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Abstract: The PlantEye multispectral scanner is an optoelectrical sensor automatically applied to a
mechatronic platform that allows the non-destructive, accurate, and high-throughput detection of
morphological and physiological plant parameters. In this study, we describe how the advanced
phenotyping platform precisely assesses changes in plant architecture and growth parameters of
wild rocket salad (Diplotaxis tenuifolia L. [DC.]) under drought stress conditions. Four different
irrigation supply levels from moderate to severe, required to keep 100, 70, 50, and 30% of the water-
holding capacity, were adopted. Growth rate and plant architecture were recorded through the
digital measure of biomass, leaf area, Canopy Light Penetration Depth, five convex hull traits, plant
height, Surface Angle Average, and Voxel Volume Total. Vegetation color assessments included hue,
lightness, and saturation. Vegetation and senescence indices were calculated from canopy reflectance
in the red (620–645 nm), green (530–540 nm), blue (peak wavelength 460–485 nm), near-infrared
(820–850 nm), and 3D laser (940 nm) ranges. The temperature, relative humidity, and solar radiation
of the environment were also recorded. Overall, morphological parameters, color, multispectral
data, and vegetation indices provided over 7200 data points through daily scans over three weeks
of cultivation. Although a general decrease in growth parameters with increasing stress severity
was observed, plants were able to maintain the same morpho-physiological performances as the
control during the early growth stages, keeping both 70% and 50% of the total water-holding capacity.
Among indices, the Normalized Differential Vegetation Index (NDVI) contributed the most to the
differentiation between different stress levels during the cultivation cycle. Across the 3 weeks of
growth, statistically significant differences were observed for all traits except for the Saturation
Average. Comparisons with respect to the control highlighted the strong impact of drought stress on
morphological plant traits. This study provided meaningful insights into the health status of wild
rocket salad under increasing drought stress.

Keywords: high-throughput detection; three-dimensional scan; leafy vegetables; plant reflectance;
water deficit

1. Introduction

Traditionally, manual methods have been used to gather plant phenotypic data. These
approaches present several drawbacks: low efficiency as it is labor-intensive to detect thou-
sands of data points, a subjective manner of analysis, risks of inefficiency, and inaccuracy of
the information collected [1]. Cutting-edge technologies based on spectral imaging provide
an advanced application to dissect, in a non-destructive manner, plant phenotypes with high
precision and throughput. This dataset presents the application of the PlantEye F500, a three-
dimensional (3D) multispectral laser scanner able to capture over 20 plant parameters per
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scan with high processivity when equipped on an automated phenotyping platform. Based
on the 3D model obtained from spectral data in the RGB (red, green, blue) and near-infrared
wavelengths, computer vision allows us to reconstruct the plant canopy and calculate some
synthetic vegetational indices (VIs), thus determining the overall plant development and
health status. This platform is being increasingly used in several studies and different crop-
ping systems to investigate the physiological, stress tolerance, and nutritional-related traits in
both open-field and protected environments [2–5]. Here, the PlantEye F500 has been used to
monitor the growth and physiology of wild rocket (Diplotaxis tenuifolia) under water stress.
Wild rocket salad is a herbaceous crop with an annual life cycle belonging to the Brassicaceae
family, whose plant leaves are eaten as a vegetable, being appreciated by consumers for the
typical pungent taste and spicy aroma [6]. It is also an invaluable source of health-beneficial
compounds, being rich in vitamin C, flavonoids, and glucosinolates [7]. The species shows
a certain tolerance to drought, a characteristic that makes it suitable for colonizing natural
environments with a limited availability of water [8]. However, in agriculture systems, water
management of the crop is necessary to modulate fertigation, pathogen susceptibility, nutri-
tional and post-harvest quality traits, and water use efficiency [9], also in view of the general
impacts of global warming. So, monitoring changes in plant morpho-physiological parameters
under water stress is strategic for decision making (e.g., cultivar selection, implementation of
agronomic protocols). Manual measurements of plants under drought stress conditions are
laborious, not allowing for the precise dissection of changes in plant architecture and varia-
tions in physiological parameters. These limitations are even more drastic if different levels of
water deficit occur during the growing cycle. Here, we describe the application of a precision
phenotyping system with the aim of determining those traits that are primarily affected by a
lack of irrigation in wild rocket. Additionally, this is the first attempt to use the PlantEye F500
to investigate the effects of drought stress on this crop. To the best of our knowledge, to date,
this tool has not yet been used in D. tenuifolia. The approach presented here provides valuable
information for researchers interested in the mechanisms of resistance/tolerance to drought
stress in wild rocket toward the optimization of the water supply during its cultivation.

