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Abstract: Controlling soil-borne pathogens is a significant problem in agriculture. Arbuscular mycor-
rhizae have a potential role in controlling soil-borne pathogens by increasing plant phytohormone
contents. However, the mechanism of resistance by mycorrhizae has not been fully elucidated,
particularly against bacterial wilt disease in Solanaceae. This study examined the role of mycorrhizae
in expressing genes involved in the signaling pathways mediated by jasmonic acid (JA) and salicylic
acid (SA) in tropical chili pepper against the bacterium Ralstonia solanacearum. Seedlings from ten
genotypes of chili pepper were inoculated with a consortium of five mycorrhizal species and/or
inoculated with a mixture of nine isolates of R. solanacearum. The leaves of 10-week-old plants after
the treatment were sampled for real-time polymerase chain reaction analysis. The results showed
that the mycorrhizae strengthened the immune system of tropical chili pepper by increasing the
relative gene expression levels of JA and SA in genotypes with high and low responsiveness to the
mycorrhizae. The relative gene expression level of JA was related to the percentage colonization
of mycorrhizae and the resistance of the tropical chili pepper genotypes to R. solanacearum. The
relative gene expression level of SA was associated with the resistance of tropical chili pepper to R.
solanacearum.

Keywords: resistance induction; jasmonic acid; salicylic acid; tropical chili pepper; Ralstonia solanacearum;
arbuscular mycorrhiza

1. Introduction

Pepper and sweet pepper (Capsicum spp.) have many uses as spices, natural food
coloring agents, and raw materials for making medicines and pesticide mixtures [1–4]. One
of the obstacles to chili cultivation during the rainy season is the systemic vascular wilt
disease caused by Ralstonia solanacearum. R. solanacearum is a most devastating soil-borne
pathogen, particularly in the Solanaceae family [5–12]. The bacterial wilt pathogen R.
solanacearum remains difficult to control because of its persistence. This pathogen can
survive on plant debris or in the absence of a host. It has a broad host range, high genetic
diversity, complex sub-species, a broad geographic distribution, and lives and multiplies in
the xylem, thereby blocking the xylem tissue [5,7,13–18].

Current management of pathogens is based on chemical pesticides. However, using
chemical pesticides produces residues in crops that are harmful to health, impact the envi-
ronment, and result in an unsustainable agricultural system [5,19,20]. In recent years, the
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specific microbiome has been recognized as a potential tool for achieving environmentally
friendly agriculture. The importance of the microbiome as a modulator of crop resistance
has emerged [5,19,21–24]. The presence of certain microorganisms induces the reprogram-
ming of plant metabolic pathways involved in the defense system and increases the ability
of plants to survive under adverse conditions [5,19,23–25].

Endophytic fungi, such as arbuscular mycorrhizae, have potential roles in controlling
plant diseases, particularly soil-borne pathogens [26–28]. Local and systemic mycorrhizal-
induced resistance (MIR) increases phytohormone contents, such as salicylic acid (SA)
and jasmonic acid (JA) [23,24,29–31]. The response of plants to biotrophic pathogens is
generally controlled by activating a salicylic acid (SA) dependent response [32]. Beneficial
microorganisms modulate the SA pathway [19]. Activating the SA pathway may also
influence the favorable performance of the symbiont.

JA is another essential hormone in plant defense that regulates various processes re-
lated to plant development, symbiosis, and plant responses to insects and pathogens [32–34].
JA stimulates induced systemic resistance (ISR) activated by the interactions between plants
and certain beneficial microorganisms. Antagonism of the JA and SA biosynthetic path-
ways occurs [35]; however, some researchers have reported synergistic interactions between
them [36,37]. Modulation of the JA signaling pathway may be involved in the symbiosis by
keeping the endophytic fungi in the asymptomatic stage [31,38].

Managing beneficial microbes for plants has been proposed as a new platform to
revolutionize plant protection against pathogens. However, the mechanisms underlying
the symbiotic relationship between plants and beneficial microorganisms are still being
investigated. Several studies have shown that biocontrol agents efficiently reduce the
incidence of bacterial wilt disease in greenhouses, but field trials have not yielded results [5].

The present study examined the symbiotic relationship between tropical chili pep-
per genotypes and mycorrhizae. Genotypes of peppers with different responsiveness to
mycorrhizae and different resistance to bacterial wilt disease were studied. This study
aimed to investigate the potential of mycorrhizae to increase the resistance of the tropical
chili pepper genotypes against R. solanacearum through hormone signaling pathways. The
potential of mycorrhizae was studied in relation to the relative expression of the genes
associated with JA and SA signaling pathways. The effect of mycorrhizae on phenotypic
traits of the tropical chili pepper was also investigated.

2. Materials and Methods
2.1. Chili Pepper Genotypes, Mycorrhizae, and the Ralstonia solanacearum Isolates

This study was carried out at the Agrotechnology Innovation Center of the Universitas
Gadjah Mada at Kalitirto Yogyakarta, Indonesia (7◦79′58.59” N, 110◦46′52.85” E). The
experiment examined the relative gene expression of JA and SA at the generative growth
phase when the plant started flowering, of ten tropical chili pepper genotypes with different
responses to mycorrhizae and resistance to R. solanacearum.

