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Abstract: Atractylodes chinensis has a high medicinal value and is widely cultivated. However, root
rot disease seriously affects the yield and quality of A. chinensis. To develop green and safe pesticides,
the inhibitory effect of essential oils (EOs) of three Labiatae plants on the pathogenic fungi that causes
root rot disease in Atractylodes chinensis was investigated. The results showed that the Origanum
vulgare EO and Thymus mongolicus EO exhibited strong inhibitory effects on Fusarium oxysporum,
Fusarium solani, and Fusarium redolens, with 100% inhibition rate. The low MIC values of EOs and
their main components against the three pathogenic fungi indicated that all of them showed strong
fungicidal effects. The MIC values of O. vulgare EO against F. oxysporum, F. solani, and F. redolens
were 2.60 mg/mL, 3.13 mg/mL, and 1.56 mg/mL, respectively. Analyses using scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) showed that the O. vulgare EO
severely damaged the cell wall and cell membrane of mycelial cells. The O. vulgare EO increased cell
permeability, leading to a large leakage of cell contents (DNA and proteins). In addition, O. vulgare
EO inhibited F. oxysporum by inducing ROS production and reducing the amount of intracellular GSH,
leading to a large accumulation of ROS. This study showed that plant EOs have excellent fungicidal
activity and can be used as novel natural and environmentally friendly pesticides for the control of
root rot in A. chinensis.

Keywords: Atractylodes chinensis; root rot; essential oils; Origanum vulgare; antifungal activity; mecha-
nisms of action

1. Introduction

Atractylodes chinensis is a perennial herbal plant of the Asteraceae family, mainly
distributed in East Asian countries [1]. A. chinensis is one of the commonly used bulk
herbs, and its dried rhizomes are used as a medicine, and A. chinensis has a high medicinal
value [2,3]. A. chinensis has been traditionally used to treat digestive disorders, rheumatic
diseases, and visual disorders [4]. The main active constituents of A. chinensis are atracty-
lodin, atractylon, and β-eudesmol [5]. Modern pharmacological studies have shown that
these substances have excellent pharmacological properties, such as anti-inflammatory, anti-
cancer, anti-tumor, hypoglycemic, and neuroprotective [2,6–8]. In addition to its medicinal
value, A. chinensis has been widely used in food, feed, and cosmetic industries [3].

Root rot is a highly prevalent disease in agricultural production and is known as
“plant cancer” [9,10]. It is highly infectious, lethal, and difficult to control [11,12]. Root rot
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is the most threatening disease observed in A. chinensis and can occur at all stages of its
growth. In recent years, the market demand for A. chinensis has been expanding, and wild
A. chinensis resources have not been able to meet people’s needs [13]. However, with the
increasing planting area and cultivation density, the root rot disease of A. chinensis has been
becoming more and more serious in each cultivation area. Previous studies have shown
that root rot of A. chinensis is mainly caused by Fusarium spp. [14]. The pathogenic fungus
first invades the roots and keeps spreading to the above-ground parts, and at a later stage,
the plant wilts completely [15]. Root rot causes 20% economic losses to the A. chinensis
industry each year, with yield reductions of up to 50–80% in areas with severe disease [16].

Currently, the main method of controlling root rot of A. chinensis is chemical control,
which mainly relies on pesticides, such as carbendazim and hymexazol [17]. Although
there are obvious benefits of their use in the short term, the long-term use of chemicals will
make the pathogens resistant and reduce the effectiveness of control [18–20]. Meanwhile,
synthetic pesticides cause large amounts of residues and environmental pollution, which
result in serious harm to the ecology, non-target organisms, and even human beings [21,22].
There is an urgent need to find safe and harmless methods of plant disease control.

Plant-derived pesticides have received extensive attention from scholars due to their
easy degradation, low toxicity, and non-induced resistance [23,24]. Plant essential oils are
a group of secondary metabolites of plants, which are fat-soluble natural mixtures with
a volatile, strong aroma [25]. Plants naturally use these ingredients to fight off various
pests and pathogens [26]. Plant EOs are fully degradable, leaving no residue and are highly
selective and have no toxic effects on non-target organisms [27]. Therefore, plant EOs can
be used as natural plant protectors as an alternative to synthetic pesticides [28].

