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Abstract: SiO2 has a much higher theoretical specific capacity (1965 mAh g−1) than graphite, making it
a promising anode material for lithium-ion batteries, but its low conductivity and volume expansion
problems need to be improved urgently. In this work, pompon mum-like SiO2/C nanospheres
with the sandwich and porous nanostructure were obtained by using dendritic fibrous nano silica
(DFNS) and glucose as matrix and carbon source, respectively, through hydrothermal, carbonization
and etching operations. The influence of SiO2 content and porous structure on its electrochemical
performance was discussed in detail. The final results showed that the C/DFNS-6 with a SiO2

content of 6 wt% exhibits the best electrochemical performance as a negative electrode material for
lithium-ion batteries due to its optimal specific surface area, porosity, and appropriate SiO2 content.
C/DFNS-6 displays a high specific reversible capacity of 986 mAh g−1 at 0.2 A g−1 after 200 cycles,
and 529 mAh g−1 at a high current density (1.0 A g−1) after 300 cycles. It also has excellent rate
capability, with a reversible capacity that rises from 599 mAh g−1 to 1066 mAh g−1 when the current
density drops from 4.0 A g−1 to 0.2 A g−1. These SiO2/C specific pompon mum-like nanospheres
with excellent electrochemical performance have great research significance in the field of lithium-
ion batteries.

Keywords: SiO2; silicon/carbon; lithium-ion batteries; pompon mum-like nanospheres; anode
materials

1. Introduction

Given the escalating global challenges like climate change, environmental risks, and
energy resource limitations, it is imperative to aggressively advance energy storage tech-
nologies and curtail carbon emissions through reduced reliance on fossil fuels to foster
sustainable global energy progress. Lithium-ion batteries (LIBs) are characterized by their
high energy density, high power density, and long cycle performance [1–4], so they have
been entrusted with a heavy responsibility in the field of electric vehicles, energy storage,
consumer electronics and other fields [5,6].

It is widely recognized that the anode materials significantly influence the energy
storage and release processes in lithium-ion batteries [7–9]. Graphite anode, which is widely
used at present, is quite mature in preparation technology, but the low theoretical specific
capacity (372 mAh g−1) of graphite has posed challenges in meeting the market demand
for high-capacity LIBs [9,10]. On the flip side, silicon has garnered interest as an anode
material due to its higher specific capacity (4200 mAh g−1). Unfortunately, the process of
preparing nano silicon, which usually involves several steps and complex manufacturing
processes, is fairly complicated, and the high cost also makes the practical application of
silicon unfavorable [11–13].
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In recent years, researchers have conducted extensive research on silicon oxide neg-
ative electrode materials, which exhibit good cycling stability compared to Si elemental
materials [14,15]. Among them, SiO2 has become a much sought-after alternative material
because of its electrochemical properties comparable to silicon. Due to its low discharge
voltage (0.2 V vs. Li+/Li), substantial Li-ion storage capacity (1965 mAh g−1), excellent cy-
cling stability and widespread availability, SiO2 is regarded as a promising environmentally
friendly Li-ion anode material [16–18]. However, improving its poor electrical conductivity
and unsatisfactory rate performance is still not less challenging. To this end, compound-
ing with highly conductive carbon materials has proven to be a promising method for
enhancing electron transport and mitigating volume changes [19]. Subsequently, SiO2/C
composites with different morphologies have been prepared and used as anode materi-
als for LIBs, with nanosphere morphology accounting for the majority [20–23]. Li et al.
successfully prepared dual-porosity structure SiO2/C nanospheres composites, which can
obtain a reversible capacity of 635.7 mAh g−1 by cycling 200 times at a current density of
0.1 A g−1, and also demonstrated good multiplicity performance [24]. In addition, Pang
et al. synthesized SiO2@carbon composite nanorods with core–shell structure using a
simple method of in situ capping polydopamine, which achieved a reversible capacity of
690 mAh g−1 at a current density of 0.1 A g−1, and even at a high 1.0 A g−1 current density,
a capacity of 344.9 mAh g−1 can be achieved [25]. Moreover, Zhang et al. used ZIF-8 as
a template to design nanocubes SiO2/C composites with an initial discharge capacity of
863.6 mAh g−1 at a current density of 0.1 A g−1, and the reversible capacity was stabilized
after 150 cycles at 723 mAh g−1 [26]. Among these many morphologies, SiO2/C compos-
ites containing voids offer space to accommodate the mechanical strain, enabling SiO2
to expand without pulverization during the intercalation and deintercalation process of
lithium-ion, thus contributing to the formation of a relatively stable structure [27], and such
SiO2/C composites exhibit excellent electrochemical properties even with reduced silica
content. For example, Chen et al. prepared lemon-like hollow silica spheres as an anode
material for LIBs using the soft template method, and the sample at about 56% SiO2 content
had a discharge mass specific capacity of 786 mA h g−1 after 500 cycles at a current density
of 1.0 A g−1 [21]. Liu et al. prepared SiO2@C hollow spheres by a sacrificial template
method, in which the charge/discharge specific capacity was 653.4/649.6 mAh g−1 after
160 cycles at a SiO2 content of 67 wt% and a current density of 0.11 mA cm−2 [28].

