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Abstract: Light, temperature and rainfall affect the growth and yield of strawberry plants (Fragaria ×
ananassa Duch.). The objective of this review was to determine the impact of global warming on the
yields of strawberry in a temperate (summer crop) and subtropical environment (winter crop) in southern
Queensland, Australia. Information was collected on the changes in temperature over five decades in
two locations in this area. The relationship between relative yield and temperature from published data
was used to determine the impact of global warming on productivity in the two locations. Finally, the
impact of elevated concentrations of CO2 and temperature on yield was examined from studies in the
literature. The average daily mean temperature has increased by 2 ◦C over the season on the Sunshine
Coast (winter crop) since 1967 (p < 0.001, R2 = 0.69). The impact of global warming has been less severe
on the Granite Belt (summer crop), with a 1 ◦C increase in temperature (p < 0.001, R2 = 0.37). Information
was collected from the literature on the yield in individual temperature regimes in an experiment and
these data were compared with the maximum yield in the same experiment (relative yield). There was a
negative linear relationship between relative yield and temperature in most of the published literature.
The mean (± s.d. or standard deviation) estimate of the slope from the regression was−0.14 (± 0.14), the
median was−0.11 and the range was from−0.51 to 0.11 (n = 14 studies). Increases in temperature were
associated with a decrease in yield of 14% to 28% in the two areas in Queensland. The results of other
research indicated that elevated concentrations of CO2 do not benefit productivity when combined with
elevated temperatures. Further decreases in yield are expected in the next few decades in the absence of
heat-tolerant cultivars or other mitigating strategies.

Keywords: climate; CO2 concentration; global warming; model; net CO2 assimilation; review; subtropics;
temperate; temperature; yield

1. Introduction

Global production of strawberry (Fragaria × ananassa Duch.) is about 9 million tonnes
each year [1–3]. The crop is important in China and the United States and throughout
much of Europe. The plant is adapted to a wide range of environments, with commercial
production in areas with a cool or warm temperate climate, a cool or warm subtropical
climate or a Mediterranean climate [4–8].

The main scenarios for global climate change include an increase in the concentration of
carbon dioxide (CO2) and an increase in average temperatures. Several studies suggest that
yield and fruit quality in strawberry will decrease with climate change [9–22]. Modelling
in California demonstrated that productivity will decrease by 10% by 2050 and by 40% by
2099 [14,15]. In these investigations, low yields under climate change were associated with
high temperatures and drought.

Strawberry growers in Australia produce 90,000 tonnes of fruit worth AUD 450 million
each year. The main production centers are in Queensland (42%), Victoria (36%) and
Western Australia (10%). There are smaller industries in South Australia (7%), Tasmania
(4%) and New South Wales (1%). Eighty-seven per cent of the supply goes to the retail
sector and thirteen per cent to the food service sector. There are two principal growing
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areas in Queensland, each with a different production season. The bulk of the winter crop
is produced from May to October on the Sunshine Coast. The summer crop is produced
from October to May at elevation on the Granite Belt.

The objective of this review was to determine the impact of global warming on the
yields of strawberry in a temperate (summer crop) and subtropical environment (winter
crop) in southern Queensland, Australia. There is no information on the impact of global
warming on the yields of strawberry in Queensland or the relationship between yield and
temperature under field conditions in this area. Data were collected on the changes in
temperature over the past five decades on the Sunshine Coast (winter crop) and the Granite
Belt (summer crop). The relationship between yield and temperature from published data
was used to assess the impact of global warming on productivity in the two areas. Finally,
the impact of elevated concentrations of CO2 and temperature on yield was examined from
studies in the literature.

