.1. Strains, Plasmids, and Culture Conditions

The strains and plasmids used in this study are listed in Supplementary Materials:
Table S1, and the primers are listed in Supplementary Materials: Table S2. E. coli JM109 was
used as the host for the plasmid clone and cultured with LB medium at 37 ◦C or on LB agar
plates with ampicillin (100 µg/mL) when necessary. A. succinogenes M 2012036 (ZK) was
anaerobically cultured with TSB medium at 37 ◦C or on TSB agar plates with ampicillin
(100 µg/mL) when necessary. The fermentation medium was described in reference [29].
The sgRNAs were designed online (https://chopchop.cbu.cib.no/ accessed on 1 September
2022), and the protospacer sequences are listed in Supplementary Materials: Table S3.

2.2. Plasmid Construction

The pepc and pyc gene fragment was amplified from the Corynebacterium acetoacetophilus
genome, respectively. The ppk gene fragment was amplified from the Pseudomonas aeruginosa
genome. The codon-optimized DVfdh and CBfdh were synthesized by GE-NEWIZ, Inc. The
gene fragments were ligated, respectively, to the expression vector plGZ922 by ClonExpress
II One Step Cloning Kit (Vazyme, China), yielding the expression vectors pLGZ-CBfdh,
pLGZ-DVfdh, pLGZ-pepc, and pLGZ-pyc.

The cytidine base editor (CBE) base editor plasmid was constructed in a previous study
(data not published). The linearized fragments with the target gene sgRNA were amplified
using the CBE plasmid as a template by PCR, and transformed into E. coli JM109, yielding
the plasmids Asuc_0914-Td-CBE, Asuc_0023-Td-CBE, Asuc_0715-Td-CBE, Asuc_0716-Td-
CBE, Asuc_2056-Td-CBE, Asuc_0750-Td-CBE, Asuc_0301-Td-CBE, and Asuc_0302-Td-CBE.

2.3. Transformation and Gene-Silenced Mutant Screening of A. succinogenes

The method for the transformation refers to references [27,29].
After the gene-silenced plasmid was transformed into A. succinogenes, one colony

was randomly picked and placed into TSB medium containing 100 µg/mL ampicillin and
incubated anaerobically at 37 ◦C for 24 h. The cultures were spread on TSB agar plates until
colonies were obtained. The colony PCR was performed by randomly picking 10 colonies,
and the mutant was confirmed by DNA sequencing. A plasmid curing procedure was
performed by subculture of mutants in TSB medium overnight and plating on TSBG agar
without antibiotics. The target mutants that did not grow in the presence of antibiotics and
that grew in the absence of antibiotics were the target strains.

2.4. Determination of Extracellular and Intracellular Glucose and SA Concentrations

A. succinogenes was cultivated anaerobically in 25 mL of TSB medium at 37 ◦C for
12–16 h, and a 10% v/v inoculum was added into shake flasks containing 50 g/L glucose
fermentation medium with the pH regulator MgCO3 powder. The cultures were centrifuged
at 7000 rpm for 10 min. The supernatant was used to determine the extracellular glucose
and SA concentrations. Cells were suspended with PBS solution and washed twice. Finally,
cells were broken by adding 1.5 mL 10% H2SO4, and the broken solution was used to
determine the intracellular glucose and SA concentrations.

2.5. Fermentation and Analytical Methods

A. succinogenes was cultivated anaerobically in 25 mL of TSB medium at 37 ◦C for
12–16 h, and a 10% v/v inoculum was added into shake flasks containing 50 g/L glucose
fermentation medium with the pH regulator MgCO3 powder for 72 h. For a 3 L bioreactor,
the temperature and agitation were 38 ◦C and 200 rpm, respectively. MgCO3 was used
as a pH regulator in the early stage of fermentation, and 3 M Na2CO3 was maintained at
pH 6.5 in the late stage of fermentation. The initial glucose concentration was 35 g/L, and

https://chopchop.cbu.cib.no/
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we supplemented the glucose to maintain it between 10 and 30 g/L when the glucose fell
to below 10 g/L.

The optical density of A. succinogenes was measured by spectrophotometry at 660 nm
(OD660). Glucose and organic acids were analyzed by HPLC. The special determination
methods refer to reference [30].