In this work, an advanced SiO2/C anode material with pompon mum-like morphology
and sandwich porous nanostructure is prepared by hydrothermal, carbonization and
etching process, which selects dendritic fibrous nano silica (DFNS) and glucose as the
matrix and the carbon source. This pompon mum-like SiO2/C composite anode provides a
large number of reaction sites due to its huge specific surface area, and the carbon layer
coating on the surface of SiO2 acts as a protective layer, not only inhibiting the repeated
growth of the solid electrolyte phase (SEI), but also providing good conductivity. The
existence of pores in the pompon mum-like SiO2/C nanospheres leaves a cache space to
accommodate the volume expansion of SiO2. Therefore, this novel pompon mum-like
SiO2/C nanospheres give excellent cycling stability and rate performance.

2. Materials and Methods
2.1. Materials

All chemical reagents utilized in these experiments are of analytical grade and em-
ployed without purification. All aqueous solutions are formulated using deionized wa-
ter. Cetyltrimethylammonium bromide (CTAB) was from Shanghai Sinopharm Chemical
Reagent Co., Ltd., China. Urea, tetraethyl orthosilicate (TEOS), 1-Pentanol, toluene, NaOH
and HF were acquired from Shenzheng Xilong Scientific Co., Ltd., China. P-xylene and (3-
Aminopropyl) triethoxysilane (APTS) were obtained from Shanghai Macklin Biochemical
Co., Ltd.,China. Glucose was provided by Shantou Xilong Chemical Co., Ltd., China.
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2.2. Preparation of Pompon Mum-like SiO2/C Nanospheres

In the preparation of pompon mum-like SiO2/C nanospheres, dendritic fibrous nano
silica (DFNS) was first prepared according to the methods in the literature [29]. Then, 0.3 g
of DFNS, 1.3 g of glucose, 16 mL of distilled water and 4 mL of ethanol were homogeneously
mixed and encapsulated into a 50 mL hydrothermal reactor at 195 ◦C for 40 h to obtain a
brown solid precipitate. The obtained solid precipitate was washed up by filtration three
times with deionized water and three times with ethanol, in turn, and then dried in an oven
at 80 ◦C for 12 h, put into the tube furnace, heated up to 850 ◦C at a rate of 3 ◦C per minute
under nitrogen and held for 1 h to obtain a pompon mum-like SiO2/C composite with
50% content of SiO2, which are named C/DFNS-50. The C/DFNS-50 was then corroded
with 10% HF solution for 5 h, 10 h and 20 h to obtain other SiO2/C composites with
10%, 6% and 1% content of SiO2, respectively, which are named C/DFNS-10, C/DFNS-6
and C/DFNS-1, respectively. Taking C/DFNS-6 as an example, the fabrication process of
pompon mum-like SiO2/C nanospheres is shown in Scheme 1.
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Scheme 1. Schematic of the preparation route of C/DFNS nanocomposites.

2.3. Materials Characterization

The surface morphologies of the samples were examined using scanning electron
microscopy (SEM, S4800, Hitachi High-Tech, Japan) and transmission electron microscopy
(JEM-2100F, JEOL Ltd., Japan), and the TEM/energy-dispersive spectroscopy mapping
was carried out on the transmission electron microscope to analyze the elements in the
samples. The crystal structures of the products were analyzed using the X-ray diffraction
(X’Pert PRO, 2θ = 10–80, PANalytical B.V., The Netherlands) method. The Raman spectra
were obtained using a Raman microscope (DXR, 532 nm laser, Thermo Fisher Scientific,
USA). The content of SiO2 in the sample was measured using a thermogravimetric analyzer
(STA-449, NETZSCH Scientific Instruments Trading Ltd., Germany), with a measurement
temperature ranging from room temperature to 800 ◦C and an airflow rate of 5 ◦C/min.
X-ray photoelectron spectroscopy (XPS) analyses were conducted using an ESCALAB
250Xi (Thermo Fisher Scientific, USA). Nitrogen adsorption and desorption isotherms were
obtained at 77 K using a NOVA 1200e (Quantachrome Instruments, USA) analyzer.

