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Abstract: Efficient marketing of winegrapes involves negotiating with potential buyers long before
the harvest, when little is known about the expected vintage. Grapevine physiology is affected
by weather conditions as well as by soil properties and such information can be applied to build
yield prediction models. In this study, Partial Least Squares Regression (PLSR), Cubist (CUB) and
Random Forest (RF) algorithms were used to predict yield from imputed weather station data
and soil sample analysis reports. Models using only soil variables had the worst general results
(R2 = 0.15, RMSE = 4.16 Mg ha−1, MAE = 3.20 Mg ha−1), while the use of only weather variables
yielded the best performance (R2 = 0.52, RMSE = 2.99 Mg ha−1, MAE = 2.43 Mg ha−1). Models
built with CUB and RF algorithms showed signs of overfitting, yet RF models achieved the best
average results (R2 = 0.58, RMSE = 2.85 Mg ha−1, MAE = 2.24 Mg ha−1) using only weather variables
as predictors. Weather data imputation affected RF and CUB models more intensely while PLSR
remained fairly insensitive. Plant age, yield level group, vineyard plot, May temperatures, soil pH
and exchangeable concentrations of Zn, Cu, K and Mn were identified as important predictors. This
exploratory work offers insights for future research on grape yield predictive modeling and grouping
strategies to obtain more assertive results, thus contributing to a more efficient grapevine production
chain in southern Brazil and worldwide.

Keywords: random forest; cubist; partial least squares regression; grapevine; yield prediction;
calibration model

1. Introduction

In 2021, 7.3 million hectares of land were occupied by vineyards worldwide. Total
grape production reached 77.8 Mt with over 57% destined to the wine industry. World
wine production in 2021 was estimated in 26 GL, excluding juices and musts [1,2]. In Brazil
over 75 thousand hectares of vineyards were harvested in 2022 [3] and the socioeconomic
importance of viticulture is highlighted by a national wine market of BRL 20.3 billion
(~USD 4 billion), which employed around 200 thousand people in 2019 [4]. Despite being
the second largest market in South America after Argentina [2], 86 of every 100 bottles
consumed by Brazilians in 2019 were imported [4], revealing the enormous growth potential
for national wineries.

Efficient marketing of wine grapes involves negotiating with potential buyers long
before the harvest, when little is known about the expected vintage. In addition, grape
fertilizing practices also rely on yield expectations for the definition of application doses [5].
To anticipate yields, one must inevitably rely on some conceptual or numerical model
of how crops respond to surrounding conditions. The use of predictive models in fruit
growing can improve the effectiveness of decision-making processes and, as a result, there
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has been substantial industry and academic interest in building predictive models for
grapevines [6–10].

Soil chemical properties and nutrient levels have a decisive impact on vineyards’
production [11–13]. Grapevine mineral nutrition is one of the most important factors
in fruit production, especially in high-density orchards [14], as minerals are responsible
for several functions in plants, such as tissue constitution, enzymatic activation, osmotic
regulation of membranes and intermediation of energetic processes [15,16]. Unbalanced
grapevine nutrition can compromise yields and the quality of grapes, affecting their ap-
pearance, color, flavor, size, aroma, post-harvest storage capacity and tolerance to pests
and diseases [17,18], which is later reflected in the characteristics of the resulting must
and wines [19–21]. Farmers generally rely on soil analysis to assess properties such as
texture and organic matter content, pH and exchangeable nutrient levels in order to guide
fertilizing management [22,23] but this type of data can be of limited availability due to
cost constraints. Recent advances in soil sensing, however, may lead to more affordable,
applicable and shareable soil information that can help circumvent current limitations in
the near future [24–28].