3. Results and Discussion
3.1. Succinic acid Biosynthesis Pathway
3.1.1. Effect of Strengthening CO2 Fixation Pathway

SA was synthesized by the reductive C4 pathway (rTCA) in A. succinogenes, and the by-
products, such as acetic acid and formic acid, were synthesized by the C3 pathway [20,27].
A key CO2-fixing enzyme has been reported to be phosphoenolpyruvate carboxykinase
(PCK), which catalyzes the carboxylation of phosphoenolpyruvate with bicarbonate and
ADP to generate oxaloacetic acid (OAA) and ATP. No gene encoding phosphoenolpyruvate
carboxylase (PEPC) and pyruvate carboxylase (PYC) was found in A. succinogenes [20].
The heterogeneous expression of PEPC and PYC in E. coli and C. glutamicum enhanced
the C flow of the SA synthesis pathway and increased the SA production [31,32]. The
fixation of CO2 in Corynebacterium acetoacidophilum depends on the fact that PYC catalyzes
pyruvate and PEPC catalyzes phosphoenolpyruvate. Therefore, pyc and pepc genes from
C. acetoacidophilum were introduced into A. succinogenes to strengthen the CO2 fixation
pathway, respectively, yielding the strains ZK::pyc and ZK::pepc.

To investigate the effect on A. succinogenes after introducing the pyc and pepc genes,
cell growth, glucose, and organic acid concentrations were measured by shake-flask fer-
mentation (Figure 2a). The results showed that the SA produced by strain ZK::pyc was
similar to the wild-type ZK (SA 27.15 g/L), but the growth was slightly decreased and
the residual glucose concentration was higher, indicating that the expression of exogenous
PYC delayed the fermentation of SA. The SA production of strain ZK::pepc (38.63 g/L) was
significantly higher than that of the wild type and increased by 39%, and its effect on cell
growth was small. Although the by-products acetic acid and lactic acid are slightly ele-
vated, the conversion rate of glucose and SA was also significantly increased. These results
suggested that PEPC was a suitable precursor in the fixation of CO2 of A. succinogenes, and
overexpression of PEPC may enhance the carbon flow rate of the SA synthesis pathway,
thus increasing the SA production.

Further, the above three strains were fed-batch fermented in a 3 L bioreactor (Figure 2b–d).
The maximum OD660 of wild-type strain ZK was obtained at 7 h (up to 6.93), while that of strain
ZK::pyc was 7.56 at 12 h, and strain ZK::pepc was 6.58 at 10 h, respectively. These results indicated
that the overexpression of exogenous proteins delayed the growth of cells to a certain extent.
After fermentation for 60 h, the SA concentration was 52.35 g/L and the conversion rate was
0.70 g/g in strain ZK, while the SA concentrations of strain ZK::pyc and strain ZK::pepc were
55.66 g/L and 59.47 g/L, and their conversion rates were 0.82 g/g and 0.79 g/g, respectively. This
result was consistent with shake-flask fermentation, showing that the expression of PEPC from
C. acetoacidophilum in A. succinogenes increased the conversion rate and SA production, indicating
that increasing the expression of PEPC was beneficial to the SA synthesis of A. succinogenes.
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Figure 2. The results of shake-flask fermentations (a) and fed-batch fermentation by strains ZK
(b), strains ZK::pyc (c), and strains ZK::pepc (d).

3.1.2. Effect of Preventing Oxaloacetic Acid Outflow by Inactivation of Oxaloacetic
Acid Decarboxylase

In biological metabolism, OAA can be decarboxylated by oxaloacetic acid decarboxy-
lase to produce pyruvate. Based on the A. succinogenes genome (GenBank: CP000746.1),
Asuc_0301 and Asuc_0302 were annotated as genes encoding oxaloacetic acid decarboxylase.
To investigate the presence of OAA outflow in the SA biosynthesis of A. succinogenes, we
attempted to silence the gene encoding oxaloacetate decarboxylase using a cytosine base ed-
itor (CBE) based on CRIPSR/Cas9. The gene-silenced strains ∆Asuc_0301 and ∆Asuc_0302
were obtained by introducing terminators into the gene-coding region of Asuc_0301 and
Asuc_0302 (Figure 3a). The shake-flask fermentation results showed that, compared with
strain ZK, the SA production of strains ∆Asuc_0301 and ∆Asuc_0302 decreased slightly
and their growth deteriorated, indicating that the inactivation of genes Asuc_0301 and
Asuc_0302 not only did not promote the synthesis of SA, but also affected cell growth
(Figure 3b). These results indicated that this pathway may be related to cell growth in A.
succinogenes, and has little correlation with the biosynthetic pathway of SA.
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3.2. Effect of Formic Acid Pathway