Labiatae are annual or perennial herbs with a wide global distribution [29]. There are
more than 7000 species in 236 genera of the family Labiatae that are rich in EOs, such as
Origanum vulgare, Thymus mongolicus, Mentha canadensis, and Lavandula angustifolia [29].
Previous studies have shown that EOs of Labiatae have excellent inhibitory activities against
bacteria and fungi [30–32]. Xiao et al. found that O. vulgare and T. mongolicus significantly
inhibited Staphylococcus aureus [33]. A previous study showed that the EO of M. piperita
and its major volatile components inhibited the growth of Fusarium sambucinum, effectively
controling soft rot of Capsicum pubescens [34]. Nafis et al. found that lavender essential oil
could inhibit a wide range of foodborne bacteria [35]. Currently, EOs of Labiatae have been
widely used in food, feed, and pharmaceuticals and for crop protection [36]. However,
there are no previous reports on controlling the root rot of A. chinensis by using Labiatae
EOs.

In the study, the inhibitory activities of EOs from three Labiatae plants against root
rot pathogens of A. chinensis were evaluated. The O. vulgare EO was selected to further
investigate the mechanism of action against F. oxysporum. This study provides a theoretical
basis for the development of green and environmentally friendly pesticides for the control
of root rot disease of A. chinensis.

2. Materials and Methods
2.1. Essential Oils and Chemicals

O. vulgare EO, T. mongolicus EO, and P. cablin EO were purchased from Jiangxi Jianmin
Natural Spice Co., Ltd. (Ji’an, China). Carbendazim (≥97%), carvacrol (≥98%), thymol
(≥98%), and NAC (≥99%) were purchased from Shanghai Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China). O-Cymene (≥98%) and γ-terpinene (≥97%) were purchased
from Sigma Aldrich Co., Ltd. (St. Louis, MO, USA). Hymexazol (≥98%) was purchased
from Shanghai Acmec Biochemical Co., Ltd. (Shanghai, China). MAN (≥98%) was pur-
chased from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). GSH (≥98%)
was purchased from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China).
Reactive Oxygen Species (ROS) Fluorometric Assay Kit was purchased from Elabscience
Biotechnology Co., Ltd. (Wuhan, China). Total Glutathione Assay Kit was purchased from
Beyotime Biotechnology Co., Ltd. (Shanghai, China).
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2.2. Pathogenic Fungi

The pathogenic fungi were isolated from rotten roots of A. chinensis and identified as F.
oxysporum, F. solani, and F. redolens by Tsingke Biotechnology Co., Ltd. (Beijing, China).

2.3. Measurement of In Vitro Antifungal Activity of Three EOs

The in vitro antifungal activity of three EOs was determined according to the Oxford
cup method [37]. A mixture of 1% DMSO and 0.1% Tween-80 (1-DMSO-T) was used
to dissolve three EOs and two chemical pesticides. The final concentrations of EOs and
chemical pesticides were 50 mg/mL and 5 mg/mL, respectively. Under sterile conditions,
all solutions were filtered through a 0.22 µm microporous filter membrane. After the
activation of the pathogenic fungi, they were incubated at 28 ◦C for 7 days. Mycelial plugs
were taken along with a 5 mm sterile punch and placed in the center of a new PDA plate.
Four sterilized Oxford cups were placed symmetrically at 2 cm from the mycelial plug, and
200 µL of EO dilution was added to each Oxford cup. 1-DMSO-T was used as a negative
control, and two chemical pesticides (carbendazim and hymexazol) were used as positive
controls. Each group was repeated five times. The PDA plates were incubated in a constant
temperature incubator at 28 ◦C for 7 days. The diameter of the colony was determined
based on the average of two vertical diameters. The inhibition rate was calculated as
follows:

The inhibition rate = (the diameter of negative control − the diameter of treatment
group)/the diameter of negative control × 100%

2.4. Measurement of In Vitro Antifungal Activity of Three EOs

The fungal inhibitory activity of EO volatiles was determined with minor modifications
according to the methods previously reported in the literature [26]. A 5 mm fungal mycelial
plug was placed in the center of the PDA plate. EOs (20 µL) were added to the Petri
dish lids, and the PDA plates with mycelial plugs were placed upside down on the lids.
The control plates were not amended with EO. The control group was not treated with
EO. Each group was repeated five times. The PDA plates were incubated in a constant
temperature incubator at 28 ◦C for 7 days. The diameter of the colony was determined
based on the average of two vertical diameters. The inhibition rate was calculated as
described in Section 2.3.

2.5. GC-MS Determination of O. vulgare EO and T. mongolicus EO

The chemical compositions of the O. vulgare EO and the T. mongolicus EO were
analyzed using GC-MS. The GC apparatus was a Thermo TRACE 1300 with a nonpolar
Agilent DB-5 capillary column (30 m × 0.25 mm × 0.25 µm). The ionization potential was
70 ev. The inlet temperature, gasification temperature, and ion source temperature were all
set to 280 ◦C. Samples were injected manually. The carrier gas was helium at a flow rate of
1.5 mL/min. The split ratio was 10:1. The scanning range was 30–550 AMU. The retention
indices (RI) were determined according to previous literature methods [38]. Based on the
RI, the chemical composition was determined by comparing with n-alkanes. The chemical
composition of the essential oils was determined by comparing GC-MS mass spectra with
previous data from the literature and computerized databases (Wiley/NIST) [39]. The
relative content of each component was then calculated based on the relative peak area
ratio [40].