2. Data Collection

Long-term weather data were collected for Nambour on the Sunshine Coast (latitude
26.6◦ S, longitude 152.9◦ E and elevation 29 m) and Applethorpe on the Granite Belt (latitude
28.6◦ S, longitude 151.9◦ E and elevation 872 m) (www.bom.gov.au) accessed on 30 October
2022. These data included long-term monthly average daily maximum and minimum
temperatures, daily solar radiation and total monthly rainfall. Data were also collected on
daily maximum and minimum temperatures from 1967 to 2021. Additional information
was collected on the changes in the average temperature for Australia (www.bom.gov.au)
and the globe (www.climate.nasa.gov) accessed on 30 October 2022.

The relationship between yield and temperature in strawberry from published data
was used to assess the impact of global warming on productivity in the two areas in
Queensland. Information was collected from the literature on the yield in an individual
temperature regime in an experiment and these data were compared with the maximum
yield in the same experiment (relative yield). The relationship between relative yield and
temperature in each experiment was analyzed by linear or quadratic regression using
GenStat (Version 21; VSN International, Hemel Hempstead, UK).

Additional data were collected from the literature on the yields of strawberry under
elevated CO2 and elevated temperatures.

3. Changes in Temperature

There are differences in climate between the two main strawberry areas in Queensland.
It is warmer and wetter at Nambour on the Sunshine Coast than at Applethorpe on
the Granite Belt, whereas solar radiation levels are similar. Average yearly maximum
temperatures are 26.1 ◦C and 20.9 ◦C in the two areas, average minimum temperatures
are 15.9 ◦C and 9.0 ◦C, total yearly rainfall is 1,698 and 756 mm and average daily solar
radiation is 17.9 and 18.4 MJ per m2, respectively.

The average daily mean temperature from May to October at Nambour has increased
from 16.0 ◦C in 1967 to 18.0 ◦C in 2021, equivalent to a rise of 0.45 ◦C per decade (Figure 1;
p < 0.001, R2 = 0.69). The maximum has increased by 0.17 ◦C per decade (p = 0.001, R2 = 0.17),
while the minimum has increased by 0.73 ◦C per decade (p < 0.001, R2 = 0.66).

www.bom.gov.au
www.bom.gov.au
www.climate.nasa.gov
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Figure 1. Changes in average daily mean temperature at Nambour from May to October and at 
Applethorpe from October to May from 1967 to 2021. Data are from www.bom.gov.au. For Nam-
bour: Temperature (°C) = Intercept + 0.0451 × Year (p < 0.001, R2 = 0.69). For Applethorpe: Tempera-
ture (°C) = Intercept + 0.0236 × Year (p < 0.001, R2 = 0.37). 

The average daily mean temperature over the season at Applethorpe has increased, 
but not as much as in Nambour (Figure 1). The mean temperature from October to May 
has increased from 16.8 °C in 1967 to 17.8 °C in 2021, equivalent to a rise of 0.24 °C per 
decade (p < 0.001, R2 = 0.37). The maximum has increased by 0.38 °C per decade (p < 0.001, 
R2 = 0.35), while the minimum has increased by 0.09 °C per decade (p = 0.029, R2 = 0.08). 

The average daily mean temperature from January to December at Nambour has in-
creased by 0.34 °C per decade (Figure 2; p < 0.001, R2 = 0.74). The mean temperature over 
the year at Applethorpe has increased by 0.25 °C per decade (Figure 2; p < 0.001, R2 = 0.47). 

The average daily mean temperature in Australia from January to December has in-
creased by 0.24 °C per decade (Figure 2; p < 0.001, R2 = 0.53). The average temperature 
across the globe has increased by 0.18 °C per decade (Figure 2; p < 0.001, R2 = 0.91). The 
temperature for Nambour has increased at a faster rate than for Australia and the globe. 
The temperature for Applethorpe has increased at a similar rate as for Australia and at a 
faster rate than for the globe. 

Temperatures across the globe have increased over the past fifty years [23]. The rate 
of warming varies from one region to the next and there are differences between winter 
and summer and between days and nights. 