Formic acid is mainly catalyzed by pyruvate formic acid lyase to produce pyruvate in
A. succinogenes. Although the knockout of the plfB gene blocked the formic acid synthesis
pathway, deletion of plfB affected cell growth and did not promote the SA synthesis
pathway [27,28]. In addition, it was found that A. succinogenes can produce formic acid in
the initial stage of fermentation, but with the extension of fermentation, formic acid can be
gradually consumed to produce NADH and release CO2. To further investigate the effect
of formic acid on the biosynthetic pathway of SA, formate dehydrogenase (FDH) of Candida
boidinii and Desulfovibrio vulgaris was introduced into A. succinogenes to remove the formic
acid, respectively, yielding strains ZK::CBfdh and ZK::DVfdh. The results of shake-flask
fermentation are shown in Figure 4a. It was found that the SA yield of strain ZK::DVfdh
was similar to that of strain ZK, indicating that the introduction of FDH from D. vulgaris
had no significant effect on the SA synthesis of A. succinogenes. The SA production and
OD660 of strain ZK::CBfdh were slightly higher than those of the wild type, and no formic
acid production was detected, indicating that CBfdh might consume formic acid to generate
NADH and CO2, which promoted cell growth and SA production. In order to further
investigate the effect of CBfdh expression on A. succinogenes, strain ZK::CBfdh was fed-
batch fermented in a 3 L fermenter. As shown in Figure 4b, the maximum OD660 of strain
ZK::CBfdh was obtained (7.76) at 7 h. After fermentation for 60 h, the SA concentration
was 52.72 g/L, and the conversion rate was 0.67 g/g, but its growth was better than that
of strain ZK (Figure 2b). Furthermore, the changes in the fermentation parameters of
strain ZK::CBfdh were observed when formic acid was added during the fermentation
process. As shown in Figure 4c, strain ZK::CBfdh obtained a maximum OD660 at 10 h, up
to 6.68. Formic acid produced by the strain was exhausted at 10 h, and 12 g formic acid was
added at 12 h, which could be exhausted at 24–34 h. After fermentation for 60 h, the SA
concentration was 52.13 g/L and the conversion rate was 0.79 g/g. These results showed
that the introduction of CBfdh into A. succinogenes could consume more formic acid but had
no significant effect on the synthesis of SA, indicating that formic acid metabolic pathways
may not account for a high proportion of carbon metabolic flow in A. succinogenes.
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Figure 4. Evaluation of different fermentation and metabolic parameters in wild-type A. succinogenes
and recombinants. (a) The shake-flask fermentation results of strains ZK, ZK::CBfdh, and ZK::DVfdh;
(b) the fed-batch fermentation results of strain ZK::CBfdh; (c) the fed-batch fermentation results of
strain ZK::CBfdh with 12 g FA. The added FA was marked with a red circle.
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3.3. Effect of Acetic Acid Pathway

Although the deletion of the ackA gene can reduce acetic acid synthesis, it also affects
the growth of strains [27]. In order to verify the role of acetokinase again, the strain
∆ackA::ackA was constructed by expressing ackA into the knockout strain ∆ackA. The
shake-flask fermentation results showed that, compared with the knockout strain, the
acetic acid production of the strain ∆ackA::ackA was slightly increased and the growth was
also restored to a certain extent, suggesting that the ackA gene was successfully expressed
and partly complemented ackA function in A. succinogenes (Figure 5a). The insignificant
complementary effect may be due to insufficient expression, but it also confirmed that the
ackA gene was necessary for cell growth and acetic acid synthesis. The production of acetic
acid is accompanied by the production of ATP, and it is speculated that ATP is associated
with cell growth. Polyphosphate AMP phosphotransferase of Pseudomonas aeruginosa can
promote ATP production. Therefore, we introduced the ppk gene into strain ∆ackA to
construct strain ∆ackA::ppk, and investigated its effects on cell growth and SA synthesis.
The results showed that, compared with strain ∆ackA, strain ∆ackA::ppk had a better
growth, but there was no significant difference in the production of SA, indicating that the
introduction of ppk may promote the production of ATP and thus promote cell growth,
and there seemed to be little correlation with the synthesis carbon flow of SA. Indeed, it
was indicated that the synthesis pathway of acetic acid may be more associated with cell
growth through the production of ATP.
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To further investigate the effect of the by-product pathway on the SA synthesis path-
way, CBfdh was introduced into strain ∆ackA to eliminate formic acid and acetic acid
during fermentation, yielding strain ∆ackA::CBfdh. The results of shake-flask fermentation
showed that strain ∆ackA::CBfdh could slightly increase the SA yield (Figure 5a). To study
the effect of strain ∆ackA::CBfdh on SA production, strain ∆ackA and strain ∆ackA::CBfdh
were fed-batch fermented in a 3 L fermenter. As shown in Figure 5b,c, the residual glucose
of strain ∆ackA was 4.53 g/L after fermentation for 60 h, and the maximum OD660, up to
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6.37, was obtained at 14 h. No formic acid or acetic acid were detected in the fermentation
process, and the yield of lactic acid was also reduced, with the concentration of SA pro-
duction being 43.11 g/L and the conversion rate being 0.66 g/g. The results showed that
the generation of acetic acid was eliminated after the ackA gene was knocked out, but the
cell growth was affected, and the generation and conversion rate of SA were reduced. The
residual glucose of strain ∆ackA::CBfdh was 5.20 g/L after fermentation for 58 h, and the
maximum OD660 was 7.14 when the strain was grown for 12 h. No formic acid was detected
in the fermentation process, the acid production concentration was 42.24 g/L, and the con-
version rate was 0.68 g/g. These results indicated that overexpression of CBfdh shortened
the growth stagnation period of the strain, but slightly affected the SA production.