Aside from nutrition, plant productivity is strongly driven by environmental factors.
Meteorological conditions play a predominant role in grapevine physiology [29], influ-
encing its growth, phenological development, yield and must properties [12,13,30], thus
affecting wine quality [31]. Sunlight exposure is a key component of development, as
solar radiation is captured by the plants and transformed into biomass [32]. Incoming
solar energy is also converted to temperature with direct effects on grapevine production.
High temperatures affect photosynthesis, transpiration and grape berry composition [33],
whereas low temperatures contribute to the accumulation of chill units and have effects on
bud dormancy [34,35]. Water availability is arguably the most important environmental
factor limiting crop growth and productivity. Despite the growth of irrigated viticulture
worldwide, precipitation remains of paramount importance, making grapevines suscepti-
ble to altered water regimes and, while grapevine drought tolerance mechanisms are not
fully understood [36], high precipitation is known to increase the risk of downy mildew
(Plasmopora viticola) occurrence [37]. Fungal spores can be dispersed by wind, spreading
infestation and compromising vineyard health [38]. High wind speed, in turn, can reduce
grape berry susceptibility to sunburn [39]. Along with humidity and temperature, wind
can be used to estimate grapevine canopy evapotranspiration, which reflects water usage
by plants [40]. The sheer importance of weather factors to grapevine production raises
concerns over climate change impacts on wine-growing regions [31,41–46].

Climate data is now abundant, relatively cheap and can be found in different reso-
lutions, as weather stations across the world continuously record and monitor various
parameters for climate classification, planning, modeling and management purposes [47].
However, measuring instruments are subject to recording errors, malfunctioning, mainte-
nance, network transmission and storage failures among other events that can generate
data gaps and result in incomplete datasets [48–50]. Data missingness adversely impacts
the analysis carried out afterwards and may lead to erroneous findings, false conclusions
and inaccurate predictions [51].

The choice of the best strategy to handle missing data is not straightforward but most
studies conclude that imputation is more advisable than removing data in order to reduce
the risk of introducing bias in datasets and subsequent analyses [50,52,53]. Consequently,
data imputation is an important preprocessing task in modeling. The simplest imputation
methods consist in replacing the missing values with some measure of central tendency
calculated from the non-missing values, such as the mean, mode or median or by ran-
domly selecting values within the entire data or subset (e.g., hot deck imputation) [50,54].
Despite the simplicity, these methods can reduce overall data variance and are bound to
the non-missing data range. Climatic data properties such as autocorrelation between
time lags, seasonality, periodic trends and cycles can be useful for the development of
imputation strategies [47,55]. In addition to leveraging univariate patterns, multivariate
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approaches can be applied to estimate missing data by means of predictive modeling,
where non-missing variables are used as predictors. As a result, different statistical and
machine learning methods have long been used to address the data missingness issue in dif-
ferent knowledge domains [51,56,57], including climate data [47,49,50,58,59]. In advanced
multiple imputation schemes, the process of generating replacement values for missing
data is repeated many times, resulting in m complete datasets that are further analyzed.
The literature recommends the number of imputed datasets (m) ought to be between 5 and
10 [60]. These datasets are then used in subsequent analysis and the outcomes are pooled
in order to obtain robust results, reducing uncertainty and bias [50,60,61].

Machine learning (ML) is a segment of artificial intelligence that has thrived in the
recent context of big data technologies and high-performance computing [62]. ML repre-
sents an alternative to statistical models where deterministic processes take precedence
over probability or likelihood measures in accomplishing estimation tasks [63]. As such,
forecasting models can be built based on nonparametric and semi-parametric structures
with validation relying on prediction accuracy. These empirical models are data-driven
and do not require deep knowledge of the biophysical mechanisms that produced the
data nor a predefined structure of the model, making such techniques inexpensive and
relatively easy to apply [10]. Moreover, some ML algorithms can work with a large number
of predictors from both categorical and numerical data types all at once, requiring little
data preprocessing. These features have led to a prominent adoption of ML methods in
agriculture [62] and crop yield prediction [63,64]. Previous studies attempted to model
grape yields in wine-growing regions [6,7,10], but to date there have not been such attempts
focusing on the well-established viticulture region of southern Brazil. Furthermore, studies
have generally not evaluated the effect of imputing missing data on the predictive modeling
of grape yields.

The aims of this study were to assess the suitability of different machine learning
algorithms in grape yield forecasting; evaluate the effects of data imputations on model
performance; and investigate the importance of soil analysis and weather station data in
grape yield predictions.