Climate change is associated with increases in temperature in southern Queensland. 
Olesen [24] studied warming in coastal northern New South Wales, Australia and found 
that winter temperatures had increased by 1.5 °C from 1963 to 2009, whereas summer ones 
were largely unchanged. Frederiksen and Osbrough [25] showed that the shifts in tem-
perature in Australia had mainly occurred in the past 20 years. Mean and maximum tem-
peratures are projected to increase by 2 °C around mid-century in many areas of the globe 
[26]. 

Figure 1. Changes in average daily mean temperature at Nambour from May to October and at
Applethorpe from October to May from 1967 to 2021. Data are from www.bom.gov.au. For Nambour:
Temperature (◦C) = Intercept + 0.0451 × Year (p < 0.001, R2 = 0.69). For Applethorpe: Temperature
(◦C) = Intercept + 0.0236 × Year (p < 0.001, R2 = 0.37).

The average daily mean temperature over the season at Applethorpe has increased,
but not as much as in Nambour (Figure 1). The mean temperature from October to May
has increased from 16.8 ◦C in 1967 to 17.8 ◦C in 2021, equivalent to a rise of 0.24 ◦C per
decade (p < 0.001, R2 = 0.37). The maximum has increased by 0.38 ◦C per decade (p < 0.001,
R2 = 0.35), while the minimum has increased by 0.09 ◦C per decade (p = 0.029, R2 = 0.08).

The average daily mean temperature from January to December at Nambour has
increased by 0.34 ◦C per decade (Figure 2; p < 0.001, R2 = 0.74). The mean temperature over
the year at Applethorpe has increased by 0.25 ◦C per decade (Figure 2; p < 0.001, R2 = 0.47).

The average daily mean temperature in Australia from January to December has
increased by 0.24 ◦C per decade (Figure 2; p < 0.001, R2 = 0.53). The average temperature
across the globe has increased by 0.18 ◦C per decade (Figure 2; p < 0.001, R2 = 0.91). The
temperature for Nambour has increased at a faster rate than for Australia and the globe.
The temperature for Applethorpe has increased at a similar rate as for Australia and at a
faster rate than for the globe.

Temperatures across the globe have increased over the past fifty years [23]. The rate of
warming varies from one region to the next and there are differences between winter and
summer and between days and nights.

Climate change is associated with increases in temperature in southern Queensland.
Olesen [24] studied warming in coastal northern New South Wales, Australia and found
that winter temperatures had increased by 1.5 ◦C from 1963 to 2009, whereas summer
ones were largely unchanged. Frederiksen and Osbrough [25] showed that the shifts in
temperature in Australia had mainly occurred in the past 20 years. Mean and maximum
temperatures are projected to increase by 2 ◦C around mid-century in many areas of the
globe [26].

www.bom.gov.au
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Figure 2. Changes in average daily mean temperature during the year for Nambour, Applethorpe, 
Australia and the globe from 1967 to 2021. Data are from www.bom.gov.au and www.cli-
mate.nasa.gov. For Nambour: Temperature (°C) = Intercept + 0.0339 × Year (p < 0.001, R2 = 0.74). For 
Applethorpe: Temperature (°C) = Intercept + 0.0247 × Year (p < 0.001, R2 = 0.47). For Australia: Tem-
perature (°C) = Intercept + 0.0240 × Year (p < 0.001, R2 = 0.53). For Globe: Temperature (°C) = Intercept 
+ 0.0184 × Year (p < 0.001, R2 = 0.91). 

4. Relationship between Yield and Temperature 
The relationship between productivity and temperature in strawberry was assessed 

from published data (Table 1; n = 26 studies). There was a negative linear relationship 
between relative yield (yield in a specific temperature regime/maximum yield in an ex-
periment) and temperature in most of the studies. The mean (± s.d. or standard deviation) 
estimate of the slope from the regression was −0.14 (± 0.14), the median was −0.11 and the 
range was from −0.51 to 0.11 (Figure 3; n = 14 studies). This means that on average, yield 
decreased by 14% for each degree increase in temperature. There are no data available on 
the effect of temperature on the productivity of strawberry in Australia from either glass-
house or field studies. 