In the initial phase of fermentation, A. succinogenes obtains a brief energy boost by
synthesizing acetic acid to initiate growth [33]. The effect of the overexpression of FDH
on growth was not as large as that of the deletion of ackA. CBfdh catalyzed formic acid to
produce NADH, and AA synthesis was accompanied by ATP generation, suggesting that
ATP may be more necessary than NADH for cell growth and SA production. The acetic
acid synthesis pathway is closely related to the SA synthesis pathway as it provides the
ATP required for cell growth in A. succinogenes.

3.4. Mining and Identification of Glucose Transporter

A. succinogenes naturally accumulates SA from a wide variety of carbohydrates, but no
associated transport genes have been characterized. The ptsG gene, which encodes glucose-
specific permease of the phosphotransferase system, protein EIICBglc, was inactivated
in E. coli, resulting in a strong shift in metabolic pathway to the SA synthesis pathway
during glucose fermentation [34]. It was found that two proteins, Asuc_0914 and Asuc_1575,
were homologous with ptsG by BLAST analysis in A. succinogenes (Figure 6a). Among
them, the Asuc_1575 gene is annotated as triosephosphate isomerase and the Asuc_0914
gene is annotated as the PTS system, sucrose-specific IIBC subunit. Therefore, these two
genes were speculated to be involved in glucose transport. To investigate gene function,
a stop codon was introduced into the coding region of the gene to yield a gene-silenced
strain by using a cytosine base editor. However, no available target site was found in the
coding region of gene Asuc_1575, so no Asuc_1575 gene-silenced strain was obtained. The
effects of the wild type and the gene-silenced strain ∆Asuc_0914 on SA synthesis were
determined by shake-flask fermentation. As shown in Figure 6b, the strain ∆Asuc_0914
showed efficient glucose utilization and increased SA production, representing a 1.1-fold
increase and indicating that the inactivation of Asuc_0914 may promote the production of
SA by participating in glucose transport.

To determine whether the Asuc_0914 gene is involved in glucose transport, intra-
cellular and extracellular glucose concentrations at different fermentation times were
measured. The results are shown in Figure 6c; extracellular glucose concentrations of strain
∆Asuc_0914 were all higher than those of the wild type, indicating that Asuc_0914 was
involved in glucose transport, and its inactivation affected glucose uptake. The intracellular
glucose concentration of strain ∆Asuc_0914 was similar to that of the wild type during the
whole fermentation process, which may be caused by the homeostasis of cell regulation.
Similar to E. coli, the inactivation of Asuc_0914 in A. succinogenes affects the uptake of
glucose by reducing the rate of glucose uptake and causing the metabolic pathway to shift
to the SA biosynthesis pathway. The accumulation of unserviceable intermediates that did
not effectively convert to the target product was caused by the rapid uptake of glucose.
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3.5. Mining and Identification of SA Transporter
3.5.1. Mining and Identification of SA Importer