Ten chili pepper genotypes were used in this study. The genotypes consisted of
eight accessions from the Genebank of the Universitas Gadjah Mada and East-West Seed
Indonesia (Ewindo) and two commercial cultivars. Based on the published descriptions
of the cultivars, the two commercial cultivars were used as the resistant check cultivar
(C-50, Known You Seed) and the susceptible check cultivar (C-54, Oriental Seed) against
R. solanacearum. The mycorrhizal inoculum was a mixture of Glomus sp., Funneliformis sp.,
Acaulospora sp., Gigaspora sp., and Scutellospora sp. with a zeolite carrier obtained from the
Agricultural Microbiology Laboratory, Faculty of Agriculture, Universitas Gadjah Mada.
Mycorrhizal content was 500 inoculums per gram of zeolite carrier. The R. solanacearum
isolate used was a mixture of nine bacterial isolates.
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2.2. Procedure of Experiments

The study consisted of three experiments in parallel using separate sets of experimen-
tal plants.

Experiment 1a. Evaluation of genotypes responsiveness to mycorrhizae

The seeds of the ten chili pepper genotypes were germinated in a germination box
for 5 days. Twenty seedlings of each genotype were transplanted to nursery pot trays
filled with sterilized growing media. The medium was a mixture of soil, coco peat, and
husk charcoal at a ratio of 2:1:1 (v:v:v). Before transplanting the seedlings, the medium
was mixed with the mycorrhizal inoculum at a ratio of 10:1 (w:w). The seedlings were
maintained in the greenhouse until they were 21 days old.

The 21-day-old seedlings were transplanted into a 10-L planter bag filled with 7 kg of
planting media per planter bag. The planting media was a mixture of soil, compost, coco
peat, and husk charcoal at a ratio of 2:1:1:1 (v:v:v:v). The plants were maintained in the
screen house until 10 weeks old.

The growth response to mycorrhizal symbiosis was defined as an increase in plant
biomass inoculated with mycorrhiza compared to the biomass of plants that were not
inoculated [39]. The plants were sampled 10 weeks after transplant to examine the dry
biomass. The plant biomass was represented by shoot and root dry weight. Dry shoots and
roots were weighed after the biomass was sun-dried in a greenhouse for seven days and
oven-baked at 68 ◦C for 48 h. The percentage of mycorrhizal colonization was determined
by staining the roots using trypan blue 0.05% (w:v) as described in the previous study [40]
with modifications. The percentage of mycorrhizal colonization was calculated from the
proportion of the mycorrhizal root area to the total root area. The area was measured using
the Fiji program [41].

Experiment 1b. Evaluation of genotypes resistance to R. solanacearum

The seeding procedure was conducted similarly to Experiment 1a. Shortly after the
seedlings were transplanted into the nursery pot trays, the R. solanacearum was inoculated
using the drenching method. A mixture of nine strains of the R. solanacearum bacterial
suspension at a concentration of 1 × 108 CFU mL−1 (OD600 = 0.1) was poured (20 mL of
each) into the planting medium around the root area.

The resistance of the ten tropical chili pepper genotypes to R. solanacearum was evalu-
ated based on the wilt symptoms of seedlings The wilt symptoms in the seedlings were
observed in the morning on days 3, 7, 14, 21, 28, and 35 after the bacterial inoculation based
on the scoring method as described in the previous study [7,17] with modifications. Score
0: all leaves or plants remained healthy with no symptoms; score 1: ≤20% withered leaves
or plants; score 2: 21–40% withered leaves or plants; score 3: 41–60% withered leaves or
plants; score 4: 61–80% of withered leaves or plants; and score 5: >80% withered leaves or
plants/dead plant. Disease intensity (DI) and disease incidence (DInc.), and the area under
the disease progress curve (AUDPC) were calculated using the formula as referred to from
the previous study [17,42,43], respectively. The DI was used to determine the resistance of
each genotype, including the check cultivar. Genotypes were categorized as resistant if the
DI was <30%, moderately resistant if the DI was 31–40%, moderately susceptible if the DI
was 41–50%, and susceptible if the DI was >50% [17].

Experiment 2. Evaluation of relative gene expression JA and SA

The second experiment combined the responsiveness of the genotypes to mycorrhizae
with their resistance to R. solanacearum to evaluate the relative gene expression of JA and
SA. The treatments applied in this study consisted of seedlings that were not inoculated
with mycorrhizae and not inoculated with R. solanacearum (M0R0), seedlings that were
inoculated with mycorrhiza but not inoculated with R. solanacearum (M1R0), seedlings
that were not inoculated with mycorrhiza but inoculated with R. solanacearum (M0R1),
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and seedlings that were inoculated with mycorrhiza and inoculated with R. solanacearum
(M1R1).

The seeds of the ten chili pepper genotypes were germinated in a germination box
for 5 days. Twenty seedlings of each genotype were transplanted to nursery pot trays
filled with sterilized growing media. The medium was a mixture of soil, coco peat, and
husk charcoal at a ratio of 2:1:1 (v:v:v). Before transplanting the seedlings, the medium
was mixed with the mycorrhizal inoculum at a ratio of 10:1 (w:w). The seedlings were
maintained in the greenhouse until they were 21 days old.

The 21-day-old seedlings were transplanted into a 10-L planter bag filled with 7 kg
of planting media per planter bag. The planting media was a mixture of soil, compost,
coco peat, and husk charcoal at a ratio of 2:1:1:1 (v:v:v:v). The bacterium was inoculated
on 21-day-old seedlings using the soil drenching method. A mixture of nine strains of the
R. solanacearum suspension at a concentration of 1 × 108 CFU mL−1 (OD600 = 0.1) was
poured into the seedling media around the root area. Then, the seedlings were watered
in the morning and afternoon, as required. A total of 20 planter bags were prepared for
each genotype and repeated three times for each treatment. The bags were arranged in
a completely randomized block design. The seedlings inoculated with R. solanacearum
were placed in separate screen houses from those that were not inoculated. The plants
were raised until they entered the generative growth phase, and leaf samples were taken
(approximately 10 weeks after transplanting).