2. Materials and Methods
2.1. Plant Material and Experimental Details

The experiment was carried out in June 2023 in the glasshouse of CREA—Research
Centre for Vegetable and Ornamental Crops, Pontecagnano Faiano, Italy (40◦37′ N; 14◦58′ E).
Diplotaxis tenuifolia cv. Tricia, commonly known as wild rocket or Mediterranean wild rocket,
was used for this study. Five just-emerged seedlings were transplanted into plastic pots
(7 cm diameter and 100 mL vol.) filled with 120 g of peat, whose water-holding capacity was
determined by the gravimetric method. An automated climate control system consisting
of an evaporative fan cooling system and a shading screen was adopted. Two weeks after
transplantation, plants were subjected to comparative treatments for 19 days, keeping
growing substrates at a 100% water-holding capacity (leaching 20% of the applied water
and electrical conductivity (EC) of the irrigation solution of 1.53 dS m−1) (control, C); 70%
water-holding capacity (30% less water than the control plants, 70); 50% water-holding
capacity (50% less water than the control plants, 50); and 30% water-holding capacity (70%
less water than the control plants, 30). The moisture pot content was measured every day
at 9 a.m. Each pot was replenished daily with the evapotranspiration water lost. This
research was executed in a randomized complete block design with five replications, each
represented by a pot with 5 plants, for a total of 25 plants per treatment. No fertilization
was applied.

2.2. Phenotyping Assessment

Plants were scanned using a PlantEye F500 multispectral 3D scanner (Phenospex,
Heerlen, The Netherlands) [10]. The scanner moves horizontally and vertically (X-Y axis)
on a gantry system positioned on the top of the plants, at 1.5 m (Figure 1), acquiring all
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measures and reconstructing the whole plant canopy. The plants were scanned daily at
11:30 am. Each scan took 20 min to acquire information throughout the trials.
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Figure 1. The Phenospex phenotyping platform of CREA—Research Centre for Vegetable and
Ornamental Crops (Pontecagnano, Italy). On the left, the overview of the pot experiment is shown;
vertical bars carry the coordinates (barcodes), allowing the 3D scanner to recognize the position of
plants on the bench. On the right, details (front–bottom) of the PlantEye F500 dual scanner are shown.

PlantEye acquires spectral reflectance in four different wavelengths, each measured
in one channel. Peak wavelengths (PWs) and spectral half width (SHW) for each channel
are reported as follows: red (PW 620–645 nm; SHW 20 nm), green (PW 530–540 nm; SHW
80 nm), blue (PW 460–485 nm; SHW 20 nm), near-infrared (PW 820–850 nm; SHW 20 nm),
and 3D laser (PW 940 nm). The PlantEye phenotyping system then automatically computes,
by Hortcontrol v. 3.8 software [10], a diverse set of morphological plant parameters
calculated from the 3D model of the plant (Table 1).

Table 1. List of measured traits calculated from the 3D model of the plant with the PlantEye
500 multispectral laser scan. Traits include (i) morphological parameters (13), color and multispectral
reflectance measures (3), and spectral vegetation indices (4).

Acronym Trait Unit of Measurement Trait Type

LA3D Three-Dimensional Leaf Area mm2 Morphological
parameters

CLPD Canopy Light Penetration Depth mm
CHAC Convex Hull Area Coverage %
CHA Convex Hull Area mm2

CHAR Convex Hull Aspect Ratio index
CHC Convex Hull Circumference mm
CHMW Convex Hull Maximum Width mm
DB Digital Biomass mm3

PHA Plant Height Averaged mm
PHM Plant Height Max mm
PLA Projected Leaf Area mm2
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Table 1. Cont.