2.6. Measurement of Fungal Inhibitory Activities of Main Components

The inhibitory activities of carvacrol, thymol, γ-terpinene, and o-cymene against the
three pathogenic fungi were determined. The four main components were dissolved using
1-DMSO-T to a final concentration of 5 mg/mL. Under sterile conditions, all the solutions
were passed through a 0.22 µm microporous filter membrane to obtain a sterile filtrate.
A Ø5 mm mycelial plug was placed in the center of the PDA plate, and four sterilized
Oxford cups were placed symmetrically at 2 cm from the plug, and 200 µL of sterile filtrate
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was added to each Oxford cup. The PDA plates were incubated in a constant temperature
incubator at 28 ◦C for 7 d. The colony diameters and inhibition rates were calculated as
described in Section 2.3.

2.7. Determination of MIC

The pathogen was incubated at 28 ◦C for 7 days, and the spores were rinsed with 15 mL
of 1/4 Potato Dextrose Broth (PDB). Spore suspensions were counted with a hemocytometer
plate and diluted to a concentration of 1 × 105 spores/mL with 1/4 PDB. The O. vulgare
EO and the T. mongolicus EO were dissolved using a mixture of 2% DMSO and 0.1%
Tween-80 (2-DMSO-T). The initial concentration of the EOs were 50 mg/mL, and their
solution was diluted 9 times with 2-DMSO-T using double dilution to obtain a concentration
range of 50–0.098 mg/mL. Carbendazim and the main components (carvacrol and thymol)
of the O. vulgare EO were also dissolved and diluted using the same method to obtain
10 concentrations ranging from 5 to 0.0098 mg/mL. All solutions were filtered using a
0.22 µm microporous membrane to obtain sterile filtrates. The 150 µL spore suspension and
50 µL sterile filtrate were added to the 96-well plate. A mixture of 150 µL spore suspension
and 50 µL 2-DMSO-T was used as a negative control. The 96-well plates were incubated in
a constant temperature incubator at 28 ◦C for 36 h. The absorbance at 595 nm of each well
was detected using a multimode microplate reader (Tecan, Spark 30086376, Männedorf,
Switzerland). Each group was repeated eight times, and the experiment was performed
three times.

2.8. Effect of O. vulgare EO on the Mycelial Morphology of F. oxysporum
2.8.1. Optical Microscope Observation

The F. oxysporum colonies were rinsed with sterile water, and the spore concentration
was adjusted to a concentration of 1 × 106 spores/mL. PDB (24 mL) and the spore suspen-
sion (1 mL) were added to a 50 mL centrifuge tube and incubated at 28 ◦C at 180 rpm for
3 d. The EO of O. vulgare was diluted with 2-DMSO-T and added to centrifuge tubes to
produce a final concentration of 1/4 MIC and MIC, and incubated at 28 ◦C at 180 rpm for
24 h, with 2-DMSO-T as a negative control. The mycelial suspension was centrifuged at
10,000× g for 10 min and then rinsed three times with PBS. The morphology of the mycelia
was observed using an optical microscope (Leica, DM6000B, Wetzlar, Germany).

2.8.2. Scanning Electron Microscopy (SEM)

The F. oxysporum colonies were treated with 1/4 MIC and MIC of O. vulgare EO for
6 h. Mycelium was fixed using 3% glutaraldehyde, post-fixed using 1% osmium tetroxide,
and then dehydrated using gradient ethanol. The samples were glued to the sample
holders with conductive adhesive, and the holders were placed into the ion sputterer for
the spray treatment. Samples were observed using a scanning electron microscope (JEOL,
JSM-IT700HR, Akishima, Japan).

2.8.3. Transmission Electron Microscopy (TEM)

The mycelial preparation method for TEM was the same as described in Section 2.8.1.
The mycelium was pretreated with 3% glutaraldehyde, post-treated with 1% osmium
tetroxide, dehydrated in a series of acetone treatments, infiltrated for a longer period in
Epox 812, and then embedded. Ultrathin sections were sliced with a diamond knife and
stained with uranyl acetate and lead citrate. Sections were observed using a transmission
electron microscope (JEOL, JEM-1400-FLASH, Akishima, Japan).