2.3. Isolation of Leaf RNA

The expression of JA and SA pathway genes was detected by quantitative real-time
reverse transcription-polymerase chain reaction (qRT-PCR) (BIO-RAD CFX96tm Real-Time
System; Bio-Rad Laboratories, Hercules, CA, USA) using RNA samples extracted from leaf
tissue. RNA was isolated from the youngest leaf tissue for qRT-PCR using the Geneaid
RNA mini kit (Plant) [44]. A sample of 100 mg of leaf tissue was crushed in liquid nitrogen.
The crushed tissue was placed in a 1.5 mL microtube and 500 µL of PRB Buffer and
5 µL of β-mercaptoethanol was added and mixed until homogeneous. The mixture was
incubated at 60 ◦C for 5 min, transferred to a filter column with a 2 mL collection tube,
and centrifuged at 3000 rpm (1000× g) for 1 min. Then, the filter column was discarded.
The supernatant was taken from the collection tube and transferred to a 1.5 mL microtube.
Absolute ethanol was added to the supernatant at half the volume of the total supernatant
taken and homogenized with a vortex mixer. The supernatant was transferred to an RB
column with a 2 mL collection tube and centrifuged at 12,000 rpm (16,000× g) for 1 min.
The 2 mL of solution in the collection tube was discarded, the supernatant was returned
to the RB column, and 400 µL of W1 buffer was added and centrifuged at 12,000 rpm
(16,000× g) for 30 s. The solution in the collection tube was discarded and the supernatant
was returned to the RB column. Then, 600 µL of wash buffer was added to the RB column,
the eluate was centrifuged at 12,000 rpm (16,000× g) for 1 min, and the solution in the
collection tube was discarded. The washing step with the wash buffer was repeated. The
column tube was dried by centrifugation at 12,000 rpm (16,000× g) for 3 min. Then, the RB
column was transferred to a 1.5 mL microtube, and 50 µL of RNAse-free water was added
to the center of the RB column and allowed to stand for 2 min. In the last stage, the eluate
was centrifuged at 12,000 rpm (16,000× g) for 1 min, and the RNA was eluted into a 1.5 mL
microtube.

2.4. qRT-PCR for GAPDH-cp and Genes of Interest

The qRT-PCR analysis was performed using the Bio-Rad CFX-96 real-time PCR system.
The target genes were oxophytodienoic acid reductase-3 (OPR3) (jasmonic acid), and ICL
(salicylic acid), and the reference gene was GAPDH-cp (Table 1). The total reaction volume
was 20 µL, including 10 µL of 2 SensiFAST SYBR No-ROX One-Step Mix, 0.2 µL of reverse
transcriptase, 0.4 µL of riboSafe RNAse inhibitor, 1.6 µL of the primers (0.8 µL of the10 µM
forward primer and 0.8 µL of the 10 µM reverse primer), 4 µL of the RNA template, and
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3.8 µL of RNAse-free water. The qRT-PCR was implemented in three stages. Stage I was
reverse transcription at 45 ◦C for 10 min, stage II was polymerase activation at 95 ◦C for
2 min, and stage III was 35 cycles of denaturation at 95 ◦C for 1 min, annealing for 30 s at
the optimum temperature for each primer, elongation at 72 ◦C for 1 min, and a melting
curve analysis at 65–95 ◦C for 5 s. The analysis was repeated in triplicate for each gene. The
relative quantification of the genes of interest was assessed using the 2−∆∆CT method [45].

Table 1. Primer and reference genes used in the real-time RT-PCR analysis.

Target Primer ID Sequence (5′–3′) Ta (◦C) References

Jasmonic acid OPR3 Forward CTTCTCATGCAGTGTATCAAC 46.4 [46]
OPR3 Reverse CGTCCAAGTGATCTATAGCTG

Salicylic acid ICL Forward GCGTCGGAGGAAGTCAAGAA 50.5 [47]
ICL Reverse GGATTGGAACTTGGAGCCGA

Reference gene GAPDH-Cp Forward ATGATGATGTGAAAGCAGCG 46.4/50.5 -
GAPDH-Cp Reverse TTTCAACTGGTGGCTGCTAC

2.5. Phenotypic Response of the Genotypes to Mycorrhizae and R. solanacearum

The phenotypic response was analyzed from the data of plant height and stem diame-
ter of ten tropical chili pepper genotypes from all the treatments, i.e., M0R0, M1R0, M0R1
and M1R1. Plant height and stem diameter were measured at 10 weeks after transplanting.
Plant height was measured from the ground surface to the shoot tip. The stem diameter
was measured at approximately 5 cm above the ground. The data was collected from
15 plants for each genotype.

