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Abstract: To estimate the state of health, charge, power, and safety (SoX) of lithium-ion batteries
(LiBs) in real time, battery management systems (BMSs) need accurate and efficient battery models.
The full-order partial two-dimensional (P2D) model is a common physics-based cell-level LiB model
that faces challenges for real-time BMS implementation due to the complexity of its numerical solver.
In this paper, we propose a method to discretise the P2D model equations using the Finite Volume
and Verlet Integration Methods to significantly reduce the computational complexity of the solver.
Our proposed iterative solver uses novel convergence criteria and physics-based initial guesses to
provide high fidelity for discretised P2D equations. We also include both the kinetic-limited and
diffusion-limited models for Solid Electrolyte Interface (SEI) growth into an iterative P2D solver.
With these SEI models, we can estimate the capacity fade in real time once the model is tuned to
the cell–voltage curve. The results are validated using three different operation scenarios, including
the 1C discharge/charge cycle, multiple-C-rate discharges, and the Lawrence Livermore National
Laboratory dynamic stress test. The proposed solver shows at least a 4.5 times improvement in
performance with less than 1% error when compared to commercial solvers.

Keywords: lithium-ion battery; partial two-dimensional model; finite volume method (FVM);
temperature modelling; solid electrolyte interphase growth; numerical iterative solver algorithm

1. Introduction

Lithium-ion batteries (LiBs) are used for energy storage for a range of applications,
such as electric vehicles (EVs), consumer electronics, and even grid energy storage [1]. LiBs’
high energy density, long cycle life, and reliable manufacturing processes are the main
reasons for their wide application. Given the scale of their utility, accurate and efficient
models of LiBs have gained significant importance [2,3].

The operation management of rechargeable battery systems is typically implemented
using battery management systems (BMSs). In addition to basic battery operations, a BMS
estimates two important states of battery operation, i.e., state of safety (SoS) and state of
health (SoH), using LiB models representing the cell’s internal states [4].

A battery model is a set of equations to mimic the cell/pack operation and provide
information on the state of batteries, including the state of charge (SoC), state of health
(SoH), state of power (SoP), state of function (SoF), and internal cell temperature [5].
Cell-level battery models are typically classified into three types: (i) empirical models,
(ii) equivalent circuit models (ECMs), and (iii) electrochemical models (EMs) [6].

Empirical models are the simplest to implement, as they are based on functions derived
from statistical curve fitting to experimental measurements of battery performance. Due to the
low computational cost required, empirical models have been widely used in BMSs. However,
they suffer from a lack of robustness and inaccuracy in non-optimal battery conditions [7].

ECMs model a LiB as a voltage source in series with a lumped circuit element network.
Thus, ECMs also tend to require low computational processing power and are often used
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on advanced BMSs of EVs. ECMs, however, provide primarily high-level information
about a cell, such as its SoC and cell voltage [8].

EMs are the most accurate type of cell-level battery model [9], as they represent the
internal physiochemical processes within a cell. The partial two-dimensional (P2D) model
is the most accurate cell-level EM [10]. The P2D model was first proposed by Doyle
et al. [11,12] and, in its basic form, captures three major physiochemical processes in a cell:
the diffusion of lithium in the electrodes, reduction/oxidisation (redox) reactions at the
electrode/electrolyte interphase, and the diffusion of lithium ions in the electrolyte. The
P2D model captures the different physiochemical phenomena using a set of coupled Partial
Differential Algebraic Equations (PDAEs) with high fidelity.

The P2D model can be adapted to capture more physiochemical processes than just
the three fundamental processes. Examples of this include modelling the effects of heat
generation/dissipation in different regions of the cell (non-isothermal cases) [13,14] or
modelling ageing in cells by capturing Solid Electrolyte Interface (SEI) growth [15,16]. The
adaptations of the P2D model tend to be additive, where additional processes are modelled
in conjunction with the fundamental physiochemical processes of the P2D model. Despite
its accuracy and adaptability, the P2D model is a complex mathematical model that has no
analytical solution [17,18]. To implement the P2D model, we normally use two approaches:
(1) develop reduced-order models (ROMs) of the P2D model [10] or (2) use numerical
iterative solvers to implement the full-order P2D model.

Various forms of ROMs are suggested in the literature, e.g., the Single-Particle Model
(SPM) [19], the extended Single-Particle Model (eSPM) [20], Multi-Scale Multi-Domain
Models (MSMD) [21], and Electrode-Averaged Models (EAMs) [22].

The most commonly used of these ROMs are the SPM and eSPM [10]. The SPM
models only the electrode material domains of a battery and considers each electrode to be
a spherical particle. The physics processes modelled in the SPM are primarily lithium mass
conservation in the spherical electrode particles. Like the SPM, the eSPM also models the
electrode material domains as spherical particles, but it also has a reduced-order model
of the electrolyte of a LiB. The eSPM considers the ionic current distribution in a LiB to
follow a simple linear profile, enabling an analytic solution to be determined for the eSPM
equations, thus making the model computationally simple to implement [23].

These existing ROMs show high accuracy only for a range of operating conditions and
low accuracy for the entire range when compared to the full-order model (FOM) version of
the P2D model. In this paper, our proposed iterative solver solves the P2D model with a
significant improvement in solver performance for a broad range of operating conditions.

1.1. Current Progress in Full-Order P2D Model Solvers

As shown in Table 1, several researchers have attempted to develop a fast and accurate
full-order P2D model solver. To numerically solve the P2D model, first, the PDAEs of the
model need to be discretised and converted to Differential Algebraic Equations (DAEs).

Multiple discretisation methods are employed, including the Finite Difference Method
(FDM), the Finite Volume Method (FVM), and the Finite Element Method (FEM), to name
a few. Existing approaches may vary based on whether they provide a fundamental
isothermal P2D model or additional model parameters.

Once the chosen model equations are discretised, they are iteratively solved for a
time step until convergence to the DAE solution is achieved. The convergence mechanism
is non-trivial and dependent on multiple factors, including the convergence criteria, the
initial guess of the solver, and the implementation method used for the DAEs in the
solver algorithm. Indeed, the method of convergence of the different solvers can be
considered a major factor affecting solver accuracy and performance. Hence, we aim
to provide a novel convergence criterion and iterative solver structure to achieve high
accuracy and performance.
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Table 1. Summary of recent P2D solver papers.

Parameters Solved

Paper Discretisation Method Isothermal P2D Temperature Modelling Ageing Model

Yin et al. (2023) [24] FVM × - -
Chen et al. (2023) [25] FDM × - -

Ai et al. (2023) [26] FEM × - -
Chayambuka et al. (2022) [27] FDM + FVM at boundaries × - -

Jiang et al. (2022) [28] FVM × - -
Han et al. (2021) [29] FVM × ROM -
Geng et al. (2021) [30] FDM × - -
Han et al. (2021) [31] FDM × FOM -
Noor et al. (2021) [32] FEM × - -
Lee et al. (2021) [33] FDM × - -

Esfahanian et al. (2019) [34] FVM × FOM -
Guo et al. (2017) [35] Nonlinear State-Variable Method × - -

Torchio et al. (2016) [36] FVM × FOM -
Tulsyan et al. (2016) [37] State-Space Method × - -
Doyle et al. (1993) [11] FDM × - -

Proposed solver FVM × FOM ×

1.2. Contributions

Based on our previous work [38], we aim to provide the following contributions in
this paper:

• A novel convergence criterion for solving the full-order P2D model of a LiB. The
proposed solver shows at least a 4.5 times improvement in performance with less
than 1% error when validated against commercial solvers. The MATLAB-based solver
code [https://github.com/twick07/Electrochemical-Thermal-P2D-Model-Iterative-
Solver (accessed on 1 April 2024)] will be open-source and available for use by other
researchers in this field.

• A solver that is suitable for different LiB chemistries by providing multiple battery
parameter sets for simulations.

• A full-order P2D model for temperature generation/dissipation in LiBs.
• The inclusion of multiple ageing models for the growth of the Solid Electrolyte In-

terface (SEI) in an iterative P2D solver: kinetic-limited and diffusion-limited models
for SEI growth. These SEI models can be used to estimate the real-time capacity fade
when tuned to cell performance data.

2. The Electrochemical–Thermal P2D Battery Model

The P2D model considers the battery to be composed of three physical material
domains. These are the anode (negative electrode), the separator, and the cathode (positive
electrode). We denote these material domains by the index i, such that i ∈ {n,s,p}, as shown
in Figure 1a.

The P2D model also considers the battery to have two phases, namely, the solid
electrode phase and the liquid electrolyte phase. The solid phase is considered to exist only
in the electrode domains of i = {n, p}, and the electrolyte phase is considered to exist in all
three domains of the battery model. The two phases in the model are denoted by the index
j ∈ {1, 2}, such that the solid phase is considered when j = 1 and the electrolyte phase is
considered when j = 2.

Considering the dimensions of the basic P2D model, the model essentially compresses
the dimensions of a cell such that the cell is one-dimensional in space (see Figure 1b). There-
fore, the primary dimension is in x, which spans the entire thickness of the cell. However,
in compressing the dimension of the cell, the electrode regions undergo a transformation
from a three-dimensional porous structure to a one-dimensional porous structure. This 1D
porous electrode structure is considered to consist of a set of spherical electrode particles at
each point in x, and the particles are assumed to be surrounded by the liquid electrolyte.
Hence, in the electrode domains, another ’pseudo’ dimension is considered, which is the
radial dimension, r, through the thickness of each spherical electrode particle.

https://github.com/twick07/Electrochemical-Thermal-P2D-Model-Iterative-Solver
https://github.com/twick07/Electrochemical-Thermal-P2D-Model-Iterative-Solver
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Figure 1. An illustration of the P2D model structure and discretisation. (a) The P2D model structure,
the green and red spheres represent anode and cathode electrode particles respectively and the small
yellow spheres denote diffusing lithium-ions; (b) an illustration of a coarse mesh of the discretised
P2D model where black cross marks denote discrete points in x, with a total number of points
Ntot = 5, and white cross marks denote discrete points in r, with total number of points Nshell = 4;
(c) a 1D FVM control volume mesh representation in x (top) and in r (bottom).