  

Figure 2. Changes in average daily mean temperature during the year for Nambour, Applethorpe,
Australia and the globe from 1967 to 2021. Data are from www.bom.gov.au and www.climate.nasa.gov.
For Nambour: Temperature (◦C) = Intercept + 0.0339 × Year (p < 0.001, R2 = 0.74). For Applethorpe:
Temperature (◦C) = Intercept + 0.0247 × Year (p < 0.001, R2 = 0.47). For Australia: Temperature (◦C) =
Intercept + 0.0240 × Year (p < 0.001, R2 = 0.53). For Globe: Temperature (◦C) = Intercept + 0.0184 ×
Year (p < 0.001, R2 = 0.91).

4. Relationship between Yield and Temperature

The relationship between productivity and temperature in strawberry was assessed
from published data (Table 1; n = 26 studies). There was a negative linear relationship
between relative yield (yield in a specific temperature regime/maximum yield in an
experiment) and temperature in most of the studies. The mean (± s.d. or standard
deviation) estimate of the slope from the regression was −0.14 (± 0.14), the median was
−0.11 and the range was from −0.51 to 0.11 (Figure 3; n = 14 studies). This means that on
average, yield decreased by 14% for each degree increase in temperature. There are no data
available on the effect of temperature on the productivity of strawberry in Australia from
either glasshouse or field studies.

Information was collected on the effect of temperature on productivity from studies
in growth chambers and in the field. There are issues with both types of experiments.
Yields and light levels are low in growth chambers and there are limited or inappropriate
replication [42]. Temperature is often correlated with solar radiation in the field, making it
difficult to separate the importance of the two factors on growth and yield [33].

www.bom.gov.au
www.climate.nasa.gov
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Figure 3. Box plot for the slope from the linear regression between relative yield and average daily
mean temperature in strawberry (n = 14 studies). Data are from the citations shown in Table 1.

A few studies were excluded from the analysis. This was because the plants were
grown at relatively low temperatures below 17 ◦C [41] or there was a strong correlation
between temperature and solar radiation in the field [33,37]. Le Mière et al. [29] investigated
the effect of temperature on yield in glasshouses in the United Kingdom. The chambers
were set at temperatures from 12 ◦C to 28 ◦C. There was a strong negative linear relationship
between relative yield and temperature (p < 0.001, R2 = 0.85). Relative yield decreased by
5.2% for each degree increase in temperature (Table 1).

Table 1. Relationship between relative yield and daily mean temperature in strawberry. Data from
the sources shown in the table. CE = controlled environment; s.e. = standard error.

Reference Type of Exp. Range in
Mean Temp.

Range in
Yield

(g per plant)

Regression
between Yield

and Temp.
p Value from
Regression

R2 Value from
Regression

Slope from
Linear

Regression
(± s.e.)

Bjurman [27] Field 13 ◦C to 17 ◦C 33 to 315 Linear 0.656 - -
Kumakura and Shishido [28] CE 15 ◦C to 25 ◦C 26 to 132 Linear <0.001 0.86 −0.0616 (0.0087)

Le Mière et al. [29] CE 12 ◦C to 28 ◦C About 31 to
230 Linear <0.001 0.85 −0.0519 (0.0038)

Kadir et al. [30] CE 20 ◦C to 30 ◦C 3.0 to 9.0 Linear 0.087 0.75 −0.5110 (0.0161)
Wagstaffe and Battey [31] CE 15 ◦C to 27 ◦C 889 to 1497 Linear 0.650 - -

Krüger et al. [32] Field 13 ◦C to 16 ◦C 112 to 797 Linear 0.723 - -
Krüger et al. [32] Field 15 ◦C to 21 ◦C 112 to 797 Linear 0.043 0.31 0.1088 (0.0462)