2.4. Electrochemical Measurements

The electrode components used in this experiment include active materials, acetylene
black, and polyvinylidene fluoride adhesive, mixed in a mass ratio of 5:3:2. A small amount
of 1-Methyl-2-pyrrolidinone was added dropwise for grinding, and then coated on copper
foil. The electrolyte used in this experiment was composed of dissolving ethylene carbonate
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(EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) in 1 M LiPF6 in a 1:1:1 volume
ratio. A cyclic voltammetry (CV) test and electrochemical impedance spectroscopy (EIS) test
of coin cell 2025 were performed by the CHI-760D electrochemical workstation. A Neware
GCD testing system was used for constant current charging and discharging testing.

3. Results and Discussion
3.1. Morphology and Structure of Composite Materials

The morphology and structure of DFNS and SiO2/C composites can be analyzed using
SEM and TEM. As shown in Figure 1, both the pure DFNS (Figure 1a1,a2) and SiO2/C
composites are nanospheres with diameters of about 500~600 nm and can be visualized as a
pompon mum-like porous structure. In addition, the C/DFNS-50 (Figure 1b1,b2) obtained
by the reaction of DFNS with glucose, as well as the C/DFNS-6 (Figure 1c1,c2) and C/DFNS-
1 (Figure 1d1,1d2) obtained by corrosion of C/DFNS-50, are relatively uniformly sized
nanospheres, and all three of them do not have any significant difference from pure DFNS.
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Figure 1. SEM images of (a1,a2) DFNS, (b1,b2) C/DFNS-50, (c1,c2) C/DFNS-6 and (d1,d2) C/DFNS-1.

The structure differences among these four samples can be clearly seen from their
TEM images in Figure 2. As shown in Figure 2a1,a2, DFNS has a dendritic fiber structure
that diverges from the center to the edge, and the fibers have the characteristics of being
dense in the middle and sparse at the edges. However, from Figure 2b1,b2, it can be seen
that the C/DFNS-50 composite no longer shows an obvious fiber structure, which is highly
likely due to being covered by a carbon layer. Compared with C/DFNS-50, C/DFNS-10
(Figure 2c1,c2), C/DFNS-6 (Figure 2d1,d2) and C/DFNS-1 (Figure 2e1,e2), nanospheres have
obvious traces of corrosion in the center and edges, and the corroded area of C/DFNS-1
is the largest because of the extension of corrosion time. The EDS elemental mappings of
C/DFNS-6 (Figure 2f) show that the C element is uniformly distributed in this composite,
indicating that DFNS has successfully completed the recombination with carbon. And it is
also clear that the content of Si and O elements significantly decreases in the corroded area.
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This is because the fiber structure of DFNS improves the accessibility of the inner surface
of DFNS, and glucose-based carbon can smoothly contact the interior of DFNS to achieve
complete coating without changing its pompon mum-like structure [30]. Combining
Figures 1 and 2, it is clear that the process of corrosion with HF can successfully corrode
part of the DFNS without breaking the structure of the carbon layers.
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The XRD patterns are shown in Figure 3a to elucidate the structural and compositional
characteristics of the samples. From the XRD spectrum of DFNS, a broad peak appears near
22◦, indicating the characteristic peak of amorphous silicon dioxide [31]. Two broad peaks
near 24◦ and 44◦ on the curves of C/DFNS-50, C/DFNS-10, C/DFNS-6 and C/DFNS-1
correspond to the (002) and (100) planes of amorphous carbon, respectively, indicating
the presence of amorphous carbon in the four composite samples [32]. In particular, in
the XRD spectra of the four composites, there is an overlap between the characteristic
peak of SiO2 at 22◦ and the characteristic peak of carbon at 24◦ [27]. This indicates that



Batteries 2024, 10, 149 6 of 16

amorphous carbon has been combined with the DFNS material after reacting with glucose.
The intensity of the two carbon peaks of C/DFNS-50 in XRD patterns is lower than that of
C/DFNS-10, C/DFNS-6 and C/DFNS-1, which is due to the relatively low carbon content
in C/DFNS-50.
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In the Raman spectra of the four composites (Figure 3b), the characteristic peaks at
1340 and 1590 cm−1 belong to the disordered induced band (D) and graphite band (G),
respectively. The ratio of these two characteristic peaks (ID/IG) represents the degree of
graphitization of carbon in the composite material [33]. The ID/IG values of C/DFNS-50,
C/DFNS-10, C/DFNS-6 and C/DFNS-1 are 0.9957, 0.9839, 0.9711 and 0.9789, respectively,
indicating the smaller ID/IG ratio of C/DFNS-6 contained more defective carbons [20],
which can provide lots of vacancies and defects. Research has shown that defective carbon
in materials is beneficial for improving their electrochemical performance [20,33,34]. The
characteristic of C/DFNS-6 not only accelerates the diffusion of lithium-ion, but also
provides reversible sites for lithium-ion storage.