2.1. Electrochemical–Thermal Model Equations

The P2D model consists of a coupled set of nonlinear PDAEs formed using fundamen-
tal physiochemical laws. The model was first proposed in 1993 by the Newman group [11]
and, in its most basic isothermal form, models three processes occurring in a cell: (1) mass
conservation, (2) charge conservation, and (3) mass transfer via reduction/oxidisation
(redox) reactions. The model was further adapted by Rao et al. [13] to characterise heat
generation and dissipation in the cell as well. Hence, this full set of coupled PDAEs is
commonly referred to as the electrochemical–thermal model of a LiB (see Table 2 for the
full set of model equations).

Mass conservation in the P2D model is applied to both the solid and electrolyte phases
of the cell. To model solid-phase mass conservation, first, solid-phase diffusion is modelled
using Fick’s second law of diffusion, as in Equation (1) in Table 2. Fick’s law of diffusion
relates the rate of change in the concentration of neutral lithium in the solid electrode phase,
c1(x, r, t), to the spatial derivative of the same concentration. Note that De f f

1,i is the effective
solid-phase diffusion coefficient of lithium, and its relation is shown in Equation (26) in
Table 3. This model for the spherical diffusion of neutral lithium is applicable primarily to
intercalation-type electrodes; when modelling other types of electrodes, adaptations to this
spherical diffusion model will be required [39].

The conservation of mass in the electrolyte phase of the model is characterised by
using concentrated solution theory, as shown in Equation (2) in Table 2. This model of ionic
diffusion accounts for the variation in lithium-ion concentration in the electrolyte, c2(x, t),
as being driven by variations in lithium-ion concentration gradients and charge gradients in
the electrolyte. Note that ai is the solid interfacial area of the domain, and De f f

2,i is the effec-
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tive lithium-ion diffusion coefficient; their relations are shown in Equations (22) and (23),
respectively, in Table 3.

The P2D model assumes that there are two currents flowing in a LiB simultaneously,
namely, the solid-phase electronic current, i1(x, t), and the electrolyte-phase ionic current,
i2(x, t). By applying Kirchoff’s current law, at any point in x across the model, both currents
must be added to the applied current Iapp(t), as shown in Equation (5) in Table 2. As
currents flow in both phases of the model, charge conservation must be applied in each
phase. In the solid phase, this is implemented using Ohm’s law, and hence, the spatial
variation in the solid-phase potential, ψ1(x, t), can be determined using Equation (3) in
Table 2. Note that σ

e f f
i is the effective electronic conductivity of the solid phase, and its

relation is shown in Equation (24) in Table 3.

Table 2. Electrochemical–thermal P2D model equations.

Differential Equations Boundary Conditions

(P1) Solid-Phase Diffusion

∂c1(x,r,t)
∂t =

De f f
1,i
r2

∂
∂r

(
r2 ∂c1

∂r

) ∂c1(x,r,t)
∂t

∣∣∣
r=0

= 0,

∂c1(x,r,t)
∂r

∣∣∣
r=Ri

= − jint (x,t)

De f f
1,i

(1)

(P2) Electrolyte-Phase Diffusion

ϵ2,i
∂c2(x,t)

∂t = De f f
2,i

∂2c2(x,t)
∂x2 + a1,i(1 − t+)j(x, t)

∂c2(x,t)
∂x

∣∣∣
x=0,x=Ltot

= 0,

De f f
2,i

∂c2(x,t)
∂x

∣∣∣
x=L−n

= De f f
2,i

∂c2(x,t)
∂x

∣∣∣
x=L+n

,

De f f
2,i

∂c2(x,t)
∂x

∣∣∣
x=Ln+L−s

= De f f
2,i

∂c2(x,t)
∂x

∣∣∣
x=Ln+L+s

(2)

(P3) Ohm’s Law in Solid Phase

σ
e f f
1,i

∂2ψ1(x,t)
∂x2 = a1,i Fj(x, t)

∂ψ1
∂x

∣∣∣
x=0,Ltot

= − Iapp (t)

σ
e f f
1,i

,

∂ψ1
∂x

∣∣∣
x=Ln ,Ln+Ls

= 0

(3)

(P4) Ohm’s Law in Electrolyte Phase

κ
e f f
2

∂2ψ2(x,t)
∂x2 = 2RT(x,t)

F (1 − t+)κ
e f f
2

∂2 ln(c2(x,t))
∂x2 − a1 Fj(x, t)

ψ2(0, t) = 0,

∂ψ2
∂x

∣∣∣
x=0,Ltot

= 0
(4)

(P5) Kirchhoff’s Current Law

i1(x, t) + i2(x, t) = Iapp(t) (5)

∂i1(x,t)
∂x = −a1,i Fj(x, t) i1(x, t) = 0 for Ln < x < Ln + Ls (6)

∂i2(x,t)
∂x = a1,i Fj(x, t) i2(0, t) = 0, i2(Ltot , t) = 0 (7)

(P6) Redox Reaction Exchange Flux

j(x, t) = io (x,t)
F sinh

(
αi F

RT(x,t) η(x, t)
)

(8)

io(x, t) = 2Fki(c1(x, Ri , t)(cmax
1,i − c1(x, Ri , t))(c2(x, t)))0.5 (9)

η(x, t) = ψ1(x, t)− ψ2(x, t)− Ui(x, t)− FRSEI j(x, t) RSEI = 0 for x > Ln (10)

(P7) Thermal Energy Balance

ρiCp,i
∂T(x,t)

∂t = λi
∂2 T(x,t)

∂x2 + Qgen,i(x, t)

∂T
∂x

∣∣
x=0 = −hext(Tamb − T(0, t))

∂T
∂x

∣∣
x=Ltot

= −hext(T(Ltot , t)− Tamb))
(11)

Charge conservation in the electrolyte phase is modelled using Ohm’s law as well.
However, in this phase, the spatial variation in the electrolyte potential, ψ2(x, t), is due not
only to the ionic current in the electrolyte but also to the potential gradients formed by
the variation in ionic concentration in the electrolyte, hence explaining the two terms in
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Equation (4) in Table 2. Also note that the term κ
e f f
2 is the effective ionic conductivity in the

electrolyte, and its relation is shown through Equations (20) and (21) in Table 3.

Table 3. Additional P2D model equations for a Lithium Manganese Oxide/Graphite cell.

Open-Circuit Potentials

Un(x, t) = Un,re f (x, t) + (T(x, t)− Tamb)
∂Un (x,t)

∂T

∣∣∣
Tamb

(12)

Up(x, t) = Up,re f (x, t) + (T(x, t)− Tamb)
∂Up (x,t)

∂T

∣∣∣
Tamb

(13)

Stoichiometry

θn(x, t) = c1(x,Rn ,t)
cmax
1,n

(14)

θp(x, t) = c1(x,Rp ,t)
cmax
1,p

(15)

Open-Circuit Potential Function

1 Un,re f (x, t) = −0.16 + 1.32exp(−3θn(x, t)) + 10exp(−2000θn(x, t)) (16)

1 Up,re f (x, t) = 4.19829 + 0.0565661tanh(−14.5546θp(x, t) + 8.60942)− 0.0275479
(0.998432−θp (x,t))0.492465−1.90111

−0.157123exp(0.04738(θp(x, t)8)) + 0.810239exp(−40(θp(x, t)− 0.133875)) (17)

Entropy Change

1∂Un (x,t)
∂T

∣∣∣∣
Tamb

= 0 (18)

1∂Up (x,t)
∂T

∣∣∣∣
Tamb

= 0 (19)

Electrolyte Conductivity

1 κ2 = 1.0793× 10−2 + 6.7461× 10−4c2(x, t)− 5.2245× 10−7c2(x, t)2 + 1.3605× 10−10c2(x, t)3 − 1.1724× 10−14c2(x, t)4 (20)

κ
e f f
2 = ϵ

bruggi
2 κ2 (21)

Particle Surface-Area-to-Volume Ratio
a1,i =

3ϵ1
Ri

(22)

Bruggeman Parameter Corrections

De f f
2,i = ϵ

bruggi
2 D2,i (23)

σ
e f f
1,i = ϵ

bruggi
1 σ1,i (24)

Arrhenius Relationships

ke f f
i = kiexp[− E

ki
a
R ( 1

T(x,t) −
1

Tamb
)] (25)

De f f
1,i = D1,iexp[− E

D1,i
a
R ( 1

T(x,t) −
1

Tamb
)] (26)

Heat Generation

Qgen(x, t) = Qjh(x, t) + Qrev(x, t) + Qirrev(x, t) (27)

Qjh(x, t) = i1(x, t) ∂ψ1(x,t)
∂x + i2(x, t) ∂ψ2(x,t)

∂x
(28)

Qrev(x, t) = a1,i Fj(x, t)T(x, t) ∂Ui (x,t)
∂T

∣∣∣
Tamb

(29)

Qirrev(x, t) = a1,i Fj(x, t)η(x, t) (30)
1 Function is taken from work presented in Liu et al. [40].

Thus far, the P2D model has represented the physiochemical processes occurring in a
cell as independently occurring in the two phases of the cell: i.e., in each phase, there is a
concentration variable cj(x, t), a potential variable ψj(x, t), and a current variable ij(x, t).
The intercoupling of the phases is modelled using the Butler–Volmer relation for a reversible
redox reaction [5], and its exact form is shown in Equations (8)–(10) in Table 2.
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Note that the term j(x, t) is the pore wall exchange flux and represents the number of
lithium atoms that are being oxidised at the surfaces of the solid electrode particles and will
then be converted into lithium ions in the electrolyte surrounding the electrode particle.