Palencia et al. [33] Field 9 ◦C to 15 ◦C About 5 to 75 Linear <0.05 0.86 -
Palencia et al. [33] Field 9 ◦C to 15 ◦C About 5 to 120 Quadratic >0.05 - -

Cocco et al. [34] Field 12 ◦C to 14 ◦C 317 to 1139 Linear 0.001 0.52 −0.2241 (0.0556)
Cocco et al. [34] Field 11 ◦C to 14 ◦C 317 to 1139 Linear 0.006 0.41 −0.1292 (0.0396)

Taghavi et al. [35] Field 15 ◦C to 20 ◦C 67 to 314 Linear 0.532 - -
Rahman et al. [36] Field 15 ◦C to 20 ◦C 222 to 480 Linear 0.019 0.51 −0.1531 (0.0677)
Rahman et al. [36] Field 19 ◦C to 22 ◦C 250 to 650 Linear 0.101 0.53 −0.1832 (0.0781)
Rahman et al. [36] Field 20 ◦C to 23 ◦C 172 to 414 Linear 0.036 0.75 −0.2264 (0.0626)
Rahman et al. [36] Field 18 ◦C to 22 ◦C 78 to 175 Linear 0.018 0.84 −0.1983 (0.0421)
Condori et al. [37] Field - 0 to 80 Linear <0.001 0.28 -
Condori et al. [37] Field - 0 to 80 Linear <0.001 0.26 -
Condori et al. [37] Field - 0 to 80 Linear <0.001 0.18 -
Condori et al. [37] Field - 0 to 80 Linear <0.001 0.08 -

Sønsteby and Heide [38] CE 9 ◦C to 27 ◦C 0 to 372 Linear 0.586 - -
Maskey et al. [20] Field 9 ◦C to 21 ◦C About 3 to 109 Linear - 0.45 −0.0755

Maskey et al. [20] Field 8 ◦C to 24 ◦C About 12 to
870 Linear - 0.27 −0.0939

Butare [39] CE 20 ◦C to 30 ◦C 195 to 1131 Linear 0.248 0.71 −0.0837 (0.0339)
Rivero et al. [40] CE 9 ◦C to 27 ◦C 590 to 1594 Linear 0.077 0.10 −0.0308 (0.0663)
Zhang et al. [41] CE 8 ◦C to 17 ◦C 106 to 871 Linear 0.102 0.71 -

5. Effect of Global Warming on Yields in Queensland

The daily mean temperature has increased by 2 ◦C at Nambour over the past five
decades. There has been a smaller change at Applethorpe, with the daily mean increasing
by 1 ◦C. The analysis detailed above (Table 1; Figure 3) suggests a decrease in yield of 28%
on the Sunshine Coast over this period, and a decrease of 14% on the Granite Belt.
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6. Interaction between Elevated CO2 and Temperature on Yield

Increases in temperature with climate change are coupled with increases in the concen-
tration of CO2 in the atmosphere. The concentration of CO2 in the lower atmosphere in 2021
was 415 ppm [43]. There is an initial increase in yield with climate change due to higher
photosynthesis under elevated CO2. However, eventually the impacts of high temperatures
on growth override the benefits of higher photosynthesis in many species [44–46].

Environmental conditions affect photosynthesis in strawberry leaves. Net CO2 assimi-
lation increases with increasing concentrations of CO2 and is saturated with an external
concentration of CO2 (Ca) of 600 to 1,500 ppm [47–49]. The leaves can adapt to elevated
CO2 over the long-term, with the response to higher CO2 diminishing over weeks or
months [50]. Temperature also affects photosynthesis. There is a broad optimum for
maximum net CO2 assimilation, with photosynthesis decreasing only under extreme con-
ditions. The optimum range varies with cultivar and growing conditions and is usually
from 20 ◦C to 30 ◦C [49–52]. Carlen et al. [53] examined the effect of temperature on CO2
assimilation in Switzerland. The optimum temperature for photosynthesis was 25 ◦C to
35 ◦C, with lower photosynthesis at lower or higher temperatures. Net CO2 assimilation
was adapted to a wide range of conditions and was 60% of maximum values at 40 ◦C.
The optimum temperature range typically increases when the plants are grown at higher
temperatures [54].