2. Materials and Methods
2.1. Study Region and Grapevine Data

The study area lies in Santana do Livramento (latitude 30◦53′27′′ S, longitude 55◦31′58′′

W), located in the Campanha Gaúcha region of Rio Grande do Sul state, in southern Brazil
(Figure 1). It is a traditional winegrape region with a humid subtropical climate with hot
summers and no dry seasons (Köppen-Geiger classification Cfa) [65]. Data was obtained
from a commercial vineyard grown on sandy textured Alisol [66]. Grapevines were grafted
onto SO4 (Selection Oppenheim 4) rootstocks and grown in an espalier system.

Yield records (n = 534) ranged from 0.11 to 26.13 ton ha−1, with a mean of 9.10± 4.81 Mg ha−1,
comprising 14 harvests (1999:2007, 2009, 2011, 2013, 2018, 2019) of 27 cultivars, aging from
2 to 40 years (Alicante Bouschet, Ancelota, Arinarnoa, Cabernet Franc, Cabernet Sauvi-
gnon, Chardonnay, Chenin Blanc, Ekigaina, Flora, French Colombard, Gamay Beaujolais,
Gewurztraminer, Marselan, Merlot, Moscato Blanco, Moscato d’Amburgo, Napa Gamay,
Petite Sirah, Pinot Noir, Pinot Saint Georges, Pinotage, Riesling Italico, Riesling Renano,
Saint Emilion, Sauvignon Blanc, Semillon and Tannat).

Yield observations were sorted by harvest. In each harvest, yield distribution was
divided into three groups (“high”, “medium” and “low” yield) using Jenks Natural breaks
optimization [67], implemented via the BAMM tools [68] package in R. Jenks Natural breaks
method is borrowed from the field of cartography and seeks to minimize the variance within
categories while maximizing the variance between categories. Observations were then
assigned to each group based on the yield recorded at a given harvest and the respective
defined breaks. After classification, the data was grouped by cultivar and the frequency in
which they were classified as “high”, “medium” or “low” was calculated. This information
was used along with the general yield distribution and the number of observations by
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cultivar to determine the final yield class of each cultivar. Clustering results (Figure 2) were
validated by expert knowledge provided by the agronomist responsible for the studied
vineyard.
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2.2. Soil Data

Soil data consisted of routine laboratory analysis results obtained from soil top layer
samples (0–20 cm) collected under canopy projection and contained information on soil
exchange capacity (potential and effective), acidity (potential, pH and SMP index), base
and aluminum saturation, clay and organic matter contents, as well as exchangeable
concentrations of aluminum (Al), phosphorus (P), potassium (K), calcium (Ca), magnesium
(Mg), sulfur (S), copper (Cu), zinc (Zn), boron (B) and manganese (Mn) (Table 1 and
Figure 3). Soil analyses followed methodologies recommended by [69,70].
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Table 1. Grapevine, soil and weather data used in yield forecasting models, grouped by predictor set.

Dataset Variable Unit Type

C
om

m
on

Vineyard plot - categorical
Grape berry skin color - categorical
Grape cultivar - categorical
Cultivar yield class - categorical
Plant age year numerical

W
ea

th
er

+
So

il

W
ea

th
er

Evaporation mm numerical
Evapotranspiration (potential) mm numerical
Evapotranspiration (real) mm numerical
Sun exposure hour numerical
Cloudiness tenth numerical
Number of rainy days unit numerical
Precipitation (total) mm numerical
Maximum temperature ◦C numerical
Average temperature ◦C numerical
Minimum temperature ◦C numerical
Relative humidity % numerical
Average wind speed m s−1 numerical

So
il

Soil clay content % numerical
Soil pH in water - numerical
Soil SMP index - numerical
Soil exchangeable aluminum cmolc dm−3 numerical
Soil potential acidity cmolc dm−3 numerical
Soil cation exchange capacity cmolc dm−3 numerical
Soil cation exchange capacity (pH 7.0) cmolc dm−3 numerical
Soil base saturation % numerical
Soil aluminum saturation % numerical
Soil exchangeable calcium cmolc dm−3 numerical
Soil exchangeable magnesium cmolc dm−3 numerical
Soil organic matter % numerical
Soil exchangeable phosphorus mg dm−3 numerical
Soil exchangeable potassium mg dm−3 numerical
Soil exchangeable sulfur mg dm−3 numerical
Soil exchangeable copper mg dm−3 numerical
Soil exchangeable zinc mg dm−3 numerical
Soil exchangeable boron mg dm−3 numerical
Soil exchangeable manganese mg dm−3 numerical