The exchange flux is the key term to solving the P2D model, as it not only represents
the rate of redox reactions occurring at any point but also is related to the spatial derivative
of ionic and solid-phase currents, as shown in Equations (6) and (7) in Table 2. The exchange
flux is also coupled directly to the potentials across the model via the electrode overpotential
variable η(x, t), as in Equation (10). Note that, in this term, the potential drop due to the
resistance of the SEI layer in the anode RSEI is also considered. However, in the cathode,
no SEI growth is assumed, and thus, it is ignored in the cathode.

The final physiochemical process in the electrochemical–thermal model is the thermal
energy balance process in Equation (11) in Table 2. The equation models the generation
and dissipation of heat/temperature, T(x, t), in the cell model. The dissipation of heat
is modelled using the second-order spatial derivative of the temperature and thermal
conductivity, λi, of the different domains of the cell. The generation of heat, Qgen,i(x, t), can
be composed of multiple different heat sources assumed to be present during the operation
of a LiB. We consider three different heat sources. The first heat source is due to the joule
heating effect, Qjh(x, t), caused by the flow of currents in the different phases of the model
and is represented using Equation (28) in Table 3. The second heat source is due to the
reversible heat generated during redox reactions, Qrev(x, t), in the electrode domains and is
calculated using Equation (29) in Table 3. Note that to calculate this heat source, the entropy
change in the electrodes due to redox reactions, ∂Ui(x,t)

∂T

∣∣∣
Tamb

, must be known, as shown

in Equations (18) and (19) in Table 3. The final heat source considered is the irreversible
heat generation in the electrodes due to redox reactions, Qirrev(x, t), and is modelled using
Equation (30) in Table 3.

2.2. SEI Growth Models

During the operation of a LiB, multiple different degradation (’ageing’) processes
can occur simultaneously. These include processes such as lithium plating, where lithium
dendrites are observed to grow on the surfaces of anode electrode particles, particularly
under operating conditions like fast charging or under low-temperature conditions. Cath-
ode Electrolyte Interphase (CEI) growth is another significant degradation process, where
electrolyte particles undergo side reactions with cathode electrode particles to form an
interphase on the surface of the cathode [41]. Electrode particle cracking is also an im-
portant degradation mechanism, where the consistent intercalation/deintercalation of
electrode particles induces fatigue, leading to particle cracking and the loss of electrode
active material [42].

Multiple cell-level physics models of these different degradation mechanisms have
been proposed in the literature; however, the most comprehensively validated models have
been presented for work related to the degradation process of Solid Electrolyte Interphase
(SEI) growth [43,44].

Solid Electrolyte Interphase (SEI) growth is widely considered by researchers to be
one of the principal mechanisms that induce capacity fade in LiBs [44]. SEI growth is
the process by which a passivation layer grows on the surface of an electrode, and it is
considered to commonly occur on the surfaces of graphite anodes [16].

The formation of the SEI layer occurs due to side reactions occurring at the interface
between the anode particle and the electrolyte. This side reaction is irreversible and thus
has the general form shown in Equation (31) below:

Solvent + nSEIe− + nSEI Li+ → SEI (31)

Note that nSEI refers to the number of electrons involved in the SEI formation reaction.
As the side reaction is irreversible, the formation of SEI products leads to a loss in lithium
inventory and thus a loss of capacity. Furthermore, as we consider the electrolyte used in
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the cell model to be Ethylene Carbonate (EC), this side reaction has the following specific
form for our model:

2C3H4O3 ++2e− + 2Li+ → (CH2OCO2Li)2 + C2H4 (32)

This side reaction occurs during the charging of the cell, when there is a negative
overpotential at the anode particle surface [15]. Hence, during charging, there are two
competing reactions occurring simultaneously in the anode: the intercalation reduction
reaction represented by the exchange flux, jint(x, t), and the irreversible SEI formation
reaction represented by the exchange flux, jSEI(x, t). Thus, the sum of these two fluxes
must be equal to the total exchange flux as follows:

j(x, t) = jint(x, t) + jSEI(x, t) (33)

Note: We do not consider an SEI side reaction to be occurring at the cathode, and thus,
jSEI(x, t) would be zero outside of the anode domain.

When choosing to model SEI growth in the continuum-scale P2D model, there are two
models that are commonly used in the literature [44]: the kinetic-limited SEI growth model
and the diffusion-limited SEI growth model, as shown in Figure 2.

Figure 2. An illustration of the different possible reactions on a graphite anode particle during
charging. These include: (1) The reduction/oxidisation (redox) intercalation reactions occuring at the
SEI/anode interphase, (2) Kinetic-limited SEI growth occuring at the SEI/anode interphase and (3)
Diffusion-limited SEI growth, displaying the diffusion of solvent particles through the SEI layer to
react at the SEI/anode interphase.

For both models, the SEI reaction exchange flux, jSEI(x, t), is modelled using the
cathodic Tafel equation and the SEI overpotential, ηSEI(x, t), as shown below:

jSEI(x, t) = − i0,SEI

F
exp

(
− αSEI F

RT(x, t)
ηSEI(x, t)

)
(34)

ηSEI(x, t) = ψ1(x, t)− ψ1(x, t)− USEI − FRSEI j(x, t) (35)

The Tafel equation is commonly used in electrochemical modelling to approximate
the exchange flux of irreversible reactions, such as the SEI formation reaction. Thus,
Equations (34) and (35) are common for both the kinetic-limited model and the diffusion-
limited model. The two models just have a major difference in the expression for the SEI
exchange current, i0,SEI .
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2.2.1. Kinetic-Limited Reaction Model

The kinetically limited SEI growth model was first presented by Ramadass et al. [15]
and has since been used copiously [16,45–47]. The model proposes that the SEI growth rate
is only driven by the SEI overpotential, ηSEI(x, t). Hence, for the kinetic-limited case, the
SEI exchange current, i0,SEI , is considered a fitting parameter and takes a constant value.

2.2.2. Diffusion-Limited Reaction Model

The diffusion-limited model is also used in the literature, e.g., by Kamyab et al. [48],
Das et al. [49], and Kane et al. [43]. This growth model takes into account the diffusion
of the solvent from the interface of the SEI layer/electrolyte to the interface of the SEI
layer/anode surface, as shown in Figure 2. As such, its SEI exchange current term is
modelled as follows:

i0,SEI = FkSEIcsol(x, Rn, t)αSEI (36)

In this model, the SEI reaction rate, kSEI , is chosen as the constant fitting parameter,
and its value varies based on the specific LiB being modelled. The term csol(x, Rn, t) is the
concentration of the Ethylene Carbonate (EC) solvent at the interface of the SEI layer/anode
particle. To determine this value, a second-order partial differential equation is used to
model the diffusion of the EC solvent across the SEI layer as follows:

∂csol(x, r, t)
∂t

= Dsol
∂2csol(x, r, t)

∂r2 (37)

This diffusion equation holds for the following boundary conditions at the SEI
layer/anode particle surface:

Dsol
∂csol(x, r, t)

∂r

∣∣∣∣
r=Rn

= jSEI(x, t) (38)

The following boundary condition holds at the interface between the SEI layer and
the electrolyte:

csol(x, Rn + LSEI , t) = ϵSEIcsol,2 (39)

The above boundary condition stems from the assumption that the SEI layer is a
porous structure that allows the diffusion of solvent particles through it [48]. Hence, the
concentration of the solvent at the interphase of the SEI layer and the electrolyte is assumed
to be the product of the SEI layer’s porosity, ϵSEI , and the concentration of the EC solvent
in the bulk electrolyte, csol,2.

To reduce the complexity of solving this model, many works have considered the
solvent diffusion profile across the SEI layer to be linear [44]. This assumption reduces the
order of Equation (37) and can be simply solved as follows:

csol(x, Rn, t + ∆t) = ϵSEIcsol,2 +
LSEI
Dsol

jSEI(x, t) (40)

The reduced-order model of Equation (40) is used in this work to model solvent
diffusion in the diffusion-limited SEI growth model.

2.2.3. SEI Thickness, Resistance, and Capacity Lost

For both growth models, SEI formation is considered to occur at the SEI layer/anode
interface, as shown in Figure 2. Thus, the rates of growth of the SEI layer thickness,
resistance, and capacity loss can be determined as follows:

∂LSEI(x, t)
∂t

= − MSEI
nSEIρSEI

jSEI(x, t) (41)
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∂RSEI(x, t)
∂t

= − MSEI
nSEIρSEIκSEI

jSEI(x, t) (42)

∂Qlost(x, t)
∂t

= − Fa1,n

nSEI
jSEI(x, t) (43)

Also note that, in both the models of SEI growth, we have chosen to ignore the electric
potential change across the electric double layer that forms at the interface of the electrolyte
and SEI layer. This order reduction assumption was made as this potential drop was
observed to have a negligible effect on SEI growth during nominal operational currents [49].
Furthermore, as the role of the electric double layer in the formation rate of the SEI layer is
still an ongoing field of active research [50], the authors have not been able to determine a
validated cell-level model of the double-layer formation mechanism on the SEI/electrolyte
interphase for use in our modelling work.

3. Model Discretisation

As mentioned previously, the full-order P2D model has no analytical solution without
using order reduction assumptions, and we normally need an iterative numerical approach
to solve a P2D model in practice [17,18]. To implement a numerical solver, the continuous
PDAEs described in Table 2 must be converted into Discrete Algebraic Equations (DAEs)
to be solved at discrete points in space and time. In this work, the Finite Volume Method
(FVM) is used for spatial discretisation, and the Verlet Integration Method (VIM) is used
for the temporal discretisation of the P2D model.

3.1. Mesh Generation

Before applying the FVM and VIM, the continuous P2D model must be spatially
discretised into a fixed number of elements in the two spatial dimensions of the model, i.e.,
in the x dimension across the thickness of the cell model and in the r dimension radially
across spherical electrode particles, as shown in Figure 1b.