Several studies have demonstrated that elevated concentrations of CO2 increase the
yield of strawberry compared with ambient conditions [55–60]. This response suggests that
higher concentrations of CO2 under climate change will counteract the impacts of higher
temperatures. However, the limited data available indicate that elevated concentrations of
CO2 are not beneficial when combined with elevated temperatures [61,62].

In the study of Balasooriya et al. [61] in Australia, net CO2 assimilation was higher at
concentrations of CO2 of 650 or 900 ppm than at 400 ppm (Table 2). In contrast, temperature
only had a small effect on CO2 assimilation. Yields were higher at intermediate CO2 and
lower at 30 ◦C than at 25 ◦C. The highest yields were obtained at 25 ◦C with CO2 levels of
400 or 650 ppm. Sun et al. [62] examined the effect of CO2 and temperature on the yields of
strawberry in growth chambers in China. Control plants under ambient CO2 (360 ppm) and
temperatures (20 ◦C/15 ◦C) had similar yields as those under ambient CO2 and elevated
temperatures (25 ◦C/20 ◦C) or under elevated CO2 (720 ppm) and elevated temperatures
(10.5 to 12.0 g dry weight per plant; p > 0.05). The plants at elevated CO2 and ambient
temperatures had higher yields than the other treatments (25 g dry weight per plant;
p < 0.05). These results suggest that high CO2 under climate change is not likely to override
the impact of global warming on productivity.

Yuan et al. [63] modelled the changes in productivity of several field crops in Oklahoma,
United States. They found that the yields of soybean, sorghum, wheat and canola decreased by
5.7% to 19.2% under climate change. Elevated concentrations of CO2 increased photosynthesis,
but this benefit was dissipated by the impacts of hot and dry weather on growth.

Table 2. The effect of elevated CO2 and temperature on net CO2 assimilation and yield of strawberry
in glasshouses in Melbourne, Australia. Data are the means (±s.e. or standard error) of two cultivars.
Data were retrieved from Balasooriya et al. [61].

Temperature Concentration of
CO2

Net CO2 Assimilation
(µmol per m2 per s)

Yield
(g per plant)

25 ◦C 400 ppm 10.3 ± 0.3 46.9 ± 9.3
25 ◦C 650 ppm 15.1 ± 0.2 52.3 ± 5.1
25 ◦C 950 ppm 15.0 ± 0.1 39.2 ± 1.5
30 ◦C 400 ppm 11.1 ± 0.7 8.3 ± 0.9
30 ◦C 650 ppm 14.2 ± 0.03 35.6 ± 1.6
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Table 2. Cont.

Temperature Concentration of
CO2

Net CO2 Assimilation
(µmol per m2 per s)

Yield
(g per plant)

30 ◦C 950 ppm 12.0 ± 0.1 23.2 ± 4.8

Means
Temperature (25 ◦C) 13.5 ± 1.3 46.2 ± 3.1
Temperature (30 ◦C) 12.4 ± 3.7 22.4 ± 6.5

CO2 (400 ppm) 10.7 ± 0.3 27.6 ± 13.7
CO2 (650 ppm) 14.7 ± 0.3 43.9 ± 5.9
CO2 (950 ppm) 13.5 ± 1.1 31.2 ± 5.7

7. Conclusions

The main scenarios for global climate change include increases in the concentration of
carbon dioxide (CO2) and average temperatures. The daily mean temperature has increased
by 2 ◦C on the Sunshine Coast over the past five decades. The impact of global warming has
been less severe on the Granite Belt, with a 1 ◦C increase in temperature. These increases in
temperature are associated with a decrease in yield of 14% to 28% in the two areas. There
will be further decreases in yield in the next few decades in the absence of heat-tolerant
cultivars or other mitigating strategies.
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