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Abstract: Anthocyanins are widely found in plants and have significant functions. The accurate
detection and quantitative assessment of anthocyanin content are essential to assess its functions. The
anthocyanin content in plant tissues is typically quantified by wet chemistry and spectroscopic tech-
niques. However, these methods are time-consuming, labor-intensive, tedious, expensive, destructive,
or require expensive equipment. Digital photography is a fast, economical, efficient, reliable, and
non-invasive method for estimating plant pigment content. This study examined the anthocyanin
content of Rosa chinensis petals using digital images, a back-propagation neural network (BPNN),
and the random forest (RF) algorithm. The objective was to determine whether using RGB indices
and BPNN and RF algorithms to accurately predict the anthocyanin content of R. chinensis petals is
feasible. The anthocyanin content ranged from 0.832 to 4.549 µmol g−1 for 168 samples. Most RGB
indices were strongly correlated with the anthocyanin content. The coefficient of determination (R2)
and the ratio of performance to deviation (RPD) of the BPNN and RF models exceeded 0.75 and 2.00,
respectively, indicating the high accuracy of both models in predicting the anthocyanin content of
R. chinensis petals using RGB indices. The RF model had higher R2 and RPD values, and lower root
mean square error (RMSE) and mean absolute error (MAE) values than the BPNN, indicating that
it outperformed the BPNN model. This study provides an alternative method for determining the
anthocyanin content of flowers.

Keywords: RGB indices; random forest; back-propagation neural network; non-invasive prediction;
flower

1. Introduction

Anthocyanins are phenolic water-soluble glycosides or acyl-glycosides of anthocyani-
dins [1]. They are widely distributed in plants [2]. Anthocyanins are water-soluble flavonoid
pigments [3] that accumulate in various organs and are typically stored in vacuoles in
the epidermis or mesophyll [2,4]. They contribute to orange-to-blue colors but primarily
provide red, purple, or blue hues to leaves, fruits, and flowers [5,6]. The color primarily
depends on the anthocyanin type and content [7], pH, co-pigments, and metal ions [2].
Anthocyanins are important secondary plant metabolites produced from the amino acid
phenylalanine through the anthocyanin biosynthetic pathway [8]. Their biosynthesis can
be affected by biotic or abiotic stresses, such as nutrient deficiency, wounding, pathogens,
drought, light, salinity, cold, and ultraviolet (UV) irradiation [7,9,10]. Anthocyanins fulfill
essential physiological functions related to adaptation and protection against stresses [5,9].
Accurate detection and quantitative assessment of anthocyanins can provide valuable
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information on the physiological responses and adaptation of plants to environmental
stresses [11].

Wet chemistry is the most common method for quantifying the anthocyanin content
in plant tissues. This method is highly accurate [12] but time-consuming, labor-intensive,
tedious, expensive, and destructive [9,13]. Due to advances in spectroscopy and computer
analyses, spectroscopic techniques have been widely used to detect the anthocyanin content
of plants. Neto et al. [14] predicted the leaf anthocyanin content of Lactuca sativa using
partial least squares regression (PLSR) and visible and near-infrared (NIR) spectroscopy.
Liu et al. [11] used visible and NIR spectroscopy, principal component regression (PCR),
PLSR, and a back-propagation neural network (BPNN) to predict the leaf anthocyanin
content of Prunus cerasifera. These methods are simple, sensitive, non-invasive, and effi-
cient [11], but the equipment is relatively expensive, and the environmental requirements
are high [8]. Digital photography has been increasingly used to analyze plant color and
quantify the pigment content based on color parameter values extracted from digital images
acquired by digital cameras. This method is widely used because it is fast, economical,
efficient, reliable, and non-invasive [5,7,15]. For example, Yang et al. [13] calculated six
color parameters in both RGB and HIS color space from digital images of L. sativa leaves
to generate 37 color indices, and then prediction models were developed based on these
color indices using curve estimation to predict the anthocyanin content. Del Valle et al. [7]
extracted RGB values from digital images to generate 12 color indices, then utilized these
indices to construct models to estimate relative anthocyanin concentrations in species with
color variations via PSLR. Askey et al. [8] computed color index values from digital images
of Arabidopsis thaliana leaves across five color spaces, and developed models to predict
the anthocyanin content utilizing twenty-two regression models. These studies were all
based on digital images and utilized color index values obtained from various color spaces,
employing different modeling methods. However, they mainly focus on plant leaves and
rarely use machine learning to build models.