2.9. Effect on Leakage of Cell Contents of F. oxysporum

A 20 mL volume of 1/4 MIC and MIC of the O. vulgare EO was added to 50 mL
centrifuge tubes, and 0.5× g of mycelia was added to the tubes, respectively. Centrifuge
tubes were incubated at 28 ◦C at 180 rpm for 12 h. 2-DMSO-T was used as a negative
control. The mycelial suspensions were centrifuged at 10,000× g for 5 min. The DNA
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concentration and soluble protein concentration in the supernatant were measured using a
spectrophotometer (Thermo scientific, ND-2000C, Waltham, MA, USA). Each treatment
was replicated five times.

2.10. Measurement of Intracellular Reactive Oxygen Species (ROS) Production

A 24 mL volume of PDB with 1 mL of F. oxysporum spore suspension were added to
a 50 mL centrifuge tube and incubated at 28 ◦C at 180 rpm for 3 days. The O. vulgare EO
diluted with 2-DMSO-T was added to the centrifuge tube to adjust the concentration of
the solution to 1/2 MIC and incubated for 3 h. Mycelia were collected and washed three
times using pre-cooled PBS. The mycelia were incubated with 10 µM DCFH-DA at 37 ◦C
for 30 min in the dark. Mycelia were washed three times with PBS and observed under a
high-resolution laser confocal microscope (Leica, TCSSP8, Wetzlar, Germany).

2.11. Effects of Exogenous ROS Scavengers on the Activity of O. vulgare EO

ROS scavengers (GSH, NAC, and MAN) were used to further analyze the relation-
ship between the inhibition mechanism of the O. vulgare EO and ROS accumulation. A
5 mm fungal mycelial plug was placed on the PDA plate supplemented with 2 mM ROS
scavengers. The O. vulgare EO (2 µL) was added to the Petri dish lids, and the PDA plates
with mycelial plugs were placed upside down on the lids. Each group was repeated five
times. The PDA plates were incubated in a constant temperature incubator at 28 ◦C for
7 days. The diameter of the colony was determined based on the average of two vertical
diameters. The inhibition rate was calculated according to a previous method reported in
the literature [41].

2.12. Intracellular GSH Detection

F. oxysporum mycelia were collected and treated with 1/2 MIC O. vulgare EO for 0.5 h,
1 h, and 2 h. 2-DMSO-T was used as negative control. A total of 1 g of mycelia was obtained,
and the intracellular glutathione content was measured using a Total Glutathione Assay
Kit [41]. Each group was repeated five times.

3. Results
3.1. Inhibitory Effect of EOs on Pathogenic Fungi

The inhibitory effects of the three EOs on the growth of root rot pathogens are shown
in Figure 1. Both the O. vulgare EO and the T. mongolicus EO showed 100% inhibition of
the three fungi, indicating that both EOs exhibited strong antifungal activities. The fungal
inhibitory effect of the P. cablin EO was weak, with 35.47%, 11.48%, and 12.90% inhibition
rates against F. oxysporum, F. solani, and F. redolens, respectively. Both chemical pesticides
showed a certain inhibitory activity against the three pathogenic fungi. The inhibition
rates of carbendazim against F. oxysporum, F. solani, and F. redolens were 65.59%, 6.81%, and
40.32%, respectively. Hymexazol exhibited the strongest inhibitory effect on F. oxysporum
(76.52%), followed by F. redolens (50.21%) and F. solani (30.15%). The inhibitory effect of
chemical pesticides on F. solani was weak.

3.2. Inhibitory Effects of EO Volatiles

The fungal inhibitory effects of the volatiles of the O. vulgare EO and the T. mongolicus
EO were further measured to evaluate the indirect activity of the EOs (Figure 2). Volatiles
from the O. vulgare EO inhibited 100% of the mycelial growth in the three pathogenic fungi.
The volatiles of T. mongolicus EO inhibited the mycelial growth of F. oxysporum, F. solani,
and F. redolens by 53.79%, 27.25%, and 30.86%, respectively.
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3.3. Chemical Compositions

The chemical compositions of the O. vulgare EO and the T. mongolicus EO were analyzed
with GC-MS, and the results are shown in Tables S1 and S2. The GC-MS chromatograms
of the O. vulgare EO and the T. mongolicus EO are shown in Figures S1 and S2. The main
components of the O. vulgare EO were carvacrol (86.23%) and thymol (12%). The most
abundant component of the T. mongolicus EO was o-cymene (56.63%), followed by γ-
terpinene (21.96%) and thymol (12.05%). The main component common to both EOs was
thymol.