In microbial fermentation production, the transport of products is also critical to
the synthesis of target products. Two JEN family carboxylic acid transporters PkJEN2-1
and PkJEN2-2 of Pichia kudriavzevii can effectively transfer to SA [35]. BLAST analysis
showed that Asuc_2056 had 18.99% homology with PkJEN2-1, and Asuc_0750 had 21.64%
homology with PkJEN2-1 (Figure 7a). It was speculated that Asuc_2056 and Asuc_0750
may be SA transporters in A. succinogenes. Similarly, by introducing terminators into the
coding regions of the Asuc_2056 and Asuc_0750 genes by cytosine base editor, respectively,
the gene-silenced strains ∆Asuc_2056 and ∆Asuc_0750 were obtained. The effect of gene-
inactivated strains on SA synthesis was determined by shake-flask fermentation. The
results showed that the SA yields of the two gene-silenced strains were similar to that of
the wild type, suggesting that Asuc_2056 and Asuc_0750 had no significant effect on the
synthesis of SA, which may be due to the difference in genetic background (Figure 7b). This
is consistent with our study that knocking out the JEN2 transporter in Issatchenkia orientalis
also did not promote SA synthesis [14].
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Asuc_2056 and JEN2-1, or Asuc_0750 and JEN2-2; (b) the shake-flask fermentation results of strain
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3.5.2. Mining and Identification of SA Exporter

SucE1 of C. glutamicum and yjjPB of E. coli were identified as SA exporters [36,37].
BLAST analysis showed that Asuc_0023 had 29.93% homology with SucE1, Asuc_0716 had
49.23% homology with yjjP, and Asuc_0715 had 50.96% homology with yjjB (Figure 8a).
Asuc_0716 and Asuc_0715 are also in one operon and have 49.88% homology with yjjPB. It is
speculated that Asuc_0716 and Asuc_0715 may be SA exporters of A. succinogenes. Similarly,
introducing terminators into the coding regions of Asuc_0023, Asuc_0716, and Asuc_0715,
respectively, yielded the strains ∆Asuc_0023, ∆Asuc_0716, and ∆Asuc_0715. The effect of
the gene-inactivated strain on SA synthesis was determined by shake-flask fermentation.
As shown in Figure 8b, there was no significant difference in the SA production of strain
∆Asuc_0023 compared with the wild type, indicating that Asuc_0023 may not be involved
in the transport of SA. The growth of the ∆Asuc_0715 and ∆Asuc_0716 strains deteriorated,
and the yield and conversion rate of SA decreased significantly, indicating that Asuc_0715
and Asuc_0716 may be SA transporters which are involved in SA output. After the
inactivation of the two genes, the intracellular SA could not be transported out to affect cell
homeostasis, resulting in poor cell growth and SA synthesis. To further determine the effect
of Asuc_0715 and Asuc_0716 on SA synthesis, a double gene-silenced strain ∆Asuc_0715-
0716 was constructed. The shake-flask results showed (Figure 8b) that, compared with the
wild type, the double gene silencer had poorer growth and lower SA production, indicating
that Asuc_0715 and Asuc_0716 could affect SA synthesis. However, there was no significant
difference in the growth and SA production of the double gene-silenced strains compared
with the single gene-silenced strains, which may be due to the fact that cells can regulate
the intracellular SA concentration to maintain cell homeostasis.
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To identify whether Asuc_0715 and Asuc_0716 were SA exporters, the intracellular and
extracellular SA concentrations of the three mutant strains at different fermentation times
were measured. The results are shown in Figure 8c; extracellular SA concentration of the
three mutants was lower than the wild type, while intracellular succinic acid concentration
was higher than the wild type, indicating that the inactivation of Asuc_0715 and Asuc_0716
affected the exportation of intracellular SA, resulting in the accumulation of intracellular
SA. The intracellular and extracellular SA concentrations of the three mutants were similar,
suggesting that either Asuc_0715 or Asuc_0715 is important for SA exportation. Taken
together, these results suggested that Asuc_0715 and Asuc_0716 were SA exporters and
that any one of them was necessary for SA export in A. succinogenes.

4. Conclusions

The expression of PEPC and PYC from C. acetoacidophilum suggested that A. succino-
genes tended to fix CO2 and produced SA through PEPC carboxykinase. Overexpression
of FDH from Candida boidinii was beneficial to cell growth and removed the by-product
formic acid. The deletion of the ackA gene can remove acetic acid, but is unfavorable to cell
growth due to insufficient ATP supply. By silencing hypothetic glucose and SA transporter
genes by base editor, it was found that Asuc_0914 was responsible for glucose uptake, and
Asuc_0715 and Asuc_0716 constituted SA exporters that were important for SA production
in A. succinogenes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation9121026/s1, Table S1: the strains and plasmids used
in this study; Table S2: the primers used in this study; Table S3: the PAM sequences used in this study.
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