2.3. Weather Data

Data from the Santana do Livramento ground meteorological station, the closest to
the vineyards, was retrieved from the Brazilian National Institute of Meteorology database
(https://bdmep.inmet.gov.br/, accessed on 26 July 2023) for the period between 1990
and 2020. Due to the homogeneity of the climate and relief of the study region, data
from the nearby weather station of Bagé (~160km apart) was also retrieved in order to
provide auxiliary information and aid missing data imputation [60]. Monthly average
values of potential and real evaporation, evapotranspiration, sunlight exposure, cloudiness,
temperatures (maximum, average and minimum), relative humidity and average wind
speed were available, as well as the total number of rainy days and precipitation volumes
(Table 1).

https://bdmep.inmet.gov.br/
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2.4. Data Imputation

In this study, missing data from the Santana do Livramento weather station was
partially missing within the period covered by soil sampling data (Figure 4) and was
imputed using either uni- or multivariate methods, depending on the gap size. Gaps equal
to or shorter than nine consecutive observations (i.e., 9 months or 75%) were imputed
using a univariate approach, which consisted of splitting the times series into seasons and
performing imputation separately for each of the resulting subsets using interpolation.
In this study, the univariate imputation of meteorological data was performed using the
imputeTS package [71] with a 12-month season.

Univariate methods may fail to provide reasonable imputations for a variable when
periods of missing values are large [51], so for gaps larger than 9 months Multivariate
Imputation by Chained Equations, or MICE [61] was used. MICE turns the imputation
problem into a series of estimations, where each variable has its own imputation model
built using the other remaining variables of the dataset. First, only the complete data is used
to estimate values for the variable with the smallest number of missing observations. Next,
the recently imputed variable is used along with the originally complete data to estimate
the variable with the second smallest number of missing observations and so on. The first
iteration is finished when all missing values are estimated once. In the second iteration,
the order of imputation remains but the imputed values are now updatedconsidering all
estimates generated in the previous steps. This process is repeated through a number of
iterations to achieve a stable imputation. A single imputed dataset is obtained in the last
iteration [72]. To attain robust results, it is recommended that many imputed datasets (m)
are used for the desired analysis so that the pooled results can be evaluated [53]. The MICE
algorithm was implemented using the mice [61] package to generate five different imputed
datasets after 50 iterations each, produced with random forest models containing 500 trees.
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In addition to weather station data, some of the soil analysis reports also hosted
missing values, particularly regarding soil micronutrients (Figure 4). Since no seasonality
can be attributed to these soil features and given the fact that the missingness mechanism
did not seem to be random, a more simple approach was chosen and median imputation
was performed to fill soil data gaps.

2.5. Modeling

The underlying assumption of this study is that weather and soil data hold information
that is useful to forecast yields and, to investigate its contribution to estimates, models
were built using different sets of predictors (p), namely “Soil” (p = 24: four categorical,
20 numeric), “Weather” (p = 149: four categorical, 145 numeric) and “Weather + Soil”
(p = 168: four categorical, 164 numeric) (Table 1). In order to handle the high number of
predictors and the possible non-linear relationships between variables, three algorithms—
Partial Least Squares Regression (PLSR) [73], Cubist (CUB) [74,75] and Random Forest
(RF) [76]—were used to predict grape yields. PLSR seeks to produce uncorrelated predictors
by resorting to orthogonal projections. As such, predictors are expected to be numeric,
therefore, categorical variables in the dataset were one-hot encoded prior to running this
algorithm while numeric ones were centered and scaled. Moreover, the “plot” variable,
which refers to a vineyard parcel, was removed since it contains 135 possible values and
can be considered high cardinality data, yielding too many new variables after one-hot
encoding. To evaluate model performance, the coefficient of determination (R2) (Equation
(1)) was used as a measure of variance explained by the predictors while Root Mean
Squared Error (RMSE) (Equation (2)) and Mean Absolute Error (MAE) (Equation (3)) were
used as a measure of spread in predictions [77].