As shown in Figure 3c, thermal gravimetric analysis (TGA) was performed to deter-
mine the mass loading of SiO2 among the SiO2/C composites. During the entire combustion
testing process, all the samples experienced significant weight loss within the temperature
range of 440 ◦C to 620 ◦C, which is related to the release of carbon oxides [34]. Subse-
quently, the weight of the four samples remained stable above 620 ◦C, which is the content
of SiO2 in the composites. C/DFNS-50, C/DFNS-10, C/DFNS-6 and C/DFNS-1 show
mass loss around 50 wt%, 90 wt%, 94 wt% and 99 wt%, respectively, suggesting the resid-
ual amounts of SiO2 were 50 wt%, 10 wt%, 6 wt% and 1 wt%, respectively. The carbon
content of C/DFNS-50 is lower than that of the C/DFNS-10, C/DFNS-6 and C/DFNS-1,
which is consistent with XRD analysis results. Combined with the EDS elemental mapping
of C/DFNS-6 in Figure 2f, it can be inferred that the residual SiO2 is found uniformly
distributed in this composite material, which is beneficial for stabilizing the structure of
C/DFNS-6 and enhancing the stability of anode material structure [24].

In order to investigate the surface electronic states and elemental composition of
C/DFNS-6 with the highest defective carbon content, it can be analyzed by XPS in Figure 4.
Figure 4a shows the full XPS spectrum of C/DFNS-6, where the characteristic peaks at 104,
285 and 533 eV correspond to Si 2p, C 1s and O 1s, respectively, indicating the presence
of Si, C and O elements in the C/DFNS-6 [35,36]. Among them, the XPS fine spectrum
of C 1s fitted three characteristic peaks, located at 284.8, 285.6 and 288.5 eV, respectively,
corresponding to the C=O, C-C and C=O bonds (Figure 4b) [37]. Figure 4c shows the
XPS fine spectrum of Si 2p, the characteristic peak at 103.3 eV, corresponding to Si4+ [26],
which indicates that the Si element in the C/DFNS-6 existed in the form of SiO2. The
O 1s spectrum shown in Figure 4d is divided into two peaks, with peaks near 533.1 and
531.3 eV corresponding to Si-O and C-O bonds [21,26], respectively, which corroborates the
successful composite of carbon layers.
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Detailed analysis of the specific surface area and pore structure of DFNS, C/DFNS-50,
C/DFNS-6 and C/DFNS-1 using the N2 adsorption/desorption analysis method. As shown
in Figure 5, the adsorption/desorption isotherms displayed by DFNS (Figure 5a), C/DFNS-
50 (Figure 5b), C/DFNS-6 (Figure 5c) and C/DFNS-1 (Figure 5d) are both I/IV type, with
obvious hysteresis loops, indicating the presence of micropores as well as mesopores inside
the samples [23]. Table 1 shows the Brunauer–Emmett–Teller (BET) specific surface area of
the DFNS, C/DFNS-50, C/DFNS-10, C/DFNS-6 and C/DFNS-1 is 223, 127, 573, 672 and
651 m2 g−1, respectively. And their pore sizes are all distributed in the range of 1.7–15.6 nm,
which are confirmed by the pore size distribution graphs inset in Figure 5a–d. The total
pore volumes of DFNS, C/DFNS-50, C/DFNS-10, C/DFNS-6 and C/DFNS-1 are 0.33,
0.06, 0.46, 0.64 and 0.60 cm3 g−1, respectively, and the average pore sizes are 5.43, 4.18,
3.47, 3.52 and 3.48 nm, respectively. It is clear that C/DFNS-50 obtained after successful
loading of the carbon layer by DFNS has the smallest specific surface area and pore volume,
while C/DFNS-6 obtained after corrosion of SiO2/C composites for 10 h has the largest
specific surface area and porosity, which may give C/DFNS-6 more exposed active sites
and electrolyte diffusion channels. Therefore, the etching time of 10 h can make C/DFNS
composites have the best specific surface area and porosity, which is expected to achieve
the rapid transport of Li+ and electrons [38].