2.6. Data Analysis

The statistical analysis was performed using R Studio software version 3.6.2 [48]. The
means of all observed traits were calculated using the least square means and analysis of
variance. The Scott-Knott post hoc analysis was used to detect differences between the
mean values of the observed characteristics. A p-value < 0.05 was considered significant.
Structural equation modeling-partial least square (SEM-PLS) was used to construct the
path coefficient and assess the cumulative effect of genotype responsiveness to mycorrhizae
and the genotype resistance to R. solanacearum on the relative expression of the JA and SA
genes [49,50]. A standardized stepwise regression was used to investigate the parameters
of each genotype responsiveness variable to the mycorrhizae and the resistance of the
chili genotypes to R. solanacearum, which affected the relative expression of the JA and SA
genes [51]. SEM-PLS analysis and standardized stepwise regression were performed using
PROC GLM and PROC REG in SAS 9.4 [52]. A heatmap was created using the Euclidean
distance and the average heatmap method in R [53]. The heatmap was used to classify the
genotypes based on their responsiveness to the mycorrhizae, resistance to R. solanacearum,
and the relative gene expression of JA and SA. The heatmap was also used to determine
the responsiveness to the mycorrhizae and/or the resistance to R. solanacearum related to
the relative gene expression of JA and SA.

3. Results
3.1. Evaluation of the Growth Response to Arbuscular Mycorrhizae and Resistance to
R. solanacearum

The growth response by the ten genotypes to the mycorrhizae was divided into three
groups. Genotype C-38 had the highest growth response to the mycorrhizae, reaching
388.00%± 37.40%, while genotype C-37 had the lowest growth response of 27.00%± 2.60%.
The growth response to mycorrhizae of four genotypes (C-08, C-30, C-09, C-38) was high;
the responses of the other four genotypes (C-34, C-49, C-02, C-37) and the two commercial
cultivars (C-50, C-54) were low (Figure 1).

All tropical chili pepper genotypes were infected with R. solanacearum 35 days af-
ter inoculation (DAI) but with different DI values. Among the eight accessions tested,
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three were classified as resistant, one was moderately resistant, and four were susceptible
genotypes (Figure 1). The susceptible check had a DI value of 67.19% ± 0.19%. The four
accessions susceptible to R. solanacearum had DIs of 51.97–77.61%. The susceptible check in
this evaluation resulted in DI, which was the same as the cultivar description. The resistant
check cultivar had a DI of 16.22% ± 0.07% at 35 DAI, which was the same as the cultivar
description. Three accessions classified as resistant had higher DIs than the resistant check,
ranging from 44.52 to 59.21% and 20.96 to 23.22%, respectively. One accession classified as
moderately resistant had a DI of 31.91% ± 0.04% (Figure 1).
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Figure 1. The growth responsiveness of the tropical chili pepper genotypes to mycorrhizae (GRA)
and the disease intensity of the tropical chili pepper genotypes to R. solanacearum (DI) at 35 days after
inoculation (DAI). Note: The same lowercase letters in the GRA histogram indicate no significant
differences between the genotypes at a significance level of 0.95 according to the Scott-Knott test. The
uppercase letters in the DI histogram indicate the resistance of the genotypes based on the disease
intensity at 35 DAI. Bars represent the mean ± standard deviation. AMF: arbuscular mycorrhizal
fungi. GRA: the growth response of genotype to mycorrhiza; DI: disease intensity at 35 DAI. R:
resistant; MR: moderately resistant; and S: susceptible; C-50: resistant check cultivar and C-54:
susceptible check cultivar to R. solanacearum according to their published cultivar’s description.

3.2. Effect of Arbuscular Mycorrhizae on the Relative Gene Expression of JA

The relative gene expression of JA in genotypes with high responsiveness to mycor-
rhizae and resistance to R. solanacearum (C-08 and C-30) was highest in the M1R1 treatment.
In genotypes with high responsiveness to mycorrhizae and susceptibility to R. solanacearum
(C-09 and C-38), the relative gene expression of JA was highest in M0R1. In genotypes with
low responsiveness to mycorrhizae and susceptibility to R. solanacearum (C-02 and C-37),
the relative gene expression of JA was highest in the M0R1 treatment. In genotypes with
low responsiveness to mycorrhizae and resistance or moderate resistance to R. solanacearum
(C-34 and C-49), the relative gene expression of JA was highest in M1R1 (Figure 2).
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treatments in each genotype, according to the Scott-Knott test, at a significance level of 0.95.

Inoculating mycorrhizae but not R. solanacearum (M1R0) showed that mycorrhizae
caused the relative gene expression of JA to increase in the chili pepper genotypes. The
relative gene expression of JA was higher in genotypes with high responsiveness to my-
corrhizae than in those with low responsiveness. The relative gene expression of JA in
the genotypes with high responsiveness to mycorrhizae ranged from 40.65 to 53.31 times,
while the genotypes with low responsiveness only ranged from 9.33 to 27.20 times.

Inoculating with R. solanacearum but not the mycorrhizae (M0R1) showed that the
relative gene expression of JA from the genotypes resistant to R. solanacearum was lower
than that of the susceptible genotypes. However, the opposite result occurred in the
genotypes resistant to R. solanacearum. The relative gene expression of JA from genotypes
resistant to R. solanacearum ranged from 31.64 to 78.14. The relative gene expression of JA
in the genotypes susceptible to R. solanacearum went from 38.38 to 118.04 times.

The genotypes inoculated with R. solanacearum and mycorrhizae (M1R1) triggered the
relative gene expression of JA. The relative magnitude of JA gene expression depended on
the resistance of the genotype to R. solanacearum and the responsiveness to the mycorrhizae.
The relative gene expression of JA in the genotypes resistant to R. solanacearum increased in
the range of 77.88–124.44 times Genotypes susceptible to R. solanacearum in the presence
of mycorrhizal symbiosis increased their relative gene expression of JA in the range of
16.88–71.71 times.