Acronym Trait Unit of Measurement Trait Type

SAA Surface Angle Average A◦

VVT Voxel Volume Total mm3

HUE Hue Average Â◦ Color and
multispectral

LA Lightness Average %
SA Saturation Average %

NDVI Normalized Differential Vegetation Index index Vegetation
indices

NPCI * Normalized Pigment Chlorophyll Index index
PSRI # Plant Senescence Reflection Index index
GLI Green Leaf Index Average. index

* calculated as (RED − BLUE)/(RED + BLUE). # calculated as (RED − GREEN)/(NIR).

2.3. Data Analysis

All data were analyzed using the R statistical software v4.0.2 [11]. The ANOVA was
performed to determine, for each trait studied, the significance of the different treatments
in each week of cultivation. Average differences between treatments and the control were
compared using the Dunnett tests. A p = 0.05 threshold was considered to indicate a
statistically significant difference. The correlations among traits scored in each independent
treatment were calculated from accession means using the corrplot R package v 4.4 [12].
The Pearson linear coefficients of correlation (r) were calculated between pairs of traits, and
the significance of correlations was evaluated at p < 0.05. A principal component analysis
(PCA) was carried out among accession means of 20 traits scored across three weeks for
the different drought stress treatments, in order to determine the most effective traits in
discriminating among accessions. PCA loading and score plots were drawn in R using the
FactoMineR and factoextra packages [13,14]. The prediction ellipses with 95% confidence
intervals were added to the PCA score plot.

3. Results and Discussion

During the period of cultivation, the internal temperature ranged from 19 ◦C (night)
to 32 ◦C (day) with an average relative humidity of 72% ranging from 35% to 82% (Table 2:
Data File 1). By scanning once a day, the PlantEye F500 allowed us to investigate all
parameters in depth, thus determining the changes in morphological and physiological
parameters in the different growing conditions. In total, we gathered 7200 phenotypic data
points on both control and water-stressed plants from 8 June to 26 June 2023 (Table 2: Data
File 2).

Table 2. Overview of Data Files reporting raw climatic and phenotyping data.

Label Name of Data File Data Repository and DOI Identifier

Data File 1 D. tenuifolia_Trial_Climate
Datalogger

Figshare
(https://doi.org/10.6084/m9.figshare.25201160,
accessed on 6 May 2024)

Data File 2 D_tenuifolia_Water_Stress_
F500Phenotyping

Figshare
(https://doi.org/10.6084/m9.figshare.25201172,
accessed on 6 May 2024)

The applied stresses highlighted substantial changes in the morphology and canopy
of the plant (Figure 2). The Three-Dimensional Leaf Area consistently decreased with the
incremental stress during the 3 weeks of this study. We observed how, in control conditions,
LA3D increased from the first to the third week, while with both 50% and 30% water stress,
during the third week, the lowest values were reached. This is justified by the reduced
growth capacity of the plants and the onset of leaf necrosis mechanisms.

https://doi.org/10.6084/m9.figshare.25201160
https://doi.org/10.6084/m9.figshare.25201172
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Figure 2. Boxplots showing median values and quartiles for the different treatments (100 = control;
70 = 30% less water than the control; 50 = 50% less water than the control; 30 = 70% less water than
the control) across three weeks. Trait acronyms: LA3D: Three-Dimensional Leaf Area; CLPD: Canopy
Light Penetration Depth; CHAC: Convex Hull Area Coverage; CHA: Convex Hull Area; CHAR:
Convex Hull Aspect Ratio; CHC: Convex Hull Circumference; CHMW: Convex Hull Maximum
Width; DB: Digital Biomass; PHA: Plant Height Averaged; PHM: Plant Height Max PLA: Projected
Leaf Area; SAA: Surface Angle Average; VVT: Voxel Volume Total; HUE: Hue Average; LA: Lightness
Average; SA: Saturation Average; NDVI: NDVI Average; NPCI: NPCI Average; PSRI: PSRI Average;
GLI: GLI Average.