All models were fit using the caret package [78] (“pls”, “ranger” and “cubist” engines)
on a training set (n = 399, 75%) with 10-fold cross-validation and five repetitions. Model
tuning was performed using grids methods, optimized to reduce Root Mean Squared
Error. For PLSR tuning, the number of principal components ranged from 1 to 20. In CUB,
100 committees were used and five different numbers of neighbors were tested (1, 3, 5, 7
and 9). The number of random variables (mtry) used in each RF tree depended on the
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dataset used for predictions. For “Weather” and “Weather + Soil”, four values were tested
(50, 65, 80 and 95), whereas the “Soil” dataset was tuned using five values (9, 12, 15, 18
and 21). The same minimum node sizes were tested for all datasets (3, 5, 7 and 10). All RF
models were built using 100 trees. Model best fit parameters were applied in the validation
model and performance was assessed on a hold-out test set (n = 135, 25%). Data handling,
imputing and modeling were performed in R language [79] using RStudio IDE [80].

R2 =
∑N

i=1(ŷi − yi)
2

∑N
i=1(yi − yi)

2 (1)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (2)

MAE =
1
N ∑

∣∣ŷi − yi
∣∣ (3)

where ŷ = predicted value; ȳ = mean observed value; y = observed values; N = number of
samples with i = 1, 2. . .

3. Results
3.1. Model Performance and Imputation Effects

Model outcomes indicate that the choice of predictors had a considerable impact
on grape yield forecasting. Regardless of the algorithm used, models built with the “Soil”
dataset had the worst average results (R2 = 0.15, RMSE = 4.16 Mg ha−1, MAE = 3.20 Mg ha−1),
while the use of only the “Weather” dataset yielded the best performance (R2 = 0.52,
RMSE = 2.99 Mg ha−1, MAE = 2.43 Mg ha−1). The combination of soil and weather predic-
tors had slightly worse results than weather variables alone (R2 = 0.50, RMSE = 3.05 Mg ha−1,
MAE = 2.43 Mg ha−1), probably as a consequence of the higher number of variables with
low predictive power. On the other hand, as the number of predictors increased, the
difference between the three algorithms (i.e., the spread) decreased, suggesting a trade-off
between higher precision and lower accuracy (Figure 5 and Table 2).
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Table 2. Average coefficient of determination (R2), Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) values for Partial Least Squares Regression (PLSR), Cubist (CUB) and Random
Forest (RF) algorithms by predictor dataset.

Predictors Soil Weather Weather + Soil

Algorithm PLRS CUB RF PLRS CUB RF PLRS CUB RF

R2 0.12 0.15 0.23 0.47 0.52 0.58 0.48 0.51 0.55
RMSE (Mg ha−1) 4.41 4.16 3.92 3.16 2.99 2.85 3.18 3.05 2.95
MAE (Mg ha−1) 3.47 3.20 2.94 2.55 2.42 2.24 2.48 2.42 2.30

In general, the RF model had the highest R2 and the lowest RMSE and MAE, followed
by CUB and PLSR, regardless of the predictors used (Table 3). However, CUB and RF were
the two algorithms most affected by overfitting, presenting very sharp changes in metrics
when training and test sets are compared, especially when soil-related predictors were
used. In addition, CUB and RF were also the most affected by different imputation sets
and, once more, the presence of soil-related predictors contributed to higher variance in
model metrics (Figure 6).

Table 3. Grape yield prediction coefficient of determination (R2), Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE) by algorithm, predictor dataset and imputation set. Best fit refers
to optimized tuning parameters for Partial Least Squares Regressions (PLSR: number of principal
components), Cubist (CUB: number of neighbors) and Random Forest (RF: random predictors
subset/minimum node size).