Machine learning is a branch of artificial intelligence, widely used to construct estima-
tion models. Mathematical or computer algorithms are employed to train a computational
model to solve a problem or perform complex tasks based on input parameters [16]. The al-
gorithm learns to perform tasks based on input data. This method has been used for pattern
recognition, classification, and prediction. Machine learning algorithms have high accu-
racy, automation, and speed, they can be customized and applied at different scales [17],
providing excellent performance.

Machine learning algorithms include BPNN, support vector regression (SVR), random
forest (RF), extreme learning machine (ELM), and Cubist [18]. BPNN and RF algorithms
are two commonly used machine learning algorithms. BPNN is a multilayer feed-forward
neural network that corrects errors using a back-propagation algorithm [19]. It has strong
nonlinear mapping, self-learning, self-adaptive, and generalization capabilities and high
fault tolerance [19,20] and is suitable for regression or classification problems. Therefore, it is
the most widely used neural network model and is particularly useful for solving nonlinear
problems [21]. RF is a supervised machine learning ensemble algorithm based on the if-
then-else rules. It was proposed by Breiman [22] and is known for its robustness, ability
to handle high-dimensional data, and resistance to overfitting, noise, and outliers [23].
It is insensitive to collinearity [24] and effective in handling high-dimensional data and
covariance among variables [25]. Furthermore, RF provides high prediction accuracy with
low computational complexity due to random sampling [26]. Thus, it is a popular machine
learning algorithm for classification and prediction.

Rosa chinensis is a popular flower worldwide. It originated in China and was spread
from the Silk Road to Persia, Ceylon, and other countries [27]. Since this flower blooms
year-round and produces flowers with diverse colors [28], it has been widely planted and
cultivated as an ornamental plant. This flower also has many other values, e.g., cultural [29],
medicinal [30,31], and edible [32,33]. These values are attributed to the abundance of an-
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thocyanin in the petals, but the anthocyanin content significantly affects these values. Thus,
estimating the anthocyanin content of R. chinensis petals is essential to assess these values.

This study predicts the anthocyanin content of R. chinensis petals using RGB indices
and BPNN and RF algorithms. The objective is to investigate the feasibility of using RGB
indices and BPNN and RF algorithms to predict the anthocyanin content of R. chinensis
petals accurately. We hypothesize that RGB indices combined with BPNN and RF can
accurately predict the anthocyanin content of R. chinensis petals.

2. Materials and Methods
2.1. Plant Materials

A total of 504 petals (3 petals per flower) of R. chinensis, ranging from pink to red
(Figure 1), were collected on the campus of Henan University of Science and Technol-
ogy (34.62◦ N, 112.46◦ E). Three petals of one flower represented 1 sample, resulting in
168 samples. The petals were immediately sealed in numbered plastic bags and placed in
an insulated box with ice cubes to prevent water evaporation. Healthy and homogeneously
colored petals without visible symptoms of damage were used for the experiments.
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2.2. Digital Image Acquisition

Images of the samples were captured immediately after petal collection using a digital
still color camera (EOS 500D, Canon Inc., Tokyo, Japan) with an EF 100 mm autofocus
lens. This camera has a 22.3 × 14.9 mm CMOS sensor (4752 × 3168 pixels). The camera
was mounted on a tripod at the nadir position at a constant height of 0.4 m above the
top of the petals. Aperture priority mode was selected. The aperture was f/5.6, with ISO
100, white balance fixed at 4900 K, autoexposure, autofocus, and no flash. The sensitivity
was manually set to 1600. All samples were photographed with a ColorChecker Passport
(X-Rite Inc., Grand Rapids, MI, USA) for standardization for different light conditions. The
images were acquired from 11:00 to 14:00 on a sunny day and stored in the Canon raw
image (CR2) file format. This format contains unprocessed data that can be linearized using
specialized software [7]. A total of 168 images were acquired.

2.3. Image Processing and RGB Index Construction

The “Image Calibration and Analysis Toolbox” [34], a freeware plugin for ImageJ
software (version 1.53e) [35], was used for image processing. The method developed by
Del Valle et al. [7] was used for image calibration to linearize the RGB values. Nine (three
per petal) regions of interest (ROIs) were randomly selected in each sample, the values of
the RGB channels were extracted, and the mean RGB values were calculated.
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Various RGB indices [7,36,37] were constructed to analyze the colors and estimate the
pigment content. In this study, 31 RGB indices (Table 1) were calculated from the mean
RGB pixel values.