The Canopy Light Penetration Depth tended to increase in the first two weeks of
cultivation with the occurrence of water stress, due to the loss of turgor in the leaves that
caused wilting and therefore greater light penetrability. During the third week, we also
observed an increase in the Canopy Light Penetration Depth in the control. This is linked to
the lowering of the leaves resulting in weight gain following the growth of the plant. The
effect of growing is shown by biomass and plant height traits that reached the maximum
values during the last week in the control and to a minor extent in the groups with 70%
and 50% water-holding capacity. Convex hull traits were also affected by the application of
stresses. These parameters provide an estimation of the spread of leaves, contributing to
the whole plant size that is reduced by lowering irrigation [15]. Projected Leaf Area and
Voxel Volume Total were the other two traits proportionally affected by water stress. These
two parameters measure the Projected Leaf Area on a 2D plane and the leaf volume of
plants, respectively, thus decreasing significantly when the plant is not in optimal growth
conditions. We also observed changes in color parameters during the growth cycle.

We observed a general decrease in hue (more yellowish leaves) and an increase in
lightness in all plots from the first to the third week. Color parameters are related to the
content of pigments, which changes during the growth cycle. It has been observed that
water deficit would not impact the lightness and hue of rocket leaves [16]. Therefore,
the discoloration of the leaves from the first to the third week is probably caused by the
degradation of chlorophyll in response to a nutrient shortage brought on by the lack of
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fertilization [17]. This is also indicated by the GLI, which consistently decreased from the
first to the third week. PlantEye F500 enables the automatic computation of vegetative
indices that represent the health of the plants. We observed a consistent decrease in the
NDVI as the intensity of the stress increased, as well as an increase in PSRI. These are the
two main indicators of vegetation development and senescence in crops [18].

Table 3 reports the significance of the differences among the means of the treatments for
the traits studied in the different weeks. Overall, the traits showed statistically significant
differences over the 3 weeks of this study, with a greater number of significant differences
observed in the third week. This could be due to the intensification of the effects of stress
in the last week.

Table 3. Significance of traits for the 3 weeks of this study.

Week 1 Week 2 Week 3

LA3D *** *** ***
CLPD NS NS **
CHAC *** *** ***
CHA *** *** ***
CHAR ** * NS
CHC *** *** ***
CHMW ** *** ***
DB *** *** ***
PHA NS NS ***
PHM NS ** ***
PLA *** *** ***
SAA *** *** ***
VVT *** *** ***
HUE *** *** ***
LA NS * *
SA NS NS NS
NDVI *** *** ***
NPCI * NS *
PSRI *** NS NS
GLI ** *** ***

p < 0.001 = ***; p< 0.01 = **; p < 0.05 = *; NS = not significant.

Only for Convex Hull Aspect Ratio, Saturation Average, and Plant Senescence Reflec-
tion Index were no significant differences observed during the last week. While the first
two traits may not have been affected by stress in the cultivation interval considered, the
last had an unexpected trend that requires further investigation to fully understand its
effectiveness over the time frame. We also calculated the difference between treatments
and the control across the three weeks for the 20 traits assayed (Table 4).

Interestingly, we observed how the differences between the control and treatments,
and in particular for thetraits linked to the morphology of the plant, intensified in the last
week of evaluation, denoting the impact of the effect of the stress applied. The results
highlight the feasibility of the high-throughput phenotyping platform to detect differences
between different drought stress levels, further suggesting that it is possible to maintain
adequate performances with a 30% reduction in water.

The correlation among traits has been calculated for each treatment considering a
significance threshold of p < 0.05 using the Pearson coefficient. The correlogram within
the control condition is reported in Figure 3a, while panels 3b, 3c, and 3d represent the
different water deficits applied.
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Table 4. Significant differences between three water deficit treatments with respect to the control
condition according to Dunnett’s test.

Week 1 Week 2 Week 3

70 50 30 70 50 30 70 50 30

LA3D * *** *** * *** *** ** *** ***
CLPD NS NS NS NS NS NS ** NS **
CHAC ** NS *** *** ** *** ** NS ***
CHA NS *** *** NS *** *** NS *** ***
CHAR NS ** NS NS * NS NS NS NS
CHC NS ** *** NS ** *** NS *** ***
CHMW NS NS ** NS NS ** NS ** ***
DB NS ** *** ** *** *** *** *** ***
PHA NS NS NS * NS NS *** * ***
PHM NS NS NS ** * ** *** *** ***
PLA ** *** *** *** *** *** *** *** ***
SAA *** ** *** *** *** *** *** * ***
VVT ** *** *** *** *** *** *** *** ***
HUE NS NS *** ** ** *** *** *** ***
LA NS NS NS * * NS NS * NS
SA NS NS NS NS NS NS NS NS NS
NDVI * * *** * ** *** NS * ***
NPCI NS NS ** NS NS NS * NS *
PSRI NS NS *** NS NS * NS NS NS
GLI NS NS *** ** ** *** *** *** ***