Imputation
Set Predictors Algorithm

Train Test

R2
RMSE MAE

Best fit R2
RMSE MAE

Mg ha−1 Mg ha−1

1

Soil
PLSR 0.34 4.00 3.10 8 0.12 4.41 3.47
CUB 0.90 1.76 1.35 9 0.15 4.16 3.20
RF 0.94 1.59 1.16 12/3 0.23 3.92 2.94

Weather
PLSR 0.55 3.33 2.57 10 0.46 3.20 2.54
CUB 0.89 1.70 1.29 5 0.52 2.99 2.43
RF 0.89 1.70 1.28 65/5 0.59 2.80 2.23

Weather + Soil
PLSR 0.60 3.13 2.46 18 0.47 3.18 2.48
CUB 0.95 1.25 0.95 9 0.50 3.07 2.47
RF 0.95 1.32 1.00 80/3 0.55 2.94 2.30

2

Soil
PLSR 0.56 3.28 2.54 15 0.47 3.15 2.55
CUB 0.89 1.69 1.29 5 0.52 3.00 2.44
RF 0.90 1.70 1.29 65/5 0.56 2.90 2.26

Weather
PLSR 0.60 3.14 2.46 17 0.48 3.17 2.47
CUB 0.95 1.23 0.94 9 0.50 3.05 2.43
RF 0.95 1.33 1.00 95/3 0.52 3.04 2.36

3

Weather
PLSR 0.56 3.29 2.55 14 0.47 3.15 2.55
CUB 0.89 1.69 1.28 5 0.53 2.98 2.43
RF 0.92 1.53 1.16 65/3 0.57 2.85 2.24

Weather + Soil
PLSR 0.60 3.14 2.46 17 0.48 3.17 2.48
CUB 0.95 1.24 0.95 9 0.52 3.00 2.40
RF 0.94 1.43 1.08 95/5 0.57 2.87 2.24



Horticulturae 2023, 9, 1294 10 of 18

Table 3. Cont.

Imputation
Set Predictors Algorithm

Train Test

R2
RMSE MAE

Best fit R2
RMSE MAE

Mg ha−1 Mg ha−1

4

Weather
PLSR 0.56 3.28 2.54 15 0.47 3.15 2.55
CUB 0.90 1.63 1.23 5 0.52 2.98 2.41
RF 0.91 1.54 1.17 65/3 0.57 2.89 2.25

Weather + Soil
PLSR 0.60 3.13 2.46 18 0.47 3.18 2.49
CUB 0.95 1.23 0.94 9 0.51 3.03 2.38
RF 0.95 1.30 0.98 95/3 0.54 2.97 2.31

5

Soil
PLSR 0.56 3.28 2.53 15 0.47 3.17 2.56
CUB 0.88 1.74 1.33 5 0.52 2.99 2.40
RF 0.90 1.70 1.29 65/5 0.59 2.79 2.20

Weather
PLSR 0.60 3.14 2.46 17 0.48 3.18 2.48
CUB 0.95 1.28 0.98 9 0.50 3.08 2.44
RF 0.95 1.34 1.00 95/3 0.55 2.92 2.28
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Figure 6. Impact of weather data imputation on coefficient of determination (R2), Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) of grapevine yield predictions using Partial Least
Squares Regression (PLSR), Cubist (CUB) and Random Forest (RF) algorithms with different sets
of predictors.

The impact of imputation sets on model performance arises from changes in predictor
distribution and range after filling in the missing values, therefore, the importance of pre-
dictors can also be indirectly assessed by investigating the differences between the imputed
datasets. Imputation sets were fairly uniform and shaped similarly to the original observed
data for most predictors except the mean wind speed and, to some extent, potential evapo-
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transpiration. The number of rainy days, precipitation and relative humidity had at least
one imputation set whose distribution appeared different from the others (Figure 7).
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3.2. Variable Importance

The assessments of variable importance can enable insights about the nature of the
most important predictors and point to the direction for data acquisition and prediction
improvements. Across all algorithms and all predictor datasets, plant age and yield class
were the most important variables. May temperatures, especially the minimum, were the
most important weather-related variable. Soil pH and concentrations of Zn and Cu were
the most important soil-related predictors, followed by soil K and Mn. In addition, plot
and cultivar were important predictors in CUB and RF models. The importance of other
predictors varied among dataset x model combinations (Figure 8).
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Figure 8. The 15 most important variables by algorithm, predictor and imputation set. For each
imputation set, variable importance is given on a 0 to 100 scale and x-axis values are the sum of the
importance in m imputation sets. Soil dataset was only imputed using a median method, hence the
results are the same for all imputation sets.