Table 1. RGB indices used in this study. R, the value of the R channel; G, the value of the G channel;
B, the value of the B channel.

Index Index Index Index

R R/B (R − B)/(R + G + B) (G + B −R)/2B
G G/B (R − G)/(R + G + B) G/B + R
B G/R (G − B)/(R + G + B) B/G + R

(R + B + G)/3 B/R (G + B − R)/2R R/B + G
R − B B/G (R − B)/(R + B) (R + B)/2 − G
R − G R/(R + G + B) (R − G)/(R + G) (B + R)/G
G − B G/(R + G + B) (G − B)/(G + B) G/((B + R)/2)
R/G B/(R + G + B) (G + B − R)/2G

2.4. Anthocyanin Content Measurement

The anthocyanin content of the petals was measured following Xiong et al. [38]. In
brief, the petals were chopped, and about 0.20 g of the chopped petals was transferred
to 20 mL test tubes, followed by adding 10 mL of 0.1 mol L−1 hydrochloric acid ethanol
solution to extract the anthocyanin. The chopped petals were separated from the solvent by
filtering, and the extraction was repeated until pale petals were obtained. The absorbance
of the extracts was immediately measured with a spectrophotometer. The final anthocyanin
content was expressed as a function of the petal amount (i.e., µmol g−1).

2.5. Model Construction and Validation

A BPNN consists of three parts: input, hidden, and output layers. The input layer
consists of k neurons, where k represents the number of input variables. The hidden layer
converts the input into a format compatible with the output layer. The output layer consists
of m neurons, where m represents the number of output variables. The accuracy of the
BPNN depends on the number of hidden layer neurons, which is usually determined by
the number of input and output layers. Equation (1) was used to calculate the number
of neurons in the hidden layer. The mean square error (MSE) (Equation (2)) was used to
evaluate the performance of the BPNN model. A lower MSE indicates better results [39].

q =
√
(k + m) + X (1)

MSE = 1/n
n

∑
i=1

(yi − ŷi)
2 (2)

where q is the number of hidden layer nodes, k is the number of input layer nodes, m is the
number of output layer nodes, and X is a constant ranging from 1 to 10. MSE is the mean
square error, n is the number of samples, yi is the measured value of the i-th sample, and ŷi
is the predicted value of the i-th sample.

The framework of the BPNN is shown in Figure 2.
RF is a methodology that uses data as input to make predictions. It generates mul-

tiple decision trees by randomly selecting subsets of input variables and subsets of the
training data. Each decision tree makes independent predictions, and the final prediction
is obtained by averaging or voting the predictions of all trees. The performance of the
model is optimized by adjusting two parameters, ntree and mtry. The ntree denotes the
number of decision trees, and mtry is the number of random variables in each data set. The
larger the ntree, the better the classification performance of the RF model, but the slower
the processing speed. A smaller mtry value may cause overfitting, whereas a larger mtry
value increases model diversity and reduces the risk of overfitting. Therefore, ntree and
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mtry must be optimized. The root mean square error (RMSE) (Equation (3)) was used to
evaluate the optimization result. A lower RMSE indicates better results. The construction
process of RF is shown in Figure 3.
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The coefficient of determination (R2), root mean square error (RMSE), mean absolute
error (MAE), and the ratio of performance to deviation (RPD) were used to evaluate model
performance (Equations (3)–(6)). The R2 represents the proportion of the variance in the
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dependent variable that is explained by the independent variable. The closer the R2 is to
1, and the lower the RMSE and MAE, the better the model’s prediction performance. The
RPD is the ratio of the measured value’s standard deviation to the predicted RMSE. The
RPD values were classified as follows: an RPD < 1.4 indicated that the model was unreli-
able, 1.4 ≤ RPD < 2.0 suggested moderate reliability, and RPD > 2.0 indicated exceptional
prediction ability [8,11,26]. Generally, models with higher R2 and RPD values and smaller
RMSE and MAE values have higher prediction accuracy and stability [40,41].

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2/

n (3)

R2 = ∑n
i=1 (ŷi − y)2/∑n

i=1(yi − y)2 (4)

MAE =
1
n∑n

i=1|ŷi − yi| (5)

RPD = SD/RMSE (6)

where ŷ is the predicted values; ȳ is the mean of the observed values; y is the observed
values; n is the number of predicted/observed values with i = 1, 2, . . ., n; SD is the standard
deviation of the validation or calibration set; and RMSE is the root mean square error of the
validation or calibration set.