3.3. Effect of Arbuscular Mycorrhizae on the Relative Gene Expression of SA

The relative gene expression of SA in the genotypes with high responsiveness to
mycorrhizae and resistance to R. solanacearum (M0R1) (C-08 and C-30) was the highest.
The relative SA gene expression in the M1R1 and M1R0 treatments was higher than in the
M0R1 in the resistant check cultivar (C-50). In the genotypes with high responsiveness
to mycorrhizae and susceptibility to R. solanacearum (C-09 and C-38), the relative gene
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expression of SA in the M1R1 treatment was highest. The relative gene expression of SA in
the resistant check cultivar was highest in the M1R1 treatment. In the genotypes with low
responsiveness to mycorrhizae and susceptibility to R. solanacearum (C-02 and C-37), the
relative gene expression of SA was highest in the M1R1 treatment. In the genotypes with
low responsiveness to mycorrhizae and resistance or moderate resistance to R. solanacearum
(C-34 and C-49), the relative gene expression of SA was highest in the M1R1 treatment,
followed by M1R0 and M0R1 (Figure 3).
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Figure 3. Relative gene expression of salicylic acid (SA) in the tropical chili pepper genotypes. Note:
Plants without mycorrhizae (M0); plants inoculated with mycorrhizae (M1); plants not inoculated
with R. solanacearum (R0); plants inoculated with R. solanacearum (R1). Bars represent mean± standard
deviation. The same lowercase letters indicate no significant difference in mean values between
treatments in each genotype according to the Scott-Knott test at a significance level of 0.95.

Genotypes inoculated with mycorrhizae but not with R. solanacearum (M1R0) showed
the relative gene expression of SA depended on the responsiveness of the genotype to the
arbuscular mycorrhizal. Genotypes with high responsiveness to the mycorrhizae revealed
higher relative gene expression of SA than genotypes with low responsiveness. The range
of relative gene expression of SA in the responsive genotypes was 4.81–23.7 times, which
was higher than those in genotypes with low responsiveness at 4.15–9.63 times.

The resistant genotypes tended to express more SA than the susceptible genotypes.
This observation can be seen in the genotypes treated with bacterial inoculation without
mycorrhizae (M0R1). The relative gene expression range of SA in the resistant geno-
types was 2.93–34.21 times, which was higher than that in the susceptible genotypes at
2.02–17.68 times.

The combined inoculation treatment with R. solanacearum and mycorrhizae (M1R1)
showed that the arbuscular mycorrhizal symbiosis increased the relative gene expression
of SA. The increase in relative SA expression depended on the resistance of the genotype to
R. solanacearum. In the presence of mycorrhizae, the relative gene expression of SA in the
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resistant genotypes ranged from 12.16 to 74.45 times. It tended to be higher than that in the
susceptible genotypes which were only 8.13–13.81 times.

3.4. Structural Equation Modeling-PLS and Standardized Stepwise Regression

The results of the SEM-PLS analysis showed that the resistance to R. solanacearum had
a significant path coefficient on the relative gene expression of JA (p < 0.048*) (Figure 4).
However, the relative gene expression of SA was not directly affected by either the respon-
siveness to mycorrhizae or the resistance to R. solanacearum (Figure 5).

The standardized stepwise regression showed that the relative gene expression of JA
was significantly affected by the percentage colonization of mycorrhizae (PCA) (0.935***)
(R2 = 0.874***) and the DInc (0.9480***) (R2 = 0.928***). Similarly, the relative expression of
the SA gene was significantly affected only by DInc (0.648*) (R2 = 0.648*). Thus, the PCA
is a responsiveness variable, and DInc is a variable of resistance. Therefore, the relative
gene expression of JA was strongly affected by the responsiveness of the tropical chili
pepper genotypes to mycorrhizae and the resistance to R. solanacearum. The relative gene
expression of SA was related to the resistance of the tropical chili pepper genotypes to R.
solanacearum.
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Figure 4. Structural equation modeling-partial least square (SEM-PLS) of the relationship between
the responsiveness to mycorrhizae and the resistance of the tropical chili pepper genotypes to the R.
solanacearum variables and the relative gene expression of JA. AMF: arbuscular mycorrhizal fungi.
PCA: percentage colonization of mycorrhiza, GRA: the growth response of the tropical chili pepper
genotype to mycorrhizae, DI: disease intensity, DInc.: disease incidence, AUDPC: area under disease
progress curve, JA: jasmonic acid.
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Figure 5. Structural equation modeling-partial least square (SEM-PLS) of the relationship between
the responsiveness to mycorrhizae and the resistance of the tropical chili pepper genotypes to R.
solanacearum variables and the relative gene expression of SA. AMF: arbuscular mycorrhizal fungi.
PCA: percentage colonization of mycorrhizae, GRA: the growth response of the tropical chili pepper
genotypes to mycorrhizae, DI: disease intensity, DInc.: disease incidence, AUDPC: area under disease
progress curve, SA: salicylic acid.