4. Discussion

The effects of data imputation on model performance vary according to the algorithm
used. The different sensitivities between PLSR, CUB and RF arise due to how each of these
algorithms work. The PLSR acts as a supervised Principal Component Regression (PCR)
producing new features (PCs) which are linear combinations of the original predictors that
maximize the explained variance in the response [73]. Therefore, changes in particular
variables due to imputation may have their effects diluted or even ignored given this
optimization constraint.

Building on Quinlan’s original M5 model [74,75], its modern version called Cubist
(CUB) is a rule-based algorithm that makes predictions by building regression models on
its terminal nodes [81]. This algorithm works by creating a split in the dataset and fitting a
regression with every predictor available. In the next node, data is split again and a new
regression is fit using the new subset of predictors. Moreover, CUB includes an ensemble
method for predictions called committees and a nearest-neighbor adjustment that occurs
after the model predictions [81]. In committee ensembles, the outcome values are modified
for each iteration in an effort to reduce over- and under-predictions, whereas the final result
is obtained by averaging over the committee model estimates. After model prediction,
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it is possible to conduct a post-model K-nearest neighbor adjustment where the closest
observations in the training set (along with their original predictions) are used to correct
prediction errors and trends in the dependent variable [74,81]. In the current study, the
number of committees and neighbors used was high and, while effective in improving
performance metrics, it is likely that it caused overfitting in the training set, hampering
predictive ability during the validation stage.

Random Forest is an ensemble of decision trees that do not build regression models on
terminal nodes, but rather use average values and, as a consequence, may be more sensitive
to variations caused by imputation, given the changes in imputed data distributions. The
number of variables randomly sampled as candidates at each split (mtry) is a tuning
parameter that impacts the likelihood of selecting important features that are actually
related to the outcome variable for most of the splits that are made. Too large mtry
values can reduce randomness in the model, diminishing the benefits of building multiple
independent decision trees. Minimum node size, in turn, defines how deep a tree can grow,
that is, the minimum number of observations a node requires to proceed with a split. Our
results present clear signs of overfitting, suggesting that the combination of large mtry
values and small node size (Table 3) is detrimental to modeling and should be reconsidered.
Nevertheless, the pooled results of RF yielded the best predictive performance, indicating
that some of the overfitting issues were addressed by the averaging effect of multiple trees
(a.k.a. the law of large numbers) [76], although higher values should also be tested.

Our results corroborate with the well-established importance of meteorological vari-
ables in resulting grape yield [12,13,30]. However, our models highlighted end-of-cycle tem-
peratures (May) as being important predictors, as opposed to the most commonly reported
temperatures at bud break, flowering, fruit-set and berry development stages [8,10,31,82,83].
Post-harvest temperature might contribute to greater carbohydrate accumulation in plant
tissues, which are translocated in the next cycle to the leaves and branches at the beginning
of vegetative growth [84].

Relative humidity and precipitation were previously reported as relevant predictors
for grape yield models [10,46] but did not show consistent predictive power in the present
study. This may arise from the inherit difficulty in capturing rain records. Since rain
and humidity can be very heterogeneous across landscape, even nearby stations may not
represent the water regime faithfully, let alone in imputed datasets [58], an issue of known
concern [58,85]. Imputation of time series and its impact on modeling results is still an
active field of research [47,51,53,56] and further studies need to be carried out to avoid
erroneous conclusions and inaccurate predictions.

Despite the undeniable importance of plant nutrition to obtain proper grapevine yields,
the predictive power of soil variables was considerably low. Grape root systems can grow
over a meter deep, therefore, the dynamics of nutrient uptake are not fully captured by top
layer soil samples [18]. Moreover, adult grapevines reach nutritional stability and are able
to mobilize reserves [86], hindering the relationship between soil nutrient concentrations
and yield parameters. This is also reflected in the ubiquitous presence of plant age as the
most important yield predictor.