Table 1. BET parameter values for DFNS, C/DFNS-50, C/DFNS-10, C/DFNS-6 and C/DFNS-1.

Samples SBET (m2 g−1) Vt (cm3 g−1) ¯
d (nm)

DFNS 223 0.33 5.43

C/DFNS-50 127 0.06 4.18

C/DFNS-10 573 0.46 3.47

C/DFNS-6 672 0.64 3.52

C/DFNS-1 650 0.60 3.51
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3.2. Electrochemical Performances

The reaction kinetics and electrochemical activity of the prepared electrodes can be
investigated by various electrochemical methods as follows. The cycle performances and
coulombic efficiency of the prepared electrode materials are investigated in Figure 6a,b.
Compared with only 130 mAh g−1 for DFNS, the composites of C/DFNS-50, C/DFNS-10,
C/DFNS-6 and C/DFNS-1 display a higher capacity of 521, 776, 986 and 600 mAh g−1

after 200 cycles at 0.2 A g−1, respectively. The initial coulombic efficiencies of DFNS,
C/DFNS-50, C/DFNS-10, C/DFNS-6 and C/DFNS-1 is 35.4%, 43.0%, 40.3%, 44.0% and
42.3%, respectively. All of the four SiO2/C composites show a significant period of capacity
decay during the early stages of cycling, presumably due to the loss of lithium-ions caused
by the electrode materials indicating the formation of an SEI layer. In addition, it can be
seen that throughout the entire cycle life, the capacity of the carbon-coated DFNS anode
is higher than that of the original DFNS anode, indicating that carbon coating plays an
important role in improving the electrochemical performance of anode materials [39].
From the previous TGA analysis, it can be seen that C/DFNS-50 and C/DFNS-10 have
higher SiO2 content (50 wt% and 10 wt%, respectively), but their extremely small specific
surface area and pore volume (Table 1) not only hinder the transport of Li+, but also have
insufficient space to buffer the volume expansion of SiO2. On the contrary, C/DFNS-1 has
a larger specific surface area and pore volume, but the extremely low SiO2 content (1 wt%)
also limits the improvement of the specific capacity. For the case of C/DFNS-6, due to its
suitable SiO2 content (6 wt%), the largest specific surface area and pore volume, and rich
porous structure, ensures structural stability while greatly improving the specific capacity
of the material, resulting in optimal cycling performance [24].



Batteries 2024, 10, 149 9 of 16

Batteries 2024, 10, x FOR PEER REVIEW 9 of 17 
 

to buffer the volume expansion of SiO2. On the contrary, C/DFNS-1 has a larger specific 
surface area and pore volume, but the extremely low SiO2 content (1 wt%) also limits the 
improvement of the specific capacity. For the case of C/DFNS-6, due to its suitable SiO2 
content (6 wt%), the largest specific surface area and pore volume, and rich porous struc-
ture, ensures structural stability while greatly improving the specific capacity of the ma-
terial, resulting in optimal cycling performance [24]. 

 
Figure 6. (a) Cycling performance and (b) coulombic efficiency at 0.2 A g−1 of DFNS, C/DFNS-50, 
C/DFNS-10, C/DFNS-6 and C/DFNS-1, (c) galvanostatic charge/discharge profiles of C/DFNS-6, (d) 
EIS spectra of DFNS, C/DFNS-50, C/DFNS-6 and C/DFNS-1. 

Figure 6c shows the discharge/charge profiles of the C/DFNS-6 electrode under dif-
ferent cycles at a current density of 0.2 A g−1 in the voltage range of 0.01~3.0 V. Evidently, 
the discharge capacities during the fifth and fiftieth cycles are lower compared to the first 
cycle mainly. This is primarily due to the SEI film formation process during the initial 
cycle, which consumes a significant quantity of lithium-ions, leading to a higher irreversi-
ble capacity. 

EIS tests in the frequency range of 105~0.1 Hz can be conducted to study the electrical 
conductivity of DFNS, C/DFNS-50, C/DFNS-6 and C/DFNS-1. Figure 6d shows the 
Nyquist plots of the four electrode materials, including the equivalent circuit model. In 
this Nyquist plot, the high-frequency semicircle corresponds to the charge transfer re-
sistance (Rct) between the electrode and electrolyte interface, while the low-frequency di-
agonal corresponds to the lithium-ion diffusion resistance in the electrode [40]. The semi-
circle in the curve of C/DFNS-6 is much smaller, and the curve is approximately vertical 
at low frequencies, indicating a decrease in Rct and good capacitance behavior. The curve 
of C/DFNS-6 has a smaller semicircle diameter in the high-frequency region, indicating a 
smaller Rct and good capacitance characteristics [27,40]. Specifically, the Rct of C/DFNS-6 
is only 81 Ω, which is much lower compared with 230 Ω, 166 Ω and 120 Ω for DFNS, 
C/DFNS-50 and C/DFNS-1, respectively. This further confirms that C/DFNS-6 has efficient 
interfacial charge transfer and electronic conduction capabilities [39,40]. 