3.5. Clustering of the Genotypes Based on the Responsiveness to Mycorrhizae, Resistance to R.
solanacearum, and the Relative Gene Expression of JA and SA

The genotypes were grouped into four clusters based on the heatmap (Figure 6). The
heatmap shows high diversity in several traits, i.e., PCA, genotype responsiveness to
mycorrhizae (GRA), DI, DInc, the AUDPC, and the relative gene expression of JA and SA.
The relative variation in JA and SA gene expression in the tropical chili pepper genotypes
was similar (Figures 2 and 3). The heatmap shows that the relative gene expression of
SA was related to variable resistance of the genotypes to R. solanacearum. In contrast,
the relative gene expression of JA was related to variable resistance of the genotypes to R.
solanacearum and the GRA. The results of this heatmap agree with the standardized stepwise
regression results regarding the relative determinants of JA and SA gene expression.
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Figure 6. Heatmap describing the diversity of responsiveness to the mycorrhizae, the resistance to
R. solanacearum, and the relative gene expression of JA and SA. Blue and red indicate an increase
and decrease in the value of each trait, respectively. The black lines on the top and at the left of
the heatmap indicate dendogram of variables and genotypes, respectively. Color-bar on the right
side of the dendogram indicates the genotypes in the same cluster. PCA: percentage colonization of
mycorrhiza, GRA: genotype responsiveness to mycorrhiza, SA: salicylic acid, JA: jasmonic acid, DInc:
disease incidence, DI: disease intensity, AUDPC: area under the disease progress curve.

3.6. Phenotypic Response Based on the Responsiveness to Mycorrhizae and Resistance to
R. solanacearum

Figure 7 shows the response of ten genotypes of tropical chili pepper based on re-
sponsiveness to mycorrhizae, resistance to R. solanacearum, and relative gene expression
of JA and SA on plant height. In general, the genotypes inoculated with R. solanacearum
and arbuscular mycorrhizae (M1R1) were able to suppress the growth of R. solanacearum,
the plants were taller than plants infected R. solanacearum but not inoculation mycorrhizae
(M0R1). The same phenomenon occurs in the variable stem diameters of ten genotypes
with various mycorrhizal responsiveness and R. solanacearum resistance, mycorrhizae were
able to suppress the growth of R. solanacearum (Figure 8). The relative gene expression of JA
and SA induced by mycorrhizae in the presence of R. solanacearum (M0R1) could suppress
the growth of R. solanacearum. This was indicated by the higher plants and larger stem
diameters of the tropical chili pepper genotypes than the plants infected R. solanacearum
but not inoculation mycorrhizae (M0R1) (Figures 7 and 8).



Horticulturae 2022, 8, 876 12 of 19Horticulturae 2022, 8, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 7. Plant height of ten genotypes tropical chili pepper as a phenotypic response to the treat-
ments. Bars represent mean ± standard deviation. The same lowercase letters indicate no significant 
difference in mean values between treatments in each genotype according to the Scott-Knott test at 
a significance level of 0.95. 

 
Figure 8. Stem diameter of ten genotypes tropical chili pepper as a phenotypic response to the treat-
ments. Bars represent mean ± standard deviation. The same lowercase letters indicate no significant 
difference in mean values between treatments in each genotype according to the Scott-Knott test at 
a significance level of 0.95. 

4. Discussion 
4.1. Responsiveness to Arbuscular Mycorrhizae and the Resistance to R. solanacearum 

Figure 1 shows the diverse growth responses of the tropical chili pepper genotypes 
to the mycorrhizae. The genotypes differed in their response to arbuscular mycorrhizal 
colonization. The effectiveness of the symbiosis with mycorrhizae is highly dependent on 
the species and the genotype of the host plant [54,55]. The genotype is an essential factor 
determining the response to mycorrhizae [31,56,57]. Differences in the response to mycor-
rhizae emphasize a genetic basis for the interactions between plants and mycorrhizae [31]. 
Many studies have reported significant differences in the responsiveness to mycorrhizae 

Figure 7. Plant height of ten genotypes tropical chili pepper as a phenotypic response to the treat-
ments. Bars represent mean ± standard deviation. The same lowercase letters indicate no significant
difference in mean values between treatments in each genotype according to the Scott-Knott test at a
significance level of 0.95.
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4. Discussion
4.1. Responsiveness to Arbuscular Mycorrhizae and the Resistance to R. solanacearum

Figure 1 shows the diverse growth responses of the tropical chili pepper genotypes to
the mycorrhizae. The genotypes differed in their response to arbuscular mycorrhizal colo-
nization. The effectiveness of the symbiosis with mycorrhizae is highly dependent on the
species and the genotype of the host plant [54,55]. The genotype is an essential factor deter-
mining the response to mycorrhizae [31,56,57]. Differences in the response to mycorrhizae
emphasize a genetic basis for the interactions between plants and mycorrhizae [31]. Many
studies have reported significant differences in the responsiveness to mycorrhizae between
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genotypes within the same host plant species [27,54,57]. The symbiosis with arbuscular
mycorrhizae changed the growth of the tropical chili peppers. Janos [58] stated that the
responses of plant genotypes to mycorrhizal colonization can be classified into positive,
neutral, and negative. The positive reactions of four of the tropical chili pepper genotypes
indicated that mycorrhizal colonies and the host plant got benefit from the symbiosis. A
small positive symbiotic response indicated that the tropical chili pepper as the host plant
did not respond to the presence of mycorrhizae, and the mycorrhizae did not interfere with
the host plant. This observation indicates that there was no effect on the host plant in the
presence of arbuscular mycorrhizal symbioses.

In contrast, a negative response was found in two of the tropical chili pepper genotypes,
as the mycorrhizal symbioses inhibited plant growth or induced symbiotic parasitism. The
reaction to the mycorrhizae is neutral or negative in cases where mycorrhizal colonization
does not increase plant growth [27]; the biomass produced by plants does not increase even
though the plants are well colonized with mycorrhizae [57].