Soil pH plays a key role in plant development due to its effects on nutrient availability
and toxicity [87] and such importance is promptly captured by all three models. The
importance of soil Cu and Zn as yield predictors can, however, be related to phytosanitary
control, since they are components of fungicides largely used against crop diseases, ensur-
ing higher yields but also leading to their accumulation in vineyard soils [88–90]. Grape
berries are great sinks of K [91] and clusters can account for over 60% of the total content
in the above-ground organs [92], so it is sound that soil K figures as an important yield
predictor, which is supported by recent modeling attempts [10]. Grapevines are particularly
susceptible to Mn deficiency and shortage of supply can lead to small and poor quality
yields [93]. In addition, recent studies suggest that Mn plays a role in enhancing plant
resistance to water stress [94], so despite being a micronutrient, Mn soil concentrations
seem to play key role in grape production. It is worth noting that Mn was the single most
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imputed variable in soil-related datasets (Figure 4) and, while having artificially reduced
variance, it figured as a relevant predictor when soil variables were considered.

Categorical variables were also important to model estimates. The high importance
of vineyard plot information suggests spatial dependency, consistent with recent studies
on the effects of intra-vineyard variability and soil heterogeneity on vine performance,
dry matter and nutrient partitioning [95], where, based on the Normalized Difference
Vegetation Index NDVI, authors divided the vineyard into high, medium and low vigor
zones. The availability of georeferenced data can improve yield response estimates by
enabling the use of covariates in modeling [96] and imputations [97] but such informa-
tion was unavailable in the current study. Instead, the cultivars were grouped into low,
medium or high yield levels based on numerical clustering, historical yield levels (Figure 2)
and expert knowledge. This feature engineering improved model performance by better
partitioning the variability while retaining agronomic sense. Similarly, other groupings
(or clusterings) could enhance the predictive ability of models. Research has shown the
importance of phenological stage grouping for modeling [6,10,98]. Moreover, advances
in fruit tree fertilizing indicate different nutrition profiles for each cultivar [12,99,100] or
site-specific conditions [101] and, while requiring further elucidation, have the potential to
leverage soil data predictive power.

The present study showed that the combined use of databases and robust machine
learning methods has the potential to estimate grapevine productivity, helping decision
makers to be more assertive not only during commercialization stage but also in fertilizer
recommendations and phytosanitary management of vineyards. The herein adopted
strategies can be extended for other relevant applications in orchards worldwide, estimating
the performance of fruit trees under specific conditions (culture, site, management, etc.),
while keeping in mind multiple factors such as increased yield and economic viability,
higher visual and bromatological quality of fruits, plant nutrition for proper development,
rational use of fertilizers and adaptation within a climate change scenario.

5. Conclusions

In this study, Partial Least Square (PLSR), Cubist (CUB) and Random Forest (RF)
algorithms were used to predict grape yields from weather and soil data separately and in
conjunction. Overall, the results were best when using only weather predictors, followed
by weather and soil data combined and, lastly, soil data alone. Weather data from ground
meteorological stations contained observations with missing values and these were imputed
by uni- or multivariate methods. The RF and CUB algorithms were the most affected by
weather data imputations, while PLSR remained fairly insensitive. Parameter tuning
optimized to reduce Root Mean Squared Error led to overfitting in CUB- and RF-based
models and (hyper)parameter values should be reconsidered to improve performance.
Nevertheless, RF achieved the best metrics, followed closely by CUB, while PLSR yielded
the poorest yet most stable results. Plant age, May temperatures, soil pH and concentrations
of Zn, Cu, K and Mn were identified as important predictors, even though 57% of soil
Mn observations were missing and were imputed using a median method. Yield level
groups had high importance in predictions, indicating that clustering can be a useful
strategy, whereas the importance of vineyard plots suggests spatial dependencies that can
be further explored by using georeferenced data. This exploratory work offers insights for
future research on grape yield predictive modeling and highlights the importance of high
resolution data and grouping strategies to obtain more assertive results, thus contributing
to a more efficient grapevine production chain in southern Brazil and worldwide.
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