Pearson correlation analysis was used to determine the relationship between the
anthocyanin content and the 31 indices. Collinearity analysis was used to determine the
collinearity among the RGB indices using the variance inflation factor (VIF) (Equation (7)).

VIFi = 1
/(

1 − r2
i

)
(7)

where ri
2 is the R2 of a regression of regressor xi on all remaining regressors. When a

regressor is orthogonal, VIF = 1. VIFs larger than 10 (ri
2 > 0.90) indicate collinearity [42].

The data set was divided into two groups. Two-thirds (112) were randomly selected
as the calibration set to construct the models. The remaining one-third (56) was used as the
validation set for estimating model prediction accuracy. Pearson correlation analysis and
collinearity analysis were performed using SPSS software (version 25.0, IBM Corporation,
Armonk, NY, USA). Only significantly correlated RGB indices were used to construct the
models. The BPNN and RF models were implemented in MATLAB (version R2016a) and R
(version 4.3.2) software, respectively.

3. Results
3.1. Correlation between Anthocyanin Content and Color Indices

The descriptive statistics of the anthocyanin content for the 168 samples are presented
in Table 2. The anthocyanin content varied widely, ranging from 0.832 to 4.549 µmol g−1 of
fresh weight, with a mean value of 2.935 ± 1.004 µmol g−1. The calibration set’s anthocyanin
content ranged from 0.832 to 4.549 µmol g−1, with a mean value of 2.924 ± 1.007 µmol g−1.
The validation set’s anthocyanin content ranged from 0.931 to 4.542 µmol g−1, with a mean
value of 2.958 ± 1.005 µmol g−1. The mean of the validation set was slightly higher than
the means of the entire set and the calibration set, but the differences were not significant
(p < 0.05), indicating that all were representative. The coefficient of variation of the entire
set was 34%, indicative of moderate variability, which facilitated calibration.

The descriptive statistics of the RGB values for the 168 samples are presented in Table 3.
The R, G, and B values ranged from 15.440 to 62.195, 2.842 to 48.647, and 1.856 to 30.307,
with means of 33.033 ± 9.952, 12.125 ± 8.913, and 9.359 ± 6.026, respectively.
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Table 2. Descriptive statistics of anthocyanin content (µmol g−1). SD, the standard deviation; CV, the
coefficient of variation.

Data Set Sample Size Minimum Maximum Average SD CV (%)

Entire set 168 0.832 4.549 2.935 1.004 34
Calibration set 112 0.832 4.549 2.924 1.007 34
Validation set 56 0.931 4.542 2.958 1.005 34

Table 3. Descriptive statistics of RGB values. R, the value of the R channel; G, the value of the G
channel; B, the value of the B channel; SD, the standard deviation; CV, the coefficient of variation.

Characters Data Set Sample Size Minimum Maximum Mean SD CV (%)

Entire set 168 15.440 62.195 33.033 9.952 30
R Calibration set 112 16.412 61.041 33.482 9.774 29

Validation set 56 15.440 62.195 32.134 10.328 32
Entire set 168 2.842 48.647 12.125 8.913 74

G Calibration set 112 2.842 48.647 12.103 8.630 71
Validation set 56 3.146 45.227 12.168 9.535 78

Entire set 168 1.856 30.307 9.359 6.026 64
B Calibration set 112 1.856 30.307 9.407 6.123 65

Validation set 56 2.135 27.008 9.264 5.881 63

The Pearson correlation coefficients between the anthocyanin content and the 31 RGB
indices are shown in Figure 4. Twenty-eight RGB indices had strong and significant cor-
relations with the anthocyanin content (p < 0.01). R − B, G/B, and (G − B)/(R + G + B)
had positive and non-significant correlations (p > 0.05). Among the 28 significantly cor-
related RGB indices, R, G, B, (R + B + G)/3, G − B, G/R, B/R, B/G, G/(R + G + B),
B/(R + G + B), (G + B − R)/2R, (G + B − R)/2G, G/B + R, B/G + R, R/B + G, and
G/((B + R)/2) were negatively correlated with the anthocyanin content. The remaining
12 RGB indices were positively correlated with the anthocyanin content. The correlations
between the anthocyanin content and B, R/G, G/R, R/(R + G + B), (R − G)/(R + G),
(R − B)/(R + G + B), (R − G)/(R + G + B), and (G + B − R)/2R were stronger than for the
other indices (|r| ≥ 0.800 for all). The highest correlation coefficient (r) (−0.844) occurred
between the anthocyanin content and (G + B − R)/2R.