3.4. Antifungal Activities of Predominant Constituents

The results revealed that carvacrol and thymol had excellent inhibitory effects against
the three pathogenic fungi (Figure 3). The inhibition rates of carvacrol against F. oxysporum,
F. solani, and F. redolens were 67.52%, 54.46%, and 75.29%, respectively. Thymol showed
the strongest inhibitory effect on F. redolens (73.99%), followed by F. oxysporum (63.59%),
and F. solani (50.36%). The inhibition rates of γ-pinene against F. oxysporum, F. solani, and F.
redolens were 9.84%, 5.55%, and 3.81%, which were significantly lower than those of the
two phenols. The inhibitory effects of o-cymene on F. oxysporum, F. solani, and F. redolens
were very weak, with inhibition rates of 4.11%, 3.75%, and 8.09%, respectively.
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Figure 3. (A) Inhibitory effects of the main components on three pathogenic fungi. The three
pathogenic fungi were (1) F. oxysporum, (2) F. solani, and (3) F. redolens. The different treatments were
(a) 1-DMSO-T, negative control, (b) carvacrol, (c) thymol, (d) γ-terpinene, (e) o-cymene, (f) carben-
dazim, positive control, and (g) hymexazol, positive control. (B) The inhibitory rates of the main
components on the three pathogenic fungi. Different lowercase letters for the same treatment indicate
significant differences (p < 0.05) among different fungi.
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3.5. Determination of MIC

The MIC values of the EOs and the main compounds against the fungi are shown in
Table 1. The MIC values of the O. vulgare EO against F. oxysporum, F. solani, and F. redolens
were 2.60 mg/mL, 3.13 mg/mL, and 1.56 mg/mL, respectively. The MIC values of the
T. mongolicus EO against the three pathogenic fungi were 3.13 mg/mL, 2.60 mg/mL, and
2.60 mg/mL, respectively. The main components of the O. vulgare EO exhibited a higher
antifungal activity than the O. vulgare EO and had a lower MIC value. The MIC values
of carvacrol and thymol against the three pathogenic fungi were 0.83–1.04 mg/mL and
0.83–1.25 mg/mL, respectively. Carbendazim had a strong antifungal effect, with low MIC
values of 0.05–0.07 mg/mL.

Table 1. MIC 1 values of the EOs 2 and compounds against fungi (mg/mL).

F. oxysporum F. solani F. redolens

O. vulgare 2.60 ± 0.90 a 3.13 ± 0.00 a 1.56 ± 0.00 b

T. mongolicus
Carvacrol

3.13 ± 0.00 a 2.60 ± 0.90 a 2.60 ± 0.90 a

0.83 ± 0.36 bc 1.04 ± 0.36 b 0.63 ± 0.00 cd

Thymol 1.04 ± 0.36 b 2.60 ± 0.90 a 1.25 ± 0.00 bc

Carbendazim 0.07 ± 0.02 c 0.05 ± 0.02 c 0.07 ± 0.02 d

1 MIC: minimal inhibitory concentration; 2 EOs: essential oil. Different letters on the same column represent
significant differences (p < 0.05).

3.6. Effects of O. vulgare EO on Morphology and Ultrastructure of F. oxysporum
3.6.1. Optical Microscopy Observations

The optical microscopy showed that that the surface of mycelium in the control group
was smooth, and the structure of mycelium was intact (Figure 4A). However, after treatment
with 1/4 MIC O. vulgare EO, cavities appeared on the surface of the mycelium, and mycelia
were locally deformed (Figure 4B). The mycelium treated with MIC O. vulgare EO degraded,
and a large number of cavities appeared on the surface of the mycelium (Figure 4C). These
results indicated that the O. vulgare EO might cause damage to the cell membrane of F.
oxysporum.
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3.6.2. Scanning Electron Microscopy (SEM)

Scanning electron microscopy showed that the mycelium of the control group had
a smooth surface and a complete structure (Figure 5(1A,2A)). However, after treatment
with 1/4 MIC concentration of O. vulgare EO, the mycelium was deformed and appeared
folded and wrinkled (Figure 5(1B,2B)); after treatment with MIC concentration of O. vul-
gare EO, the mycelium deformation was more severe, and some mycelia were ruptured
(Figure 5(1C,2C)).
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3.6.3. Transmission Electron Microscopy (TEM)