The CV curves of C/DFNS-6 at a scanning rate of 0.1 mV s−1 between 0.01 and 3.0 V 
are shown in Figure 7. During the cathodic polarization process of the initial cycle, two 
distinct cathodic peaks were observed at 1.42 V and 0.54 V and then disappeared in the 
following cycles. A cathodic peak was observed between 1.3 and 1.5 V, which is caused 
by the reduction and decomposition of the electrolyte and the irreversible formation of 

Figure 6. (a) Cycling performance and (b) coulombic efficiency at 0.2 A g−1 of DFNS, C/DFNS-50,
C/DFNS-10, C/DFNS-6 and C/DFNS-1, (c) galvanostatic charge/discharge profiles of C/DFNS-6,
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Figure 6c shows the discharge/charge profiles of the C/DFNS-6 electrode under
different cycles at a current density of 0.2 A g−1 in the voltage range of 0.01~3.0 V. Evidently,
the discharge capacities during the fifth and fiftieth cycles are lower compared to the
first cycle mainly. This is primarily due to the SEI film formation process during the
initial cycle, which consumes a significant quantity of lithium-ions, leading to a higher
irreversible capacity.

EIS tests in the frequency range of 105~0.1 Hz can be conducted to study the electrical
conductivity of DFNS, C/DFNS-50, C/DFNS-6 and C/DFNS-1. Figure 6d shows the
Nyquist plots of the four electrode materials, including the equivalent circuit model. In this
Nyquist plot, the high-frequency semicircle corresponds to the charge transfer resistance
(Rct) between the electrode and electrolyte interface, while the low-frequency diagonal
corresponds to the lithium-ion diffusion resistance in the electrode [40]. The semicircle in
the curve of C/DFNS-6 is much smaller, and the curve is approximately vertical at low
frequencies, indicating a decrease in Rct and good capacitance behavior. The curve of
C/DFNS-6 has a smaller semicircle diameter in the high-frequency region, indicating a
smaller Rct and good capacitance characteristics [27,40]. Specifically, the Rct of C/DFNS-
6 is only 81 Ω, which is much lower compared with 230 Ω, 166 Ω and 120 Ω for DFNS,
C/DFNS-50 and C/DFNS-1, respectively. This further confirms that C/DFNS-6 has efficient
interfacial charge transfer and electronic conduction capabilities [39,40].

The CV curves of C/DFNS-6 at a scanning rate of 0.1 mV s−1 between 0.01 and 3.0 V
are shown in Figure 7. During the cathodic polarization process of the initial cycle, two
distinct cathodic peaks were observed at 1.42 V and 0.54 V and then disappeared in the
following cycles. A cathodic peak was observed between 1.3 and 1.5 V, which is caused
by the reduction and decomposition of the electrolyte and the irreversible formation of
the SEI layer on the surface of the negative electrode material [27]. In addition, the peak
appearing around 0.5~0.7 V corresponds to the formation of the SEI layer in the electrolyte,
the reaction between SiO2 and Li+, and the generation of Si and a series of lithium silicates.
(see reaction Equations (1)–(3)) [40–43], and these non-electrochemically active substances
such as Li2O and Li2Si2O5 are uniformly distributed on the SiO2 particles, buffering the
volume expansion of SiO2, which is beneficial for maintaining the stability of the negative
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electrode material structure and improving the cycling life of lithium-ion batteries [22]. As
shown in Equation (4) [42], the anodic peak at 0.01 V is related to the alloying reaction of Si
and Li+. As shown in Equation (5), the anodic characteristic peak at 0.25 V is related to the
LixSi dealloying reaction [42]. During the subsequent scanning, the CV curves of C/DFNS-6
almost overlapped, indicating that the reactions were reversible after the first cycle.
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2 SiO2 + 4 Li+ + 4 e− → Li4SiO4 + Si (1)

SiO2 + 4 Li+ + 4 e− → 2 Li2O + Si (2)

5 SiO2 + 4 Li+ + 4 e− → 2 Li2Si2O5 + Si (3)

Si + x Li+ + x e− → LixSi (4)