Based on the collinearity analysis, 18 RGB indices were excluded. Nine of the ten
predictor RGB indices had VIFs exceeding 10 (Table 4), indicating multicollinearity.

Table 4. Collinearity analysis results of ten predictor RGB indices. R, the value of the R channel; G,
the value of the G channel; B, the value of the B channel; VIF, the variance inflation factor.

RGB Indices VIFs

B 31.66
R − G 8.46
G − B 48.02
R/B 573.87
G/R 2365.63
B/R 739.06
B/G 377.11

(G − B)/(G + B) 1095.59
(B + R)/G 366.72

G/((B + R)/2) 1426.28
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3.2. Parameter Optimization Results of BPNN and RF

The 28 RGB indices that were strongly correlated with the anthocyanin content were
utilized to establish the prediction models.

The indices were used as input to the BPNN model, and the anthocyanin content was
the output variable; k = 28 and m = 1. The MSE of the model was calculated for different
numbers of hidden layer nodes (Table 5). The model with 12 hidden layer nodes had the
lowest MSE and the best performance.

Table 5. The training times and errors of BPNN with different hidden layer nodes. BPNN, back-
propagation neural network; MSE, the mean square error.

The Number of Hidden Layer Nodes Training Times MSE

6 30 0.044
7 30 0.043
8 30 0.034
9 30 0.044
10 30 0.055
11 30 0.036
12 30 0.015
13 30 0.214
14 30 0.032
15 30 0.056

The two parameters (mtry and mtree) of the RF model were optimized based on the
RMSE. The ntree values ranged from 100 to 500 with an interval of 100, and the range of the
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mtry values was 2 to 20 with an interval of 2. The results are shown in Figure 5. The RMSE
(0.235 µmol g−1) is the lowest when the ntree was 100 and mtry was 6.
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3.3. Performance of BPNN and RF for Anthocyanin Content Prediction

The results of the BPNN and RF anthocyanin content prediction models are listed
in Table 6. The R2, RMSE, MAE, and RPD values of the BPNN were 0.784, 0.471, 0.334,
and 2.138 for the calibration set and 0.781, 0.475, 0.326 µmol, and 2.116 for the validation
set, respectively. The R2, RMSE, MAE, and RPD values of the RF were 0.946, 0.235, 0.176,
and 4.285 for the calibration set and 0.958, 0.208, 0.152, and 4.832 for the validation set,
respectively. The R2 and RPD values of the RF were 20.66% and 100.42% higher than those
of the BPNN for the calibration set, and the RMSE and MAE values were 50.11% and 47.31%
lower, respectively. The R2 and RPD values of the RF were 22.66% and 128.36% higher than
those of the BPNN for the validation set, respectively, and the RMSE and MAE values were
56.21% and 53.37% lower, respectively.

Table 6. Performance comparison of BPNN and RF. BPNN, back-propagation neural network; RF,
random forest; R2, the coefficient of determination; RMSE, root mean square error; MAE, mean
absolute error; RPD, the ratio of performance to deviation.

Models
Calibration Set (n = 112) Validation Set (n = 56)

R2 RMSE MAE RPD R2 RMSE MAE RPD

BPNN 0.784 0.471 0.334 2.138 0.781 0.475 0.326 2.116
RF 0.946 0.235 0.176 4.285 0.958 0.208 0.152 4.832

Table 7 lists the values of some RGB indices and the anthocyanin contents obtained
from the BPNN and RF models and wet chemistry. The results indicate that the RF
model yielded an anthocyanin content predicted closer to the wet chemistry method than
the BPNN.

Figure 6 shows the predicted and measured anthocyanin contents for the validation
set. Although both models exhibited similar patterns, the RF model had a better prediction
performance (RPD = 4.832). The points were close to the 1:1 line, with fewer outliers than
for the BPNN model.
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Table 7. The part RGB indices and anthocyanin content obtained by wet chemistry, BPNN, and RF
in some samples. R, the value of the R channel; G, the value of the G channel; B, the value of the B
channel; BPNN, back-propagation neural network; RF, random forest.