The ultrastructure of mycelium was observed with transmission electron microscopy
(TEM) (Figure 6). In the control group, the mycelial cell wall and plasma membrane were
intact. Mycelial cell walls were thick and uniform, regular in shape, round or oval. The
organelles were structurally intact and evenly distributed in the cytoplasm. After treatment
with 1/4 MIC O. vulgare EO, the mycelial cell morphology was found to be highly irregular,
and the cell wall deformation appeared as protrusions or depressions. Mycelial cells
appeared to be adherent, and the cytoplasm was unevenly distributed. Moreover, the
hyphae treated with MIC O. vulgare EO exhibited significant structural changes. Mycelial
cell walls were thinner, and even their lysis occurred. The mycelial cells exhibited obvious
plasmolysis, and the internal organelles were blurred and unrecognizable.
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3.7. Effect on Leakage of Cell Contents of F. oxysporum

As shown in Figure 7, the O. vulgare EO caused a significant leakage of intracellular
DNA and soluble proteins, and this effect exhibited concentration dependence. The DNA
contents of 1/4 MIC and MIC were 179.48 µg/mL and 737.46 µg/mL, respectively, while
that of the control group was only 8.1 µg/mL (Figure 7A). When treated with 1/4 MIC and
MIC O. vulgare EO, the soluble protein contents were 51.07 and 162.22 times higher than
the control group, respectively (Figure 7B).

3.8. The Effect of O. vulgare EO on Endogenous ROS in F. oxysporum

The DCFH-DA fluorescent probe was used to determine the intracellular ROS content
of mycelium. As shown in Figure 8, the mycelium in the control group did not fluoresce.
When treated with 1/2 MIC O. vulgare EO, clear fluorescence appeared within the mycelium.
The results showed that the O. vulgare EO caused the production of ROS in the mycelial
cells of F. oxysporum.
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3.9. Effects of Exogenous ROS Scavengers on the Activity of O. vulgare EO

The effect of exogenous ROS scavengers on the fungal inhibitory effect of the O. vulgare
EO is shown in Figure 9A. The inhibition rate of the O. vulgare EO against F. oxysporum was
79.05%, while the inhibition rate was only 16.83%, 48.09%, and 50.17% with the addition of
GSH, NAC, and MAN, respectively (Figure 9B).
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3.10. Intracellular GSH Content

The intracellular GSH content of mycelium was measured (Figure 9C). The results
showed that when treated with 1/2 MIC O. vulgare EO, the intracellular GSH of the
mycelium was significantly reduced compared to that of the control group. When treated
with the O. vulgare EO for 2 h, the intracellular GSH content of the mycelium was only
15.64% of that of the control.

4. Discussion

Atractylodes chinensis is a perennial plant of the genus Atractylodes of the family Aster-
aceae [42]. In recent years, spurred by the increasing demand for A. chinensis, its artificial
cultivation has expanded across many areas. However, its intensive cultivation has led
to an increasing incidence of root rot, which seriously impacts its quality and yields [16].
Chemical pesticide usage is a typical strategy utilized for controlling root rot in A. chinensis.
Chemical pesticides are effective for the control of pathogenic fungi; however, they also
cause serious harm to ecosystems, non-target organisms, and human health [43]. The
long-term use of chemical pesticides can also induce the resistance of pathogenic fungi,
thus, reducing their effectiveness [44]. Plant EOs have garnered great interest from re-
searchers due to their potent antifungal effects, easy decomposition, and environmental
compatibility [45,46]. Labiatae is a large plant family with worldwide distribution, and its
members are typically rich in EOs [47,48]. Labiatae EOs contain many aliphatic compounds,
aromatic compounds, and terpene derivatives [47]. Previous studies have shown that the
EOs of Labiatae plants can inhibit a wide range of bacteria and fungi [30–32]. In this study,
we evaluated the inhibitory effects of O. vulgare, T. mongolicus, and P. cablin EOs on the
root rot pathogen of A. chinensis. Since the O. vulgare EO exhibited the strongest inhibitory
effect, the inhibitory mechanism of the O. vulgare EO against the dominant strain of root
rot (F. oxysporum) was further investigated. This study provided a theoretical basis for the
development of natural and efficient fungicides for the control of root rot in A. chinensis.

The results revealed that the three EOs had inhibitory effects against F. oxysporum,
F. solani, and F. redolens. Among them, the O. vulgare and T. mongolicus EOs exhibited
significantly high antifungal activities and completely inhibited the mycelial growth of
the three pathogenic fungi. EOs possess broad-spectrum antimicrobial activities, which
can inhibit the growth of mycelium via diffusion, and plants naturally use these chemicals
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to resist pests and diseases [26]. The fungicidal effects of volatiles of the O. vulgare and T.
mongolicus EOs were further investigated, and results showed that the volatiles of the O.
vulgare EO had strong inhibitory effects on the three pathogenic fungi, with an inhibition
rate of 100%. Parikh et al. also reported that the volatiles of O. vulgare EO had excellent
fungicidal activities and completely inhibited the mycelial growth of pathogenic fungi [26].
However, the inhibitory effects of the volatiles of T. mongolicus EO on pathogenic fungi
were lower than that of direct contact. This difference was also reported in a previous
study [49], which was related to the concentration, polarity, and volatility of the EO [50].