Screening for resistance to R. solanacearum in chilies has been carried out but has
focused on red chilies and sweet pepper (Capsicum annuum). Several sources of resistance
to bacterial wilt disease have been identified in Capsicum pepper [12,42,59–64]. Three chili
pepper genotypes from the germplasm were resistant, one was moderately resistant, and
four were susceptible (Figure 1). These results demonstrate that resistant genotypes can be
obtained from Indonesia, as reported by several researchers [62,64,65]. This also explains
why Southeast Asia is an essential source of chili germplasm resistant to R. solanacearum
bacterial wilt disease. The germplasms were more adapted to the various environment.
They collected represented centers of chili pepper production areas in the three provinces
in Jawa Island. Resistant genotypes are used as a source of resistance genes in breeding
programs. As R. solanacearum easily adapts to the environment, including infecting resistant
host plants, the screening results in this study could be used to breed new resistant cultivars.

4.2. Interaction between the Genotypes of Tropical Chili Pepper, the Arbuscular Mycorrhizae, and
R. solanacearum on the Relative Gene Expression of JA and SA, and Phenotypic Response

Arbuscular mycorrhizal fungi change the community and the biotic interactions in
the rhizosphere. This mycorhizospheric effect alters the communities of beneficial microor-
ganisms and suppresses pathogens in the soil [66–68]. Associations with mycorrhizae
directly benefit plants by producing secondary metabolites or modulating plant defenses.
A recent study showed that different endophytes induce plant resistance to biotic or abiotic
stressors [32,69]. However, the plant microbiome is strongly influenced by its host. Plants
must recognize endophytes during colonization, as signaling molecules, and identifying
microbes as beneficial partners will create a symbiotic mutualism.

All of these factors affect different plant species in different microbiomes [19]. This
study investigated the function of the symbiosis of chili pepper and mycorrhizae and the
resistance to R. solanacearum. Ten tropical chili pepper genotypes with different respon-
siveness to mycorrhizae and resistance to R. solanacearum were tested. The function of the
mycorrhizae was evaluated and the relative gene expression of JA and SA in each tropical
chili pepper genotype was determined.

JA is an essential hormone involved in the plant resistance system. JA regulates
various processes related to plant development, symbiotic interactions, and plant responses
to pathogens, particularly soil-borne pathogens. JA triggers ISR, which is activated by the
relationship between the plant and certain beneficial microorganisms. ISR is marked by the
accumulation of JA [19,32,33]. The relative gene expression of JA in the ten tropical chili
pepper genotypes is shown in Figures 2 and 6. In all ten tropical chili pepper genotypes,
treatment with mycorrhizae and R. solanacearum infection (M1R1) increased the relative
gene expression of JA. The increase in the relative gene expression of JA varied (Figure 2).
For the resistant and moderately resistant genotypes (with blue bar under the X-axis), the
relative gene expression of JA was higher in the M1R1 treatments. In this genotype group,
the difference between M1R1 and M0R1 was larger in the genotypes which are responsive
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to mycorrhizae (with green and blue bar under the X-axis). It means that the effect of
mycorrhizae was higher in the genotypes with high responsiveness to mycorrhizae. In
contrast, the relative gene expression of JA in the five susceptible genotypes was higher
in the M0R1 treatment (orange histograms with red bar under the X-axis). This finding
indicates that JA is always expressed in the infected plants, but with different expressions
between resistant and susceptible plants. For resistant plants, the relative expression of JA
was depended on responsiveness to mycorrhiza. Genotypes C-08, C-30, and C-50 were
resistant to R. solanacearum and had a high responsiveness to mycorrhizae. It showed a high
expression of JA even in the treatment without infection. Meanwhile, for the susceptible
plants, the expression of JA depended mainly on the presence R. solanacearum infection.

R. solanacearum infection increased the expression of the OPR3 gene, and the relative
gene expression of JA was higher (Figure 2). The SEM-PLS in Figure 4 shows a relationship
between JA gene expression and the resistance of the genotypes to R. solanacearum. The
heatmap revealed similar results (Figure 6). As the accumulation JA was altered by inocu-
lating the endophytic fungi, it can be argued that the expression of several marker genes
for different steps in the JA biosynthetic pathway and other genes is associated with plant
resistance [19].

The M1R0 treatment increased the relative gene expression of JA in all ten tropical
chili pepper genotypes. However, differences were observed in the relative gene expression
of JA. The relative gene expression of JA was higher in genotypes with a high mycorrhizal
response than in those inoculated with R. solanacearum only (M0R1). A similar result was
found for the resistant check cultivar. However, this result differed from genotypes with
high responsiveness to the mycorrhizae but susceptibility to R. solanacearum in which the
relative gene expression of JA was the lowest. This result is the same as in genotypes
classified as poor responders to arbuscular mycorrhizae. A similar result was found in the
susceptible check cultivar. The JA signaling involved in symbiosis must be modulated to
maintain arbuscular mycorrhizal fungal endophytes in the asymptomatic stage [19,38].

The relative gene expression of JA in the ten genotypes inoculated with arbuscular
mycorrhizae and R. solanacearum (M1R1) increased, even in the genotypes with a low
or negative response to the mycorrhizae. The mycorrhizae increased the relative gene
expression of JA in all ten tropical chili pepper genotypes that were inoculated with R.
solanacearum. Based on the standardized stepwise regression, the relative gene expression
of JA was significantly affected by the DInc and the PCA. The heatmap analysis provided
the same results (Figure 6).