Samples
RGB Indices Anthocyanin Content

R G B R/G R/B G/R Wet Chemistry BPNN RF

YJA-12 60.282 48.647 30.307 1.239 1.989 0.807 0.832 1.090 1.008
YJA-06 39.221 22.225 23.215 1.765 1.689 0.567 1.044 1.112 1.056
YJB-08 38.667 12.798 12.642 3.021 3.059 0.331 1.130 2.464 1.802
YJC-4 26.744 7.447 5.437 3.591 4.919 0.278 3.428 3.302 3.409
YJC-7 17.211 3.584 2.699 4.802 6.377 0.208 3.767 3.654 3.757
YJC-1 15.440 3.223 2.326 4.791 6.639 0.209 3.770 3.583 3.760
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4. Discussion

Using the RGB color space is the most common approach to describe a color quantita-
tively [43]. The RGB value refers to the sum of the three channels (R, G, B) [44], where R, G,
and B denote the mean values of the red, green, and blue channels. The digital images can
be acquired using a digital camera, smartphone, and scanner. Image processing methods
are used to extract the RGB values from digital images and construct RGB indices [45].
Thus, digital photography is a simple, quick, and low-cost method that has been widely
used to predict the content of plant pigments. For example, Hassanijalilian et al. [46] used
RGB indices to predict the leaf chlorophyll content of Glycine max. Wood et al. [47] observed
that the RGB indices enabled the estimation of the a, b, and total chlorophyll concentra-
tions of microalgal cultures in situ. Taha et al. [48] demonstrated the feasibility of using
RGB indices to estimate the chlorophyll content of lettuce. In this study, the correlations
between 28 RGB indices derived from digital camera images and the anthocyanin content
were strong, indicating that these indices were suitable for establishing predictive models
of the anthocyanin content. The R2 and RPD values of the BPNN and RF models were
greater than 0.75 and 2.00 (Table 5), respectively. An R2 value higher than 0.7 is indicative
of a high-fitting model that explains 70% of the variance [49]. The RPD value exceeding
2.0 indicates that the models had exceptional prediction ability [11,26,50]. These findings
imply that predicting the anthocyanin content of R. chinensis petals using RGB color in-
dices derived from digital images combined with BPNN and RF is feasible. Both models
exhibited excellent robustness and high predictive ability.

Machine learning algorithms and RGB images have been successfully used to predict
plant pigment content, such as the anthocyanin content of A. thaliana leaves [8] and the
chlorophyll content of G. max leaves [46]. BPNN and RF are machine learning algorithms.
BPNN learns complex nonlinear relationships by iteratively adjusting the weights to
minimize the error between the predicted and measured results [51]. RF uses multiple
decision trees during training and combines their predictions to improve accuracy [22].
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This study utilized BPNN and RF to predict the anthocyanin content of R. chinese petals.
The RF model had higher R2 and RPD values and lower RMSE and MAE values than the
BPNN for the calibration and validation sets (Table 7). These results indicated that the
RF algorithm outperformed the BPNN algorithm, consistent with previous findings. For
example, Guo et al. [52] established prediction models for the leaf chlorophyll content of
maize and found that the RF algorithm achieved better prediction results than the BPNN
algorithm. Yang et al. [53] demonstrated that the RF outperformed the BPNN in predicting
the chlorophyll content of trees in coniferous, broad-leaved, and mixed broad-leaved forests
and of individual trees. The better performance of RF can be contributed to its insensitivity
to multicollinearity, a common problem with RGB indices.

This study has some limitations. First, we used detached petals to enable their analysis
under consistent light conditions. Thus, the prediction performance should be assessed
for in situ conditions. Second, the petals were obtained from the same location. Future
studies should select samples from larger areas. Third, it should be investigated whether
images acquired with smartphones could be used with this method instead of cameras since
smartphones are ubiquitous. The proposed improvements would improve the application
of this method.

5. Conclusions

This study developed models to predict the anthocyanin content of R. chinensis petals
using RGB indices derived from digital images combined with the BPNN and RF algorithms.
Most RGB indices were correlated with the anthocyanin content. The R2 and RPD values
for the two algorithms exceeded 0.75 and 2.0, respectively. The RF model had higher R2

and RPD values and lower RMSE and MAE values than the BPNN model. This study
demonstrates that RGB indices derived from digital camera images can be used to estimate
the anthocyanin content of R. chinensis petals using BPNN and RF algorithms. The results
provide an alternative method for determining the anthocyanin content of flowers.
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