Determining the composition of an EO is important for exploring its fungicidal mecha-
nism and selective inhibitory properties [40]. This study revealed that the main components
of the O. vulgare EO were carvacrol and thymol, and those of the T. mongolicus EO were
γ-pinene, o-cymene, and thymol. Wu et al. analyzed the chemical composition of the O.
vulgare EO using GC-MS and showed that the contents of carvacrol and thymol in it were
72.69% and 6.02%, respectively [40]. Shin and Kim studied the composition of T. mongolicus
EO and showed that the three most abundant components were thymol, γ-pinene, and
o-cymene [51]. Our findings were generally consistent with these previous studies, with
some variations in content. Variations in the compositions and contents of the EOs of plants
may be correlated with climatic conditions, altitude, geographic location, soil nutrients,
extraction methods, plant age, harvesting time, and fertilizer and pesticide application [52].

The antifungal activities of EOs may be derived from their principal components [53].
In this study, the antifungal effects of carvacrol, thymol, γ-pinene, and o-cymene were deter-
mined with Oxford cups. Carvacrol and thymol exhibited strong inhibitory effects against
the three pathogenic fungi under study, while γ-pinene and o-cymene showed weaker
inhibitory effects. Notably, the inhibitory effects of carvacrol and thymol against F. solani
and F. redolens were stronger than those of chemical pesticides. Carvacrol and thymol are
constitutional isomers that belong to the phenolic group; certain phenolic compounds have
been shown to have inhibitory activity against some species of fungi and bacteria [54–56].
Phenolic compounds contain hydroxyl groups that eliminate pathogenic fungi by binding
to and deactivating their enzymatically active centers through the formation of hydrogen
bonds [57]. A preceding study indicated that carvacrol and thymol inhibited Xanthomonas
campestris pv. campestris (Xcc) to control the black rot of cabbage [58]. Zhao et al. found
that carvacrol and thymol inhibited Botrytis cinerea’s mycelial growth [59]. Due to their
excellent fungicidal activities and environmental compatibility, carvacrol and thymol can
be utilized as novel pesticides for the control of plant diseases in the future. In this study,
the O. vulgare EO exhibited very strong direct and indirect inhibitory effects against the
three pathogenic fungi, which was likely due to its high level of phenolics [60]. Although
less inhibitory than phenolics, o-cymene and γ-pinene may synergistically influence the
antimicrobial effect of EOs.

The MIC value refers to the minimum EO concentration required to completely inhibit
the growth of pathogenic fungi [61]. Our results indicated that the two EOs and two phenols
showed strong inhibitory effects on the root rot pathogens of A. chinensis. Carvacrol
and thymol had lower MIC (mg/mL) values compared to the EOs. Furthermore, an
earlier study reported that monomers had more potent fungicidal activities than EOs [62].
Carbendazim is a synthetic fungicide that is widely used in agricultural production and
has high fungicidal activities. The MICs of carbendazim against F. oxysporum, F. solani,
and F. redolens ranged from 0.05–0.07 mg/mL. However, the half-life of carbendazim in
nature is very long, and very low doses can produce serious “teratogenic, mutagenic and
carcinogenic” effects in mammals [63,64]. Therefore, certain components of plant EOs can
serve as new natural fungicides with great potential in the future.

Light microscopy showed that following the O. vulgare EO treatment, cavities ap-
peared on the surface of F. oxysporum mycelium, which became locally deformed or was
lysed. Scanning electron microscopy results showed that the O. vulgare EO altered the
cell membrane structure of F. oxysporum. The results of transmission electron microscopy
(TEM) revealed that the O. vulgare EO could damage the cell wall structures of F. oxysporum,
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resulting in barrier disruption, which translated to induced abnormalities in the fungal
plasma membrane structure and ultimately led to cell death. The fungal cell wall is a
cellular structure unique to fungi, which consists of polysaccharides that wrap around the
cytoplasm [65]. Fungal cell walls mainly play a protective role in maintaining the inherent
cellular morphology and integrity, in addition to sustaining normal cellular metabolism,
ion exchange, and osmotic pressure [66,67]. The absence of cell wall structures leads to
the rupture of the plasma membrane and cell lysis; thus, the integrity of the cell wall is
essential for the survival of the fungus [68]. A previous study showed that the L. verbena
EO disrupted the cell wall of Pseudosciaena D4, resulting in increased cell membrane perme-
ability and leakage of intracellular contents, ultimately leading to cell death [69]. A further
study disclosed that the M. haplocalyx EO penetrated the cell wall and dissolved the internal
organelles to inhibit the growth of F. oxysporum [37]. This study suggests that the cell wall
may be a viable target for the O. vulgare EO in F. oxysporum.