3.1.1. Mesh Generation in x Dimension

When discretising the model in the x dimension, the number of elements for each
material domain must be chosen. For example, in Figure 1b, a coarse mesh is illustrated
with two elements for the anode domain, Nn = 2, one element for the separator domain,
Ns = 1, and two elements for the cathode domain, Np = 2. Hence, the total number of
x-dimension elements is five, i.e., Ntot = 5. Note that the position of the element in x is
denoted by the index k, and thus, 1 ≤ k ≤ Ntot.

The meshing algorithm implemented in this work requires only the total number
of x-dimension elements, Ntot, to be selected. The number of elements for the different
domains is allocated according to the ratio of the thicknesses of the different domains of
the model to ensure that the width of each element in the model is of a similar thickness.
Hence, the width of an element in the x dimension in a specific material domain i has the
following thickness:

∆xi =
Li
Ni

≈ Ltot

Ntot
(44)

3.1.2. Mesh Generation in r Dimension

When discretising the model in the r dimension, the meshing algorithm selects the
number of elements in both the anode and the cathode to be equal. In the example mesh in
Figure 1b, a radial mesh of four elements is shown, i.e., Nshell = 4. Note that the positions
of radial elements in r are denoted by the index q, and thus, 1 ≤ q ≤ Nshell . The meshing
algorithm works by choosing the number of radial elements, Nshell , and then generates
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a radial mesh with an equal number of elements for all electrode particles in the model.
Thus, the width of a radial element in an electrode material domain i is given as follows:

∆ri =
Ri

Nshell
(45)

3.2. Finite Volume Method

There are multiple different methods that can be used to spatially discretise continuous
PDAEs. Commonly used approaches include the Finite Difference Method (FDM), the
Finite Element Method (FEM), and the Finite Volume Method (FVM). All of these methods
have been used in the literature to solve a P2D model, as shown in Table 1.

The conceptually simplest discretisation method is the Finite Difference Method
(FDM), which first discretises the model in the spatial and temporal dimensions and then
directly implements the model’s continuous PDAEs as finite differences. While this method
is theoretically simple to implement, for the P2D model, it poses challenges when imple-
menting boundary conditions, especially those at material discontinuity boundaries [27].

The Finite Element Method (FEM) is another method for PDAE discretisation, which
works by first dividing the spatial model into a set of finite elements. Thereafter, using the
selected method, a trial function is determined to solve the PDAEs in each finite element.
The FEM method has been used efficiently to solve the P2D model, such as in the works by
Ai et al. [26] and Noor et al. [32]; however, the method often involves expressing the model
equations in specific forms for solving in each model element. This method, while accurate
and computationally efficient, is conceptually complex, and the effectiveness of the method
depends on factors such as the method of determining the trial function and the method of
discretising model equations in the finite elements.

In this work, the Finite Volume Method (FVM) is chosen for the spatial discretisation
of the P2D model PDAEs. The FVM implements a differential equation by considering
fluxes flowing into and out of a control volume (CV) and relating the difference in the
fluxes to variable changes in the control volume. Hence, the FVM is particularly effective
at applying variable conservation equations across a given control volume [51]. This makes
the FVM particularly useful for the discretisation of the P2D model due to its accurate
implementation of boundary conditions, particularly the mass transfer boundary conditions
in Equation (2) in Table 2.

3.2.1. PDAE Discretisation in the x Dimension

To illustrate how the FVM can be used to implement differential equations, consider a
generic three-element grid in the x dimension, as shown in Figure 1c.

Considering a general dependent variable, Ω, in a 1D mesh, Ω would have finite
values at the centre of each control volume. Hence, at the centre of a CV with node point
k, the discrete value of the variable will be Ωk, as shown in Figure 1c. In the FVM, a flux
is typically a first-order spatial derivative of a variable at one of the boundaries of a CV.
Hence, the two fluxes at the left boundary, k − 1/2, and right boundary, k + 1/2, would
have the following algebraic forms:

∂Ω
∂x

∣∣∣∣
k−1/2

=
Ωk − Ωk−1

∆xk−1/2
(46)

∂Ω
∂x

∣∣∣∣
k+1/2

=
Ωk+1 − Ωk

∆xk+1/2
(47)

Note that the element widths at the boundaries are simply the means of the widths of
the elements in the surrounding boundaries, for example,

∆xk+1/2 =
∆xk+1 + ∆xk

2
(48)
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As some P2D model equations require logarithmic derivatives, these derivatives can
also be calculated in a similar manner as follows:

∂log(Ω)

∂x

∣∣∣∣
k+1/2

=
ln(Ωk+1)− ln(Ωk)

∆xk+1/2
(49)

Most of the P2D model equations require evaluations of second-order spatial deriva-
tives at node points; the FVM can simply compute the higher-order derivatives as follows:

∂2Ω
∂x2

∣∣∣∣
k
=

1
∆xk

[
∂Ω
∂x

]k+1/2

k−1/2
=

1
∆xk

[
∂Ω
∂x

∣∣∣∣
k+1/2

− ∂Ω
∂x

∣∣∣∣
k−1/2

]
(50)

Thus, using the FVM in the x dimension, the time derivative equations of lithium-ion
diffusion and thermal energy balance can be converted into discrete algebraic equations at
each grid point k as follows:

ϵ2,i
∂c2,k(t)

∂t

∣∣∣∣
k
=

1
∆xk

[
De f f

2,k
∂c2,k(t)

∂x

]k+0.5

k−0.5
+ a1,i(1 − t+)jk(t) (51)

ρiCp,i
∂Tk(t)

∂t

∣∣∣∣
k
=

1
∆xk

[
λk

∂Tk(t)
∂x

]k+0.5

k−0.5
+ Qgen,k(t) (52)

Note that the key term of the exchange flux, jk(t), which is essential in calculating
Equations (51) and (52), can be found at grid point k using the following DAEs:

jk(t) =
io,k(t)

F
sinh

(
αiF

RTk(t)
ηk(t)

)
(53)

io,k(t) = 2Fke f f
i (c1,k,Nshell

(t)(cmax
1,i − c1,k,Nshell

(t))(c2,k(t)))0.5 (54)

ηk(t) = ψ1,k(t)− ψ2,k(t)− UOCP,k − FRSEI,k jk(t) (55)

One of the powerful implications of using the FVM is that second-order spatial deriva-
tive equations can be reformulated as sequential DAEs. This is illustrated below for the
x-dimension PDAEs of Ohm’s law in the solid phase and of Ohm’s law in the electrolyte in
Equations (56) and (57), respectively:

σ
e f f
1,k+1/2

∂ψ1

∂x

∣∣∣∣
k+1/2

= σ
e f f
1,k−1/2

∂ψ1

∂x

∣∣∣∣
k−1/2

+ ∆xka1,iFjk(t) (56)

κ
e f f
2,k+1/2

∂ψ2

∂x

∣∣∣∣
k+1/2

= κ
e f f
2,k−1/2

∂ψ2

∂x

∣∣∣∣
k−1/2

+
2RTk(t)

F
(1 − t+)κ

e f f
2,k

[
∂ln(c2)

∂x

]k+1/2

k−1/2
− ∆xka1,iFjk(t) (57)

By constructing the above sequential DAEs, an iterative solver can be set up to solve
the discretised model equations if certain boundary values are estimated, as described in
Section 4.

3.2.2. PDAE Discretisation in the r Dimension

The PDAE for solid-phase diffusion in Equation (1) radially resolves the concentration
of neutral lithium, c1(x, r, t), across spherical electrode particles. Hence, the FVM needs to
be applied across the spherical electrode particles in the electrode domains.

To implement the FVM radially, the spherical electrode particles are first split into a
set of non-overlapping control volumes, where each radial control volume is a concentric
shell, as shown in Figure 1c.
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Using this mesh, to apply the FVM, a term for the flux of neutral lithium must first be
derived if the surface area of each concentric shell is known. The area of each shell can be
calculated as shown in Equation (58).

A1,k,q+0.5 = 4πr2
q+0.5 (58)

Using this surface area and knowing the effective solid-phase diffusivity of lithium,
De f f

1,k , the flux at the surface of a shell can be calculated as follows:

Fluxq+0.5 = De f f
1,k A1,k,q+0.5

∂c1

∂r

∣∣∣∣
q+0.5

(59)

Further, the spatial derivative of the neutral lithium concentration can be calculated
using the FVM as follows:

∂c1

∂r

∣∣∣∣
q+0.5

=
c1,k,q+1(t)− c1,k,q(t)

∆r
(60)

Thereafter, using the flux in and out of each radial CV and using the volume of a radial
CV as shown in Equation (61), the PDAE for solid-phase diffusion can be expressed as a
DAE, as in Equation (62).

Vk,q =
4
3

πr3
q+0.5 −

4
3

πr3
q−0.5 (61)

∂c1,k,q(t)
∂t

=
De f f

1,k

Vk,q

[
A1,k,q+0.5

∂c1

∂r

∣∣∣∣
q+0.5

− A1,k,q−0.5
∂c1

∂r

∣∣∣∣
q−0.5

]
(62)

3.3. Spatial Boundary Condition Implementation

For any set of PDAEs to have a physically meaningful solution, boundary condi-
tions are needed. In the P2D model, all the boundary conditions are spatial boundary
conditions that occur in at least one of the four material domain boundaries. The four
boundaries are the negative current collector/anode (ncc/n), the anode/separator (n/s),
the separator/cathode (s/p), and the cathode/positive current collector (p/pcc).

One of the key problems in numerically solving the P2D model is in evaluating the
material parameters at these material boundaries. For example, a parameter such as the
effective electrolyte-phase lithium-ion diffusivity, De f f

2,i , can vary by an order of magnitude
between one of the electrode domains and the separator domain. The significant variation
in model parameters causes instability in solvers and leads to extremely fine time steps to
solve the model.

Several approaches are proposed in the literature to solve the material discontinuity
problem, e.g., using a simple numerical mean between domain parameters [52], using a
harmonic mean between domain parameters [36], or, in some cases, even using an extended
control volume across material boundaries [27].