LixSi → Si + x Li+ + x e− (5)

The rate capability of three SiO2/C composites was investigated with the current
density increased from 0.2 A g−1 to 4 A g−1 (Figure 8a). Compared with C/DFNS-50 and
C/DFNS-1, C/DFNS-6 exhibits a superior rate capability at different current densities.
Specifically, C/DFNS-6 delivers reversible discharge capacities of 1015, 856, 799, 769, 708,
670 and 599 mAh g−1 at the current densities of 0.2, 0.4, 0.6 0.8, 1.0, 2.0 and 4.0 A g−1,
respectively. In particular, when the current density drops back to 0.2 A g−1, even after
35 cycles, a high capacity of 1066 mAh g−1 can still be maintained, which demonstrates the
coating of the carbon layer and the presence of pores effectively suppresses the repeated
destruction and reconstruction of the SEI layer, resulting in excellent stability and rate
performance of the C/DFNS-6 electrode material [24,27].
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In addition, the long-term cycling performance of C/DFNS-6 was further tested at
high current density (1.0 A g−1), as shown in Figure 8b. Basically, the initial discharge
specific capacity of C/DFNS-6 is 1378 mAh g−1. After that, the capacity decreases slightly
until reaching the 25th cycle. Then, due to the gradual activation of silica at high current
density, the specific capacity also increases. After 300 cycles, the reversible specific capacity
of C/DFNS-6 remained stable at 529 mAh g−1, indicating good cycling performance even
at high current densities.

In order to better understand the electrochemical kinetics of pure DFNS and C/DFNS-6
with the highest reversible specific capacity, the CV measurements for both were performed
at various scan rates ranging from 1.0 to 5.0 mV s−1 (Figure 9a1,b1). Both samples show
similar CV characteristics, i.e., the polarization effect gradually increased with increasing
peak current at the scan rate, resulting in a shift of the anodic and cathodic peaks to the
high and low potential sides, respectively. The contribution of the capacitive effect can be
analyzed based on the relationship between the measured current (i) and scan rate (v) in
five sets of CV curves [44]. To this end, Equations (6) and (7) were introduced, where a and
b are both empirical parameters [45].
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i = avb (6)

logi = blogv + loga (7)

i = k1v + k2v1/2 (8)

The parameter “b” dictates the extent of capacity contribution from either capacitance
or the diffusion-controlled process. Specifically, if b = 0.5, it means that the negative
electrode material only has diffusion-control behavior; b = 0.5~1 indicates the coexistence
of diffusion-control behavior and pseudocapacitive effect; and b = 1 indicates that it only
has a pseudocapacitive effect [32,43]. As shown in Figure 9a2,b2, the b-values of DFNS and
C/DFNS-6 are 0.92 and 0.91, respectively, which reveals that the electrochemical processes
of these two materials are controlled by these two processes. Subsequently, the contribution
ratio of these two processes was accurately studied using Equation (8) [45]. The k1ν and
k2ν

1/2 represent the contribution rates of capacitance and diffusion-controlled processes,
respectively [45]. As shown in Figure 9a3,b3, the capacitance contribution ratio of DFNS
gradually increases from 39% to 61% and that of C/DFNS-6 from 50% to 68% with the
increase in scanning rate. It can be seen that the capacitance contribution of C/DFNS-6
is higher than that of DFNS at all the same scanning rates, and the larger capacitance
contribution is beneficial for the storage of Li+, which may be attributed to the abundant
pore structure in C/DFNS-6. The percentage of capacitive control capacity at a sweep rate
of 5.0 mV s−1 for DFNS and DFNS-6 are presented in detail in Figure 9a4,b4, respectively.

Similarly, to specifically compare the diffusion of lithium-ions in DFNS and DFNS-6
materials, the Li+ diffusion coefficient (DLi

+) of DFNS and C/DFNS-6 electrodes in the first
charge/discharge cycle was determined using GITT. As can be seen in Figure 10a, the first
charge/discharge time of C/DFNS-6 (65 h) is significantly longer than that of DFNS (20 h),
which suggests that the covering of the carbon layers and abundant pores alleviate the
volume expansion problem and indeed improve the stability of the C/DFNS-6 structure.
In addition, DFNS shows a voltage plateau around 0.7 V, corresponding to the formation
of the SEI layer in conventional carbonate electrolytes, which is consistent with the CV
analysis results (Figure 7). C/DFNS-6 does not show a significant voltage plateau due
to the lower content of SiO2. The DLi

+ can be calculated for both materials according to
Equation (9) [46]:

DLi+=
4

πτ

(
mBVm

MBS

)2(∆Es

∆Et

)2
(9)

where Vm represents the molar volume of the material (cm3 mol−1); mB stands for mass of
the active material (g); MB is the molar mass of the active material (g mol−1); S indicates the
electrode/electrolyte contact area (cm2); t represents the duration of the current pulse (s);
Es represents the voltage change caused by pulse (V); Et is expressed as constant current
charge and discharge voltage change (V) [46]. In Figure 10b, the DLi

+ of C/DFNS-6 is
higher than that of DFNS, with the former fluctuating in the range of 10−10.4 to 10−11.8

and the latter varying in the range of 10−8.2 to 10−9.4, which is due to the excellent specific
surface area and pore volume of C/DFNS-6 [47].

Based on the above characterization analysis and electrochemical analysis, we specu-
late that the outstanding electrochemical performance of DFNS-6 is due to the synergistic
effect of the protection of the carbon layers, the porous structure and the appropriate
SiO2 content, as shown in Scheme 2. For pure DFNS, although its large specific surface
area and pompon mum-like structure provide active sites and transport channels for Li+,
direct contact with the electrolyte accelerates the volume expansion and structural collapse,
which, in turn, leads to electrode failure. In contrast, C/DFNS-6, protected by the carbon
layers, greatly improves the structural stability and electrical conductivity while alleviating
the volume expansion problem, the more porous structure therein also accelerates the
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Li+ transport, and the suitable SiO2 content provides a good capacity basis. Therefore,
C/DFNS-6 possesses excellent reversible specific capacity and cycling stability.
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Table 2 compares the electrochemical properties of the C/DFNS-6 obtained in this work
with various forms of SiO2/C composite anode materials reported in previous studies.
It is clear that C/DFNS-6 outperforms many other SiO2/C composites with different
morphologies, which confirms the ingenious design for the anode materials in this work.
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Table 2. Comparison of the lithium-storage performance between SiO2/C composites prepared from
different morphologies reported in the literature.

Materials Morphology Current Density
(A g−1)

Reversible Capacity
(mAh g−1)/Cycles Ref.

DMSNs/C Spheres 0.1 635.7/200 [20]

SiO2/po-C@C Hollow core–shell microspheres 0.1 669.8/100 [21]

L-HSiO2@CN Hollow mesoporous nanospheres 0.1
1.0

841.9/248
786/500 [22]

C-mcms Triple spheres 0.5 1055/150 [23]

LHC/SiO2-21 Honeycomb-like porous spheres 0.1
5.0

1109/100
230/1000 [24]

SiO2@CCNRs-2 Core–shell nanorods 0.1 690/100 [25]

PC@HC@SiO2 Nano boxes 0.1
1.0

723/150
321/800 [23]

SNTs@c-PDLF Hollow nanotubes 0.1
1.0

911/300
549/800 [27]

SiO2/C composite Irregular polyhedrons 0.186 533.4/100 [48]

SiO2/C Irregular particle shape 0.1
1.0

620/150
534/1000 [49]

SiO2/C Porous irregular shape 0.2
2.0

886/100
359/500 [37]

SiO2@cPANI/cTOCNFs 3D spider-web-like nanostructure 0.1
1.0

1103/200
302/1000 [45]

SiO2-C material 3D porous membranes 0.1 642/100 [50]

SiO2/C fiber Fibers 0.05 465/50 [51]

C/DFNS-6 Pompon mum-like nanospheres 0.2
1.0

986/200
529/300 This work

4. Conclusions

In summary, we uniformly coated the carbon layer and retained the unique porous
morphology of DFNS through simple hydrothermal, carbonization and etching steps, which
significantly enhances the electrical conductivity of the anode material while effectively
inhibiting the repeated destruction and reconstruction of the SEI layer and reducing the
capacity loss, and a moderate amount of SiO2 provides the basis for high reversible specific
capacity of the material, providing a high specific capacity of 986 mAh g−1 after 200 cycles
at 0.2 A g−1. The large number of pore structures obtained by corroding part of the DFNS
allocate sufficient space to accommodate volume expansion during the reaction process and
provide a fast ion transport channel, which gives C/DFNS-6 excellent rate performance and
cycling stability, with a capacity of 599 mAh g−1 when the current density is 4.0 A g−1, and
1066 mAh g−1 can be quickly recovered when the current density drops back to 0.2 A g−1.
These advantages make C/DFNS-6 a good application prospect in the field of lithium-
ion batteries and provide a very meaningful solution for the modification of SiO2-based
anode materials.
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