p < 0.001 = ***; p < 0.01 = **; p < 0.05 = *; NS = not significant.
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Figure 3. Correlations between morphological parameters, color measures, and vegetative indices for the
different treatments. (a) Control = 100% water; (b) 70 = 30% less water than the control; (c) 50 = 50% less
water than the control; (d) 30 = 70% less water than the control. The Pearson coefficient with a significance
threshold of p < 0.05 was considered. Color intensity and dots size are both directly proportional to the
coefficients. According to the scale on the right, blue and red colors correspond to positive and negative
correlations, respectively. The full name of each trait abbreviation can be found in Table 1.
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The correlograms suggest the same patterns in all trials with an increasing number
of strong correlations in the 50 and 30 stress conditions. Interestingly, the correlations
between the LA3D and GLI, as well as between the HUE and LA, constantly increased from
the control to the maximum reduction in water intake. The NCPI and PSRI exhibited the
strongest negative correlations with all morphological and color parameters in severe stress
conditions. We also observed how plant maximum height was strongly correlated with the
color spectrum characteristics and vegetative indices in the control (Figure 3a), and vice
versa in the stress conditions, closer correlations occurred with the other morphological
characteristics (Figure 3d). The principal component analyses (PCAs) in the first two
dimensions explained 63.8%, 52.1%, and 63.5% of the total variation in the first, second,
and third weeks of cultivation, respectively (Figure 4).
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Figure 4. Principal component analyses. Loading plot of the first (PC1) and second (PC2) principal
components showing the variation for 20 traits scored across three weeks for the different drought stress
treatments. (a) Week 1; (b) week 2; (c) week 3. Colored ellipses group measures for each treatment with
a 95% confidence interval. The legend indicates different treatments: 100 = control; 70 = 30% less water
than the control; 50 = 50% less water than the control; 30 = 70% less water than the control. On the
bottom, a distribution of the traits scored on the PCA biplot is displayed. The direction and distance
from the center of the biplot indicate how each OTU contributes to the first two components.

Consistently, we observed separation between the control and maximum irrigation
reduction across the three periods, while the 70 and 50 stress trials tended to show fewer
differences. The PCA evidenced how, in the first two weeks between the control and
30% water deficit, there were slight differences, thus highlighting how the cultivar of
rocket salad assessed may tolerate mild drought stresses. The PCA also showed how the
performance of most traits was reduced to the occurrence of stress, thus highlighting the
PSRI and NDVI as the main discriminators between the control and the three stress trials.

4. Conclusions

The brief report presented here, despite being relative to a single accession, is highly
informative, providing a comprehensive overview of the morpho-physiological changes in
wild rocket salad under drought stress. This confirms that the PlantEye F500 is powerful
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enough to dissect the morphological and physiological mechanisms of plants under water
stress. The efficiency of the PlantEye F500, combined with the controlled cultivation
system, allowed us to minimize any unwanted sources of variability. We observed how
severe drought stress may impact plant growth if kept for a long time interval, while a
moderate water deficit has minor effects. Our findings highlight that, in rocket salad, it is
possible to maintain adequate performance by reducing the irrigation by over 30%. This,
adopted on a large scale, would allow a considerable saving of water, which is one of the
main targets to achieve in agriculture. The approach described here can be broadened
to investigate the performance of cultivars in combination with additional abiotic and
biotic stresses. Furthermore, as wild rocket salad is a crop with multiple harvests, it is
possible to investigate the effect of stress across multiple cultivation periods. In addition,
the implementation of transcriptomics and metabolomics analysis would give us the
opportunity to deeply investigate the mechanisms of drought stress tolerance in wild
rocket salad in combination with multispectral data.
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