In this work, we used a combination of a simple algebraic mean and a harmonic mean
to evaluate the material parameters at boundaries. The method used depends on whether
the boundary is between CVs within a specific material domain or whether the boundary
is between the CVs of two different material domains.

3.3.1. Boundaries between Material Domains

In our P2D model, there are two inter-material boundaries, which are the anode/
separator (n/s) boundary and the separator/cathode boundary (s/p). At these bound-
aries, there are two non-overlapping CVs from two different domains, whose boundaries
intersect exactly. When applying the FVM to these two CVs, material parameters need to
be evaluated at this inter-material boundary. Due to the significant material parameter
discontinuities at the inter-material boundaries, an intermediate value for these parameters
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is required to be numerically stable for implementation in a solver. The harmonic mean
approach can effectively manage large outliers in data sets [53] and is therefore employed
in this work to find intermediate parameter values at inter-material boundaries.

The parameters that the harmonic mean is applied to are De f f
2,i , λi, and κ

e f f
2 . An

example of how the harmonic mean is calculated is shown for the thermal conductivity
parameter, λi, at the anode/separator boundary.

λNn+0.5 =
(λNn)(λNn+1)

γλNn+1 + (1 − γ)λNn

(63)

Note that the mean CV width is found as γ = ∆xn+∆xs
2 .

3.3.2. Boundaries within a Material Domain

Within a material domain, there are no significant variations in these material parame-
ters. Hence, the parameters De f f

2,i , σ
e f f
1,i , λi, and κ

e f f
2 can be evaluated at intra-material CV

boundaries using a simple arithmetic mean, as shown below for ionic diffusivity:

De f f
2,k+0.5 =

De f f
2,k+1 + De f f

2,k

2
(64)

3.3.3. Other Boundary Conditions

For solving the discretised electrochemical–thermal model, the entire set of spatial
boundary conditions to be implemented can be found in Table 4.

Table 4. Electrochemical–thermal model’s discretised boundary conditions.

Boundary Condition Grid Position

(P1) Solid-Phase Diffusion

∂c1,k,q(t)
∂r

∣∣∣
q=0.5

= 0
1 ≤ k ≤ Nn,

Nn + Ns + 1 ≤ k ≤ Ntot,
q = 0.5

(65)

∂c1,k,q(t)
∂r

∣∣∣
q=Nshell+0.5

= − jint,k(t)
De f f

1,k

1 ≤ k ≤ Nn,
Nn + Ns + 1 ≤ k ≤ Ntot,

q = Nshell + 0.5

(66)

(P2) Electrolyte-Phase Diffusion

∂c2,k
∂x

∣∣∣
k=0.5

= 0 k = 0.5 (67)

∂c2,k
∂x

∣∣∣
k=Ntot+0.5

= 0 k = Ntot + 0.5 (68)

(P3) Ohm’s Law in Solid Phase

∂ψ1
∂x

∣∣∣
k=0.5

= − Iapp(t)

σ
e f f
1,0.5

k = 0.5 (69)

∂ψ1
∂x

∣∣∣
k=Ntot+0.5

= − Iapp(t)

σ
e f f
1,0.5

k = Ntot + 0.5 (70)

(P4) Ohm’s Law in Electrolyte Phase

ψ2(0, t) = 0, k = 1 (71)
∂ψ2
∂x

∣∣∣
k=0.5

= 0 k = 0.5 (72)
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Table 4. Cont.

Boundary Condition Grid Position

(P5) Kirchhoff’s Current Law

i1,0.5 = Iapp(t) k = 0.5 (73)
i1,Ntot+0.5 = Iapp(t) k = Ntot + 0.5 (74)
i2,k = Iapp(t) Nn + 0.5 ≤ k ≤ Nn + Ns + 0.5 (75)

(P6) Redox Reaction Exchange Flux

jk(t) = 0 Nn + 0.5 ≤ k ≤ Nn + Ns + 0.5 (76)

(P7) Thermal Energy Balance

∂T
∂x

∣∣∣
k=0.5

= −hext(Tamb − T1(t)) k = 0.5 (77)

∂T
∂x

∣∣∣
k=Ntot+0.5

= −hext(Tamb − T1(t)) k = Ntot + 0.5 (78)

3.4. Verlet Integration

After solving the discretised P2D model equations for a given time step, t, the discre-
tised equations need to be integrated in time to find the next set of values of the dependent
variables. One of the simplest approaches for discretised time integration is the Euler
method [54], as shown below for temperature:

Tk(t + ∆t) = Tk(t) + ∆t
∂Tk(t)

∂t

∣∣∣∣
k

(79)

Note that ∆t here refers to the time step and is a key parameter for solver stability. The
Euler method, while simple to implement, is a first-order integrator and, as a result, can
have stability issues and require fine time steps for certain models [54]. To improve the
speed and stability of the solver, we use the Verlet Integration Method [55] to integrate the
DAEs of the P2D model:

∂2Tk(t)
∂t2

∣∣∣∣
k
=

Tk(t + ∆t)− 2Tk(t) + Tk(t − ∆t)
∆t

(80)

Tk(t + ∆t) = 2Tk(t)− Tk(t − ∆t) +
∆t2

2
∂2Tk(t)

∂t2

∣∣∣∣
k

(81)

As shown in Equations (80) and (81), Verlet Integration is clearly a second-order
integrator. However, the second-order time derivative in Equation (80) requires the next
time-step value to be known. Hence, to estimate the next value, the MATLAB ode15s
differential equation integrator is used to determine this value and thereafter calculate
the second-order time derivative of Equation (80). Due to the use of a second-order time
integrator, larger time steps become more stable when integrating the equations of the P2D
model. To the best of the authors’ knowledge, our proposed solver is the first attempt to
use Verlet Integration to integrate the equations of the P2D model.

4. Solver Algorithm

Given that the model equations are discretised using the FVM and VIM, the discretised
P2D model can now be implemented in a modelling algorithm. The P2D model algorithm
implemented in this work has the structure shown by the flowchart in Figure 3a.
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(a) (b)

Figure 3. Flowcharts of solver algorithm. (a) Flowchart for electrochemical–thermal ageing model
algorithm; (b) Flowchart of iterative solver.

The algorithm first requires a set of material parameters for a specific LiB cell. In this
work, we are primarily simulating a Lithium Manganese Oxide/Graphite LiB, and the
model parameters are listed in Table 5. After defining the parameter set, the independent
simulation variables are defined. These independent variables include the maximum
duration of the simulation, tmax, and the applied current, Iapp(t). Thereafter, the mesh size
needs to be defined, and a meshing algorithm is run according to the process described in
Section 3.1.

After the meshing is completed, the main simulation loop is started, where at each
point in time, t, six standard dependent variables are determined, which are ψ1,k(t),
ψ2,k(t), jk(t), c1,k(t), c2,k,q(t), and Tk(t). If SEI growth is chosen to be modelled, an ad-
ditional set of dependent variables specific to SEI growth are also calculated; these include
jSEI,k(t), jint,k(t), LSEI,k(t), RSEI,k(t), and QLost,k(t).

As shown in Figure 3a, the most critical process of the modelling algorithm is the
iterative solver; therefore, we propose a novel iterative solver using a combination of
physics-informed initial guesses and optimal root-finding algorithms to produce accurate
and rapid solutions.
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Table 5. Electrochemical–thermal model parameter values.

Parameter Description Units Anode Separator Cathode

2 SoCinit
i Initial State of Charge - 0.58 - 0.19

1 cmax
1,i Maximum Solid-Phase Lithium Concentration mols/m3 26,390 - 22,860

2 cinit
1,i Initial Solid-Phase Lithium Concentration mols/m3 SoCinit

n cmax
1,n - SoCinit

p cmax
1,p

1 cinit
2,i Initial Electrolyte-Phase Lithium-ion Concentration mols/m3 2000 2000 2000

1 D1,i Solid-Phase Lithium Diffusivity m2/s 3.9 × 10−14 - 1 × 10−13

1 D2,i Electrolyte-Phase Lithium-ion Diffusivity m2/s 7.5 × 10−11 7.5 × 10−11 7.5 × 10−11

1 σ1,i Solid-Phase Electrical Conductivity S/m 100.0 - 3.8
1 Li Thickness of Domain m 100 × 10−6 52 × 10−6 183 × 10−6

1 Ri Electrode Particle Radius m 12.5 × 10−6 - 8.5 × 10−6

1 ϵ1,i Electrode Volume Fraction - 0.471 - 0.2970
1 ϵ2,i Porosity - 0.3570 1.0 0.4440

1 bruggi Bruggeman Coefficient - 1.5 1.5 1.5
2 ki Intercalation Reaction Rate Constant m2.5/(mol0.5s) 2 × 10−10 - 2 × 10−10

1 αi Intercalation Reaction Transfer Coefficient - 0.5 - 0.5
1 t+ Lithium-ion Transference Number - 0.3630 0.3630 0.3630

F Faraday Constant Col/mol 96,487 96,487 96,487
R Ideal Gas Constant J/(mol K) 8.314 8.314 8.314

1 ρi Domain Density kg/m3 2500 1200 1500
1 Cp,i Domain Specific Heat Capacity J/(Kg K) 700 700 700
1 λi Domain Thermal Conductivity W/(m K) 5 1 5

1 Eki
a Intercalation Reaction Rate Activation Energy J/mol 30,000 - 30,000

1 E
D1,i
a Solid-Phase Diffusivity Activation Energy J/mol 4000 - 20,000

1 hext Heat Exchange Coefficient W/(m2 K) 5 - 5
1 Tamb Ambient Temperature C 25.15 - 25.15
1 Tinit

i Initial Cell Temperature C 25.15 25.15 25.15
1 Linit

SEI Initial SEI Thickness m 1 × 10−9 - -
2 Rinit

SEI Initial SEI Resistance Ωm2 2 × 10−4 - -
1 κSEI SEI Lithium Conductivity Sm 5 × 10−6 - -

1 MSEI SEI Molar Mass kg/mol 0.1620 - -
1 ρSEI SEI Density kg/m3 1690 - -
1 αSEI SEI Reaction Transfer Coefficient - 0.5 - -
2 nSEI Number of Electrons Involved in SEI Reaction - 2 - -
1 USEI Open-Circuit Potential of SEI Growth V 0 - -
2 i0,SEI Kinetic-Limited SEI Exchange Current A/m2 8.8 × 10−4 - -
2 kSEI SEI Reaction Rate Coefficient m/s2 2 × 10−12 - -
2 Dsol Diffusivity of Electrolyte Solvent in SEI m2/s 3.5 × 10−20 - -
1 csol,2 Concentration of Solvent in Bulk Electrolyte mols/m3 4541 - -
2 ϵSEI Porosity of SEI Layer - 0.03 - -

1 Parameters are taken from work presented in Liu et al. [40]. 2 Parameters are tuned for this work. In addition to
these model parameters, the Battery_Parameters.m file in the solver suite also contains battery parameter sets for
Lithium Cobalt Oxide/Graphite (LCO/C6) [36] and Nickel Manganese Cobalt/Graphite (NMC111/C6) [56].