Proteins and nucleic acids are critical biomolecules within cytoplasms and nuclei
of cells [70,71]. The leakage of DNA and proteins reflects the integrity of the cell mem-
brane [72]. This study showed a significant leakage of DNA and proteins within the
mycelium of F. oxysporum after treatment with the O. vulgare EO, which indicated that the
plasma membrane was severely damaged. This was consistent with the morphological and
ultrastructural results. The hydrophobic characteristics of EOs enable them to enter the cell
membranes of pathogenic fungi, alter their structures, and increase their permeability [73].

Reactive oxygen species (ROS) is a general term for a class of oxidatively active
molecules that are produced by cellular energy metabolism under aerobic conditions,
which play an important role in the physiological and pathological processes of organ-
isms [74]. However, excess ROS induce oxidative stress, which alters the structures of
biomolecules (DNA, proteins, and lipids), and ultimately leads to cell death [75]. For
this study, DCFH-DA fluorescent probes were used to determine the intracellular ROS
content of mycelium [76]. The results revealed that the mycelium of F. oxysporum emitted
significant fluorescence following the O. vulgare EO treatment, suggesting that it could
exert inhibitory effects by inducing the generation of ROS. Wu et al. reported that the
O. vulgare EO inhibited the growth of Rhizoctonia solani by inducing the production of
ROS [40]. Reactive oxygen scavenger is a collective term for a class of substances with
reactive oxygen scavenging properties (e.g., GSH, NAC, MAN, etc.). In this study, all three
ROS scavengers (GSH, NAC, and MAN) alleviated the inhibitory effects of the O. vulgare
EO on F. oxysporum, with GSH having the strongest impact. Thus, the inhibitory activities
of the O. vulgare EO against F. oxysporum were positively correlated with the accumulation
of ROS in mycelial cells.

Glutathione (GSH) is a naturally reactive peptide composed of glutamic acid, cysteine,
and glycine and is widely found in living organisms [77,78]. GSH possesses antioxidant
and integrative detoxification activities that help cells to maintain normal immune system
functions [79,80]. In this study, the content of GSH in the O. vulgare EO-treated mycelium
was significantly reduced over a short timeline (0.5–2 h) compared to the control. This
result indicated that the O. vulgare EO depleted intracellular GSH, resulting in a large
accumulation of ROS in the mycelium.

Plant EOs have potent inhibitory activities against pathogenic fungi and can be used
as natural and safe pesticides. However, in recent years, some studies have shown that
high concentrations of EOs or extracts can inhibit seed germination [81]. Thus, appropriate
concentrations of EOs should be selected to control plant diseases to avoid their negative
effects on seeds. In addition, this study was conducted under sealed conditions in the
laboratory, and the effect of volatility on the results was not taken into account. EOs and
their main ingredients are highly volatile, so their stability is low. Volatility has become a
major limitation in the application of EOs, which may cause the actual application effec-
tiveness to be lower than that observed in the experimental results. Currently, researchers
have developed methods to improve the stability and persistence of EOs, such as microcap-
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sules, microemulsions, and nanoemulsions [82,83]. In the future, avenues to combine these
methods to increase the effectiveness of EOs should be further investigated.

5. Conclusions

In this study, the inhibitory effect of three EOs of Labiatae plants on the root rot
pathogens of A. chinensis was investigated. The O. vulgare EO and its main components
exhibited excellent inhibitory activities against F. oxysporum, F. solani, and F. redolens. The
results of in vivo experiments showed that the O. vulgare EO was effective in reducing the
damage caused by F. oxysporum in A. chinensis. The inhibitory mechanism of the O. vulgare
EO was summarized as follows: 1. The O. vulgare EO could cause severe damage to cell
walls and plasma membranes, increasing the permeability of cell membranes and leading
to a massive leakage of intracellular contents. 2. The O. vulgare EO inhibited pathogenic
fungi by inducing ROS production and reducing the amount of intracellular GSH, leading
to a large accumulation of ROS. Collectively, the O. vulgare EO and its main components
can be developed as environmentally friendly fungicides to replace synthetic pesticides for
the control of root rot of A. chinensis.
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www.mdpi.com/article/10.3390/horticulturae9101136/s1. Table S1: Chemical composition of the
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mongolicus essential oil.
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