In general, antagonism occurs between the JA and SA biosynthetic pathways. Thus,
if the relative gene expression of SA is high, the relative gene expression of JA is low.
These hormonal signaling pathways do not act independently but affect each other through
a complex network of regulatory interactions [35]. Several researchers have reported
synergistic interactions between the JA and SA biosynthetic pathways [36,37]. Arbuscular
mycorrhizal symbioses increased the production of SA. The increase was not dependent
on the genotype’s responsiveness to mycorrhizae, but it depended on their resistance
to R. solanacearum. The results of the standardized stepwise regression reinforced this
result. The relative gene expression of SA was significantly affected by DInc., either the
mycorrhizal inoculation only (M1R0) or both arbuscular mycorrhizal and R. solanacearum
(M1R1) inoculation.

It is known that the presence of endophytic mycorrhiza can mediate plant resistance
by changing endogenous hormones. Symbiosis with endophytic fungi is usually associated
with inhibiting the SA pathway and increasing JA production [19,38]. The results showed a
significant increase in the relative gene expression of the JA and SA pathways, indicating
that mycorrhizal colonization of the tropical chili pepper genotypes increased plant defense.
Similarly, the tropical chili pepper genotypes inoculated with mycorrhizae increased their
relative gene expression of JA, and the increase was higher than that of SA (Figures 2 and 3).
The expression of JA and SA were in the opposite way. When JA was expressed higher,
the SA would be low, and vice versa. Mycorrhizal colonization induced gene expression,
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activated the JA pathway, and increased plant resistance to R. solanacearum. JA levels
increased significantly, particularly in the genotypes inoculated with mycorrhizae and
infected with R. solanacearum (M1R1). Figures 7 and 8 showed a comparison of plant height
and stem diameter of chili pepper plants with and without mycorrhiza inoculation. It may
represent an increase in plant resistance to R. solanacearum. The chili pepper plant inoculated
with mycorrhiza and R. solanacearum (M1R1) showed a higher plant height and thicker
stem diameter compared to the chili pepper plant inoculated with R. solanacearum but
without mycorrhiza (M0R1). Mycorrhizal colonization protected the tropical chili pepper
from R. solanacearum and enhanced the immune priming system by producing JA and SA in
genotypes with high and low responsiveness or hostile responses to mycorrhizae. However,
the increase in the relative gene expression of the JA and SA signaling pathways was
affected by the resistance properties of the tropical chili pepper genotypes to R. solanacearum.

As biotrophic organisms, mycorrhiza can trigger plant defense responses during
the early stages of colonization, similar to biotrophic pathogen infection [67,70]. Plant
responses occur in defense of colonization. Modulating plant defense responses leads to
tissue preconditioning to activate plant defenses systemically during a pathogen attack
by activating JA signaling, which is referred to as priming. Plant responses are faster and
more robust in dealing with a pathogen infection when primed so they are more efficient at
increasing plant resistance and plant health [66,67,71,72]. This priming phenomenon was
found in the mycorrhizae and R. solanacearum (M1R1) inoculated treatment, especially in
the genotypes resistant to R. solanacearum. The relative gene expression of JA increased
in the five genotypes of tropical chili peppers in the M1R1 treatment, regardless of the
responsiveness of the chili pepper to the mycorrhizae (Figure 2).

Resistance to R. solanacearum is closely related to and controlled by JA and SA-mediated
signaling [73]. Mycorrhizae potentially control plant diseases, particularly soil-borne
pathogens [26–28]. The presence of mycorrhizae induces the reprogramming of plant
metabolic pathways involved in defense, which may increase the ability of the plants to
survive adverse conditions [5,19,23–25]. Local and systemic MIR increases the content of
plant hormones, such as SA and JA [23,24,29–31].

Symbiosis with mycorrhizae increases the root surface area more than 100 times
compared to non-symbiotic roots [74]. Colonization with arbuscular mycorrhizae changes
the root morphology, and these changes make it difficult for soil-borne pathogens to enter
the root system. The symbiosis directly causes an increase in mycorrhizal exudation from
root branches, which changes the root microbiome and stimulates root exudates that inhibit
pathogens. This also increases the acquisition of mineral nutrients and modulates plant
hormonal balance. Arbuscular mycelia protect the roots from the damaging effects of
various pathogenic hydrolytic enzymes that disrupt the epidermal cell walls. Arbuscular
mycelia block the molecular crosstalk required for the host plant/pathogen interaction
with the rhizosphere [23,24,75].

5. Conclusions

Among the eight accessions, three groups were resistant to R. solanacearum. Three
genotypes were resistant, one genotype was moderately resistant, and four genotypes were
susceptible to R. solanacearum. Based on the responsiveness to the arbuscular mycorrhizae,
the ten genotypes were classified as four tropical chili pepper genotypes with high respon-
siveness and six with low responsiveness to the arbuscular mycorrhizae, three of which
exhibited negative responsiveness. Inoculating the tropical chili peppers with arbuscular
mycorrhizae induced resistance to R. solanacearum through a priming action by increasing
the relative expression of the genes associated with JA and SA. However, the relationship
was different between the JA and SA pathways. Mycorrhizae induced the relative expres-
sion of the gene associated with JA in the tropical chili peppers, which depended on the
responsiveness to mycorrhizae and resistance to R. solanacearum. The relative expression
of the gene associated with SA was depended on the resistance of the genotypes to R.
solanacearum. These results suggest that mycorrhizal colonization modulates the signaling
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pathways mediated by JA and SA to activate plant defense genes against bacterial wilt
caused by R. solanacearum and increase plant resistance.
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