4.1. The Iterative Solver

As shown in Figure 3b, as input, the iterative solver requires the cell-wide distribution
of the lithium-ion concentration, c1,k(t); the solid lithium concentration, c2,k,q(t); the cell-
wide temperature distribution, Tk(t); and the applied current, Iapp(t), at the current time
step, t. The iterative solver will then use these values to determine the cell-wide total
exchange flux, jk(t), for the current time step t. The total exchange flux, jk(t), is the key
variable that can be used to solve all other dependent variables of the P2D model; hence,
the solution to the P2D model at any time step is the cell-wide distribution of jk(t).

By finding this distribution, all other discretised equations detailed in Section 3 can
be directly solved. The solver works by first guessing what the values of the ion exchange
flux are at two points in the cell model. The first value to be guessed is the flux at the
first element of the anode, k = 1, denoted by j1(t). The second value to be guessed is the
exchange flux in the first element of the cathode, denoted by jx̂p(t). Note here that x̂p is used
as a shorthand for the grid location of the first cathode element where k = Nn + Ns + 1.

These guesses are not arbitrary values but are chosen to be higher and lower than the
theoretical average value for the exchange flux in the respective electrodes. For example,
when trying to guess the values for flux at the first element of the anode, the theoretical
average of the anode electrode exchange flux, j̄n(t), can be used as a useful indicator for
the actual value, j1(t). Thus, to start the iterative solver, physics-informed initial guesses of
the average exchange fluxes in the negative electrode j̄n(t) and in the positive electrode
j̄p(t) are used. These guess values can be analytically calculated (see Appendix A). Hence,
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guess values for the exchange fluxes in the first element of the anode and the first element
of the cathode can be calculated as follows:

j1,m(t) = β1,m j̄n (82)

jx̂p ,m(t) = βx̂p ,m j̄p (83)

In the above equations, β1,m is a scaling factor that represents the guess number, m,
for the first element of the anode, k = 1. The same nomenclature applies to βx̂p ,m. Once
these guess values are determined, using the spatial boundary conditions across the cell
model, the discretised P2D model equations are then solved sequentially. Thus, for a set
of values βm = [β1,m, βx̂p ,m], the discretised P2D model equations are solved, producing a
corresponding exchange flux distribution, jm(t).

As a result of this method, the values of βm are critical for tuning the corresponding
ion-exchange flux distribution, jm(t), as required. In each iteration of the solver, three
estimates of jm(t) are made, and the estimates are defined as the lower-bound estimate,
j1(t); the higher-bound estimate, j2(t); and the intermediate estimate, j3(t). Note that m
corresponds to the estimate number, and therefore, mmax = 3. Thus, three sets of βm are
required to produce three jm(t) distributions. Thereafter, for each estimated distribution
jm(t), an error value, errm, can be calculated using the average exchange flux values, as
shown below:

errm = [errm,n, errm,p] =

 j̄n − 1
Nn

ΣNn
1 jk,m(t)

j̄n
,

j̄p − 1
Np

ΣNtot
x̂p

jk,m(t)

j̄p

 (84)

These error values, errm, are estimates of how close the corresponding flux distribution
estimate, jm(t), is to the actual flux distribution, j(t).

The guess set, β1, is selected such that it produces a flux distribution estimate, j1(t),
that has a negative error value, i.e., err1 < 0. Similarly, the guess set β2 is selected to
generate a flux distribution estimate, j2(t), that has a positive error value, i.e., err2 > 0.
Thus, the intermediate guess set, β3, has an error value, err3, that is between the lower- and
upper-bound error values.

The novel convergence criterion implemented in this work is intended to minimise
the intermediate error, err3, below a tolerance value tol. To the knowledge of the authors,
this work is the first attempt to use the average exchange flux, j̄i, as a convergence criterion
to solve P2D model equations. However, before root-finding algorithms can be used to
reduce the error magnitude ||err||, first, the ‘root window’ where the optimal solution lies
must be found.

4.1.1. Root Window Searching

In the ideal case, the condition for a root to be found can be defined as follows:

err3 = f (βroot
3 ) = 0 (85)

This condition means that the intermediate guess, β3, is exactly at the solution of the
equation at this time step. For this to be true, the upper-bound and lower-bound conditions
must be on either side of the root; thus, the following condition must also be true:

err1err2 < 0 (86)

Condition (86) essentially means that the root lies between the upper-bound and
lower-bound estimates. Thus, if condition (86) is satisfied, the ‘root window’ can be found.
The solver searches for this root window using a root searching parameter, µ, as shown by
the branch on the left side of the flowchart in Figure 3b. This searching parameter can be
tuned to optimise the solver’s performance.
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4.1.2. Hybrid Root-Finding Algorithm

Once the ‘root window’ is found, root-finding algorithms can then be applied to
determine the solution for a given time step. In this work, we present a novel hybrid
root-finding algorithm for the P2D model that uses a combination of the bisection and
Regula Falsi (RF) root-finding methods. Both of these methods are forms of bracketed
root-finding algorithms, which successively calculate smaller intervals (brackets), where a
root occurs.

Initially, during this root-finding process, the guess error magnitudes, ||err||, are quite
large; thus, a suitable root-finding method is required that can minimise significant errors.
The bisection method is effective, particularly for high-magnitude errors, as it uses a simple
bracket-halving approach to reduce the interval size. The algorithm uses three guesses for
βm, i.e., m = [1, 2, 3]. The algorithm selects β1 to have a negative error, err1 < 0, and selects
β2 to have a positive error, err2 > 0. The final guess set of β3 is chosen such that it is the
mean value of β1 and β2, as shown below:

err1 = f (β1) < 0, err2 = f (β2) > 0,

→ err3 = f (β3) = f ((β1 + β2)/2) (87)

Given the value of err3, βnext
m is chosen based on whether the root lies between β1 and

β3 or β2 and β3, as shown below:

i f (err1 ∗ err3) < 0

⇒ βnext
1 = β1, βnext

2 = β3, βnext
3 = (βnext

1 + βnext
2 )/2 (88)

i f (err2 ∗ err3) < 0

⇒ βnext
1 = β3, βnext

2 = β2, βnext
3 = (βnext

1 + βnext
2 ))/2 (89)

Due to this simple bracket-halving approach, the bisection method has a slow linear
convergence rate [57]. To accelerate the root-finding process, once the error magnitude,
||err||, falls below a threshold value of thr, we switch the root-finding process to the Regula
Falsi (RF) algorithm, which has a much faster convergence rate. The RF method can be
considered a form of the gradient descent method, except applied to bracket root-finding
cases where the gradient of the function is not explicitly known. The RF method chooses
βnext

m based on a numerical estimate of the derivative of the root estimates, as shown below.

i f (err1 ∗ err3) < 0

⇒ βnext
1 = β1, βnext

2 = β3, βnext
3 =

βnext
1 err3 − βnext

2 err1

err3 − err1
(90)

i f (err2 ∗ err3) < 0

⇒ βnext
1 = β3, βnext

2 = β2, βnext
3 =

βnext
1 err2 − βnext

2 err3

err2 − err3
(91)

The hybrid root-finding algorithm tunes the scaling factors, βm, with each subsequent
iteration until the intermediate error value err3 goes below an absolute error tolerance
threshold, which is set to tol = 1 × 10−3.

5. Results and Discussion

The discretised equations of the P2D model described in Section 3 and the modelling
algorithm in Section 4 are implemented using MATLAB™ R2023 and are freely available for
download at https://github.com/twick07/Electrochemical-Thermal-P2D-Model-Iterative-
Solver (accessed on 1 April 2024).

https://github.com/twick07/Electrochemical-Thermal-P2D-Model-Iterative-Solver
https://github.com/twick07/Electrochemical-Thermal-P2D-Model-Iterative-Solver
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To benchmark the accuracy of the proposed solver, we chose the commercial battery
modelling software COMSOL™ Multiphysics 5.6. COMSOL has seen broad use in the
field of battery modelling due to the software suite’s flexibility in the analysis of differ-
ent physics phenomena occurring in cells. This includes multiple works related to the
modelling of temperature generation/dissipation [29,31,36] and ageing phenomena like
SEI growth [40,47,48]. For this reason, we used COMSOL as the benchmark software to
compare the accuracy and performance of our proposed solver.

Both solvers were set up with the same model parameters of a Lithium Manganese
Oxide/Graphite (LMO/C6) cell (see the P2D model parameters in Table 5) and run on the
same computational platform: a Windows 11 PC with an Intel Core i7-8650U@ 1.9 GHz
processor and 16 GB of RAM.

As the proposed solver is designed for an electrochemical–thermal ageing model of a
LiB, to validate the accuracy of the solver, we considered three different operation scenarios:
(1) the standard single 1C discharge/charge cycle, (2) multiple-C-rate discharge conditions,
and (3) different hybrid dynamic drive cycle conditions. In all scenarios, the solver results
were compared with those of COMSOL to validate the solver’s accuracy. Additionally, in
Section 5.6, we present a detailed performance analysis comparing our solver, COMSOL,
and other existing solver solutions in the literature. Finally, in Section 5.7, we present a
brief analysis of the two SEI growth models presented in this work, along with a discussion
of their advantages and disadvantages.

5.1. Single Discharge/Charge Cycle Validation

The first method of validation is to compare the accuracy of our solver for a single
1C discharge/charge cycle. We compare five dependent variables over this cycle for
this specific battery model. These dependent variables are the cell voltage, Vcell(t); cell
temperature, T(t); lithium-ion concentration, c2(x, t); and two lithium solid concentrations:
c1,ave(x, t) and c1(x, Ri, t). Note that a single 1C rate is equivalent to an applied current,
Iapp(t), of 17 A/m2 for this LMO/C6 model. The comparison of our solver’s results is
benchmarked against COMSOL’s results, as seen in Figure 4.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

Figure 4. Plots of 1C discharge/charge validation: [x] points are the proposed solver’s results, and
solid lines are COMSOL’s results. (a) The cell voltage; (b) the cell temperature; (c) an illustration of the
physical locations of the different lines in the concentration plots, where red lines are at ncc/n, blue
lines are at n/s, green lines are at s/p, and black lines are at p/pcc; (d) the lithium-ion concentration
in the electrolyte; (e) the average lithium concentration in electrodes; (f) the lithium solid surface
concentration in electrodes.

For the results in Figure 4, all independent simulation variables, such as the number of
mesh elements and time step, were kept the same for both solvers. Figure 4 shows clearly
that the proposed solver results are in line with those of COMSOL. However, for a better
assessment of accuracy, the following definition of root mean square percentage error is
used for a generic dependent variable, Ω.

Ω%
error =

1
Ntime

tstop

∑
t=t1

√
(ΩSolver(t)− ΩCOMSOL(t))

2

ΩCOMSOL(t)
(92)

Note that Ntime in Equation (92) is the total number of time steps in the modelling
algorithm. Using this definition for the percentage error, the percentage errors for the
results of the 1C discharge/charge simulation are shown in Table 6.

Table 6. Percentage errors for dependent variables in a single 1C discharge/charge cycle.

Vcell(t) c2(x, t) c1(x, Ri, t) c1,ave(x, t) T(x, t)

Percentage Errors 0.44% 0.43% 2.82% 2.81% <0.01%

For this single discharge/charge cycle validation, a grid of 30 elements in x (Ntot = 30)
and 10 elements in r (Nshell = 10) with a time step of one second (∆t = 1s) was chosen
for both solvers. A mesh of such size is typically considered a coarse grid, and hence,
even with this low mesh resolution, errors of less than 3% for all dependent variables are
achieved. The solver accuracy can be improved by using a finer mesh; fortunately, one of
the key attributes of our proposed solver is that this larger mesh size does not significantly
increase the computation time (see Section 5.6).

5.2. Temperature Variation in the P2D Model

A key contribution of this work is the provision of a full-order model of temperature
generation/dissipation in LiB cells; thus, as shown in Figure 5, we present a brief description
of the underlying heat generation models that occur during the 1C charge/discharge
simulation.

In Figure 5a, during discharge, the cell temperature is seen to gradually increase until
the cell SoC falls below 50%, whereafter the cell temperature is seen to decrease. To explain
why this occurs, first consider the heat generated in each of the three material domains of
the cell, as shown in Figure 5b. Here, it can be seen that the heat generation of the separator
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region is broadly constant throughout the entire discharge process, and the anode heat
generation gradually increases over the entire discharge half cycle. The cathode region,
however, undergoes dynamic heat generation, and the heat generation profile of the region
broadly correlates to the temperature profile for the entire cell. This same relationship can
also be observed for the charging half cycle.

To gain a deeper understanding of why cathode heat generation changes as such,
consider the variation in heat generation terms for the cathode, as shown in Figure 5d.
Equations (27) to (30) in Table 3 indicate that the heat generated in this model is due
to the heat sources of joule heating, Qjh(x, t); reversible heat generation, Qrev(x, t); and
irreversible heat generation, Qirrev(x, t). In Figure 5d, the total heat generation in the
cathode is driven mainly by the joule heating heat source.

The joule heating sources, as shown in Equation (28) in Table 3, are related to the
ionic and solid-phase currents in the material domain. These currents, in turn, are directly
related to the exchange flux, j(x, t), as shown in Equations (6) and (7) in Table 2. The
exchange flux is the rate at which lithium atoms are being oxidised at the surfaces of
electrode particles and is the primary cause of joule heating fluctuations in the cathode, as
shown in Figure 5e. It can therefore be inferred that the variations in the redox reactions
occurring in the cathode are the primary cause of the temperature change fluctuations
occurring in the cell. This relationship, as will be shown in Section 5.4, is the primary cause
of the temperature increase during high-C-rate discharging. Higher-C-rate discharging
causes higher-magnitude exchange flux distributions in a LiB’s electrodes, in turn inducing
larger increases in cell temperature.

Note that the temperature modelling presented in this work only considers three heat
source terms. There are more potential heat sources in a cell, such as the heat of mixing,
where the variations in concentration gradients within electrode particles induce entropic
changes that can generate heat in a cell [58]. One of the motivations of this work is to
demonstrate how such heat generation models can be additively coupled to an iterative
solver algorithm for a P2D model.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e)

Figure 5. Description of heat generation during 1C discharge/charge simulations. (a) Cell temper-
ature (blue line) vs. cell SoC change (red line); (b) comparison of average heat generation in each
material domain; (c) comparison of average heat generation in anode material domain; (d) compari-
son of average heat generation in cathode material domain; (e) lithium-ion exchange flux (blue line)
vs. joule heating heat generation (red line), at s/p boundary.

5.3. Validation of Kinetic SEI Growth Model

As one of the key contributions of this work is the provision of an SEI growth model,
along with a P2D modelling suite, we briefly study the accuracy of the kinetic-limited SEI
growth model. The kinetic growth model described in Section 2.2 was implemented in both
our solver and COMSOL, and the results for a four-cycle galvanostatic discharge/charge
process are presented in Figure 6.

(a) (b)

(c) (d)

Figure 6. SEI growth validation plots at ncc/n boundary. (a) Applied current; (b) SEI formation rate;
(c) SEI thickness; (d) SEI resistance.

The key variable is the SEI growth rate (jSEI(x, t)), shown in Figure 6b, as this variable
indicates the speed at which the SEI layer thickness grows. As seen in Equations (41)–(43),
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jSEI(x, t) is used to determine SEI growth parameters such as the SEI thickness (Figure 6c)
and SEI resistance (Figure 6d). The accuracy of the key parameter jSEI(x, t) is found to be
an error of 4.5% in comparison to COMSOL, and as with the other variables, the accuracy
of the solver for SEI growth can be increased by using a finer mesh in the simulation.

5.4. Multi-C-Rate Discharge Validation

To further validate the accuracy of the proposed solver, we present an analysis of the
solver accuracy for a range of different constant current discharge scenarios. The LMO/C6
cell model was subjected to C-rates ranging from 0.25C to 10C, and the proposed solver
results are compared to COMSOL’s in Figure 7.

(a) (b)

(c) (d)

Figure 7. Multi-C-rate validation plots. (a) Cell voltage for low C-rates; (b) cell voltage for high
C-rates; (c) cell temperature for low C-rates; (d) cell temperature for high C-rates.

Using the definition for error percentage in Equation (92), the cell voltage, Vcell(t), and
cell temperature, T(t), for the different discharge rates are compared in Table 7.

Table 7. Multi-C-rate error comparison.

0.25C 0.5C 1.0C 2.0C 5.0C 10.0C

Vcell(t) 0.13% 0.25% 0.44% 0.71% 0.98% 1.7%

T(t) <0.01% <0.01% <0.01% 0.02% 0.15% 0.3%

According to these error results, the cell voltage error tends to increase with increasing
C-rates. However, even for an extreme C-rate of 10C, the solver accuracy is kept to less than
2% error. In addition to this, the solver shows high accuracy for temperature modelling
over all the C-rates.
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5.5. Drive Cycle Validation

The final validation method used is dynamic drive cycles that are commonly experi-
enced by electric vehicle battery packs. In this work, we chose two dynamic drive cycles to
compare accuracy.

The first drive cycle used is the Dynamic Stress Test (DST) for a rechargeable battery.
The DST drive profile was first proposed by the Lawrence Livermore National Labo-
ratory and is commonly used to evaluate various battery models and SoC estimation
algorithms [59]. The DST profile consists of a sequence of power steps with seven discrete
power levels, and here, the maximum power level is considered a 5C applied current. The
comparison solver results are presented in Figure 8a–c.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Dynamic drive cycle plots. (a) Applied current for DST drive cycle; (b) cell voltage
response for DST drive cycle; (c) cell temperature response for DST drive cycle; (d) applied current
for COMSOL dynamic drive cycle; (e) cell voltage response for COMSOL dynamic drive cycle; (f) cell
temperature response for COMSOL dynamic drive cycle.
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The second drive cycle is adopted from the COMSOL dynamic drive cycle experi-
ment [60]. In this drive cycle, the cell is subject to large changes in applied current, ranging
from +21C discharge to −17C charge. The comparison solver results are presented in
Figure 8d–f.

As previously mentioned, to assess the accuracy, Equation (92) is used to compare the
cell voltage, Vcell(t), and cell temperature, T(t). The solver errors with respect to COMSOL
are shown in Table 8.

Table 8. Dynamic drive cycle error comparison.

Parameters Dynamic Stress Test COMSOL Dynamic Drive Cycle

Vcell(t) 0.4% 1%

T(t) 0.05% 0.02%

As is evident, the solver can estimate the cell voltage with a maximum error of 1% for
both drive cycles while also having a very high accuracy for temperature modelling.

5.6. Solver Performance

In the results presented thus far, we have shown that the proposed solver can ac-
curately represent the P2D electrochemical–thermal ageing model for multiple different
operation scenarios. Here, we compare the performance of our solver to other state-of-the-
art P2D solvers.

Since the previous works on P2D solvers have not considered the modelling of tem-
perature generation/dissipation and ageing, we use the speed of solving a 1C isothermal
discharge process as a measure for the performance comparison. Furthermore, the existing
works have not tested their solver performance using a large range of different mesh sizes.
In Table 9, we summarise the comparison between the proposed solver and some of the
important existing solver solutions.

Table 9. Simulation speeds of different P2D solvers for 1C isothermal discharge.

Number of Elements in x

Solver Discretisation Method 10 20 30 40 50 60 100 200 300
1 Chen et al. [25] FDM (ROM) - - - - - 10.7 s * 12.98 s * 20.04 s 34.1 s
1 Geng et al. [30] FDM (ROM) - - - - - 8 s - - -

1 R.Han et al. [31] FDM 4.09 s 4.24 s 3.98 s 4.15 s 4.49 s - - - -
1 Torchio et al. [31,36] FVM 7.46 s 9.85 s 15.48 s 26.80 s 54.60 s - - - -

1 Lee et al. [33] FDM * 1.28 s * 2.1 s - - 40.25 s - * 50.8 s - -
1 Doyle et al. [11,31] FDM 28 s 69 s 97 s 137 s 185 s - - - -

2 COMSOL FEM 9 s 11 s 17 s 23 s 25 s 28.4 s 35 s - -
2 Proposed solver FVM 1.6 s 2.2 s 3.1 s 3.3 s 4.3 s 4.5 s 7.75 s 15.3 s 24.5 s

1 The results of other solver works in the literature run on different parameter sets with different computational
platforms. * Simulation speeds are interpolated based on known speeds. 2 Solvers run with the parameter set of
an LMO/C6 cell (see Table 5) on the same computational platform. The performance of the proposed solver for
other chemistries, such as LCO/C6 and NMC111/C6 batteries, was found to have similar computation time to
the results shown above.

As shown in Table 9, our solver shows extremely fast solving speeds for the P2D
model, with speeds of 1.6s for an extremely coarse Ntot = 10 grid and speeds of 24.5 s
for an extremely fine grid of Ntot = 300. Hence, our P2D solver can show significant
performance even with extremely fine grids. To describe this further, we use the fine grid
size of Ntot = 100, which is the finest grid resolution in COMSOL. Compared to other
works at this resolution, our solver speed is much faster compared to that of COMSOL, and
in fact, our solver has 4.5 times the solver speed of COMSOL for this grid resolution.
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5.7. SEI Growth Model Comparison

In the proposed P2D model, we implement the two most used SEI growth models to
consider ageing [44]. As mentioned in Section 2.2, these two models are the kinetic-limited
SEI growth model and the diffusion-limited SEI growth model. To illustrate the difference
between these two models, we simulated SEI growth in a LiB for both models over a
50-cycle duration. The parameters for the respective SEI growth models can be found in
Table 5, and the results of these cycling simulations are shown in Figure 9.

As shown in Figure 9a, both models display at least an 8% loss in capacity after
50 cycles. This amount of capacity loss is far faster than that practically observed in
LMO/C6 LiBs. The reason for such a significant capacity loss in this work is due to the
parameters of the kinetic-limited and diffusion-limited SEI growth models being tuned
to demonstrate a clear illustration of the difference between the two models. For a more
practical parameter set for SEI growth models, we refer the reader to the works mentioned
in Section 2.2.1 for the kinetic-limited model and the works mentioned in Section 2.2.2 for
the diffusion-limited model.

(a) (b)

(c) (d)

Figure 9. Comparison of different SEI growth parameters for kinetic-limited model (red lines) and
diffusion-limited model (blue lines). (a) Percentage lost capacity, (b) SEI layer resistance, (c) SEI
thickness, (d) SEI reaction rate comparison.

In Figure 9a, the kinetic-limited model shows a linear rate of capacity loss with each
cycle, which eventually results in a 10% capacity loss after 50 cycles. The rate of capacity
loss in the kinetic model can be controlled by simply tuning the i0,SEI term in Table 5; hence,
a lower value for i0,SEI is used to reduce the capacity loss in each cycle. This is one of the
clear benefits of the kinetic-limited model, i.e., the simplicity of implementation and the
ease of tuning the model for the BMS’s practical application.

The diffusion-limited model displays a more complex behaviour than the kinetic-
limited model. As seen in Figure 9, initially, when the SEI layer is thin, the diffusion-limited
model displays a linear SEI growth behaviour like that of the kinetic model. However, as
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the SEI layer grows thicker, the rate of growth of the SEI layer is reduced with each cycle.
To further examine this, consider the comparison of the SEI growth rate, jSEI(x, t), between
the two models in Figure 9d.

In Figure 9d, in the initial few cycles, the SEI growth rates are similar between the
two models. However, with increasing cycles, the diffusion-limited model shows a steady
reduction in jSEI(t). The primary cause of this reduction can be explained clearly via
Equation (40) for the diffusion growth model. The equation is repeated here for the ease of
the reader:

csol(x, Rn, t + ∆t) = ϵSEIcsol,2 +
LSEI
Dsol

jSEI(x, t) (93)

The solvent concentration at the interface between the graphite anode particle and
SEI layer, csol(x, Rn, t + ∆t), is a key parameter in determining the rate of SEI growth. As
the diffusion of solvent particles across the SEI layer is very slow, i.e., as Dsol is very small,
when the SEI layer grows thicker, the rate at which solvent particles diffuse across the layer
becomes slower, meaning that as the SEI layer becomes thicker, the rate of SEI growth slows
down. The ’self-limiting’ side reaction effect is the reason why the diffusion model’s SEI
growth rate decreases with an increasing number of cycles.

The phenomenon of a ’self-limiting’ side reaction for SEI growth on graphite anode
particles is widely described in the literature [61]. For this reason, the diffusion-limited
SEI growth model can be considered more accurate for the real-world phenomena of
self-limiting SEI growth on graphite anode particles. The diffusion-limited model does,
however, come with some added complexity for modelling and more parameters to be
tuned in the model. However, the most complexity is in the implementation of the PDAEs.
In this work, order reduction assumptions are made to implement the diffusion-limited
model: there is a linear diffusion profile across the SEI layer, no SEI growth occurred during
discharge, and when csol(x, Rn, t+∆t) reaches very low levels, negligible SEI growth occurs
at that point in the anode.

To accurately implement this model, a full-order solver for the PDAE is required,
which can introduce more complexity to the solver. Furthermore, a model for solvent
diffusion in the SEI layer during discharge also needs to be defined.

Therefore, considering the merits and limitations of the different models, the choice
of which SEI growth model to use should be decided on a case-by-case basis. In cases
where a baseline decay of capacity is required for model fitting, the kinetic-limited model
may be simpler to apply and tune. In cases where accurate ’self-limiting’ SEI growth
models are required, the diffusion-limited case is more useful, which may come with the
added complexity of accurately tuning the diffusion-limited model parameters to fit the
desired behaviour. As the diffusion-limited model has a nonlinear decay behaviour, its
model parameters can be quite sensitive, and thus, tuning the diffusion-limited model is a
non-trivial task.

6. Conclusions

In this work, we propose an iterative solver for the implementation of a physics-based
P2D model, which includes the additional models of temperature generation/dissipation
and the ageing mechanism of Solid Electrolyte Interphase (SEI) growth. We discretise the
P2D model equations using the Finite Volume Method and the Verlet Integration Method.
The proposed solver uses physics-based approximate guesses to start the solver, using
a convergence criterion based on the average exchange flux expected in the model and
a unique bracketing root-finding approach to solve the discretised equations of the P2D
model. As a result, the solver can achieve high accuracy with significant performance
improvement.

The proposed solver’s accuracy is validated against other commercially available
solvers and shows high accuracy in different battery operating conditions, namely, the
1C discharge/charge cycle, multiple-C-rate discharge conditions, and multiple dynamic
drive cycles. The solver also shows much faster solving speeds compared to commercially
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available solvers. We further include the two most used SEI growth models (kinetic-limited
and diffusion-limited growth models) in the proposed P2D model to represent ageing and
capacity fade in LiBs, and we studied how the proposed solver can accurately represent
ageing scenarios.

Considering all the merits, the proposed solver is a better choice for battery researchers
to implement a P2D model of a LiB in more realistic scenarios, e.g., the real-time BMS oper-
ation of an EV. Our work can still be improved by adding more degradation mechanisms
for battery diagnostic applications.
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Appendix A

To derive the average exchange flux in an electrode, the following definition is used:

j̄i(t) =
1
Li

∫ Li+x

x
j(x, t).∂x (A1)

The exchange flux can be related to the ionic current using Equation (7) in Table 2,
repeated here for clarity:

∂i2(x, t)
∂x

= a1,iFj(x, t) (A2)

Substituting the spatial derivative of the ionic current into the definition in Equation (A1)
yields

j̄i(t) =
1

a1,iFLi

∫ Li+x

x

∂i2(x, t)
∂x

· ∂x =
1

a1,iFLi

∫ Li+x

x
∂i2(x, t) (A3)

This general expression for the average exchange flux can be expressed for the anode
and cathode, respectively, as follows:

j̄n(t) =
1

a1,nFLn

∫ Ln

0
∂i2(x, t) =

1
a1,nFLn

[i2(Ln, t)− i2(0, t)] (A4)

j̄p(t) =
1

a1,pFLp

∫ Ltot

Ln+Ls
∂i2(x, t) =

1
a1,pFLp

[i2(Ltot, t)− i2(Ln + Ls, t)] (A5)

As the value for the ionic current is known at the different material boundaries, the
above equations yield the following values:

j̄n(t) =
Iapp(t)
a1,nFLn

(A6)

j̄p(t) =
−Iapp(t)
a1,pFLp